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Abstract: Cerenkov luminescence tomography (CLT) provides a powerful optical molecular
imaging technique for non-invasive detection and visualization of radiopharmaceuticals in living
objects. However, the severe photon scattering effect causes ill-posedness of the inverse problem,
and the location accuracy and shape recovery of CLT reconstruction results are unsatisfactory
for clinical application. Here, to improve the reconstruction spatial location accuracy and shape
recovery ability, a non-negative iterative three operator splitting (NNITOS) strategy based on
elastic net (EN) regularization was proposed. NNITOS formalizes the CLT reconstruction as a
non-convex optimization problem and splits it into three operators, the least square, L1/2-norm
regularization, and adaptive grouping manifold learning, then iteratively solved them. After
stepwise iterations, the result of NNITOS converged progressively. Meanwhile, to speed up the
convergence and ensure the sparsity of the solution, shrinking the region of interest was utilized
in this strategy. To verify the effectiveness of the method, numerical simulations and in vivo
experiments were performed. The result of these experiments demonstrated that, compared to
several methods, NNITOS can achieve superior performance in terms of location accuracy, shape
recovery capability, and robustness. We hope this work can accelerate the clinical application of
CLT in the future.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Cerenkov radiation (CR) was discovered back in 1934, it occurs when a charged particle
propagates faster than the speed of light in the propagation medium [1]. In 2009, Roberson et al.
first used the radionuclides of 2-18fluoro-D-glucose (18F-FDG) for optical molecular imaging.
This optical molecular imaging method was termed Cerenkov luminescence imaging (CLI) [2,3].
Because CLI combines the advantages of the higher throughput and the low-cost imaging, CLI
has attracted widespread attention [4,5]. At present, CLI has been used in preclinical and clinical
studies, such as tumor localization, drug evaluation, endoscopy, surgery guidance, and other fields
[6–10]. However, CLI can only provide 2D information of the surface radioactive probe and lacks
depth information, so it cannot infer the location of the internal source [11]. Therefore, Cerenkov
luminescence tomography (CLT) was proposed, which can obtain the 3D spatial distribution of
interior radioactive probes [12–14].

Like other optical tomography reconstruction technologies, CLT has the problem of ill-posed
due to the serious scattering of Cerenkov photons in the tissue [15], resulting in insufficient
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spatial positioning accuracy and shape recovery [16], which is a great challenge to the clinical
application of CLT. To improve the performance of CLT reconstruction, some anatomical prior
information and regularization methods can be added to CLT reconstruction. In the first CLT
reconstruction experiment of small animals, it is assumed that the optical properties of mouse
tissues are consistent and uniform [12], but this assumption is not consistent with the real situation.
Later, Hu et al. proposed a heterogeneous mouse model. By using mouse anatomical information
and different optical properties of organs, this model can reduce the systematic error of CLT and
significantly improve the accuracy of tumor localization [17]. Moreover, some regularization
theories are gradually applied to CLT reconstruction to ensure the accuracy of Cerenkov source,
such as L2-norm regularization (Tikhonov method) [12], L1-norm regularization (Lasso method)
[18,19] and Lp-norm (0< p < 1) regularization (non-convex method) [20]. However, these
regularization methods have their defects. L2-norm regularization will introduce many artifacts of
reconstruction, resulting in excessive smoothing of the results [21]. L1-norm regularization and
Lp-norm regularization cause other problems in the reconstruction results, such as over-sparseness
and lack of fluorescence probe boundary information [22]. To overcome these shortcomings,
Some methods based on joint regularization were proposed, such as difference of convex algorithm
(DCA) based on L1−2-norm [23], Sparse-graph manifold learning (SGML) method [24] and so on
[25–27]. In addition, many researchers found that shrinking the region of interest (ROI) can also
improve the reconstruction accuracy of optical tomography reconstruction [28,29]. These works
provide some new ideas for alleviating the ill-posedness of CLT reconstruction. In addition to
traditional mathematical methods, deep learning strategies are also introduced in CLT [30–32].
In 2019, a CLT approach based on multi-layer fully connected networks was proposed [33].
Subsequently, the attention mechanism of deep learning and decoder-encoder and other structures
are also used to reconstruct the Cerenkov source [30,32,34]. Although the neural network method
improves the performance of CLT reconstruction, it not only needs a huge amount of training
data but also has weak generalization ability, that is, the trained artificial neural network can only
be applied to specific imaging objects [35].

In this work, a non-negative iterative three-operator splitting (NNITOS) approach based on
elastic net (EN) was proposed to improve the accuracy and robustness of CLT reconstruction.
EN regularization combined the advantages of L1/2-norm regularization and manifold learning
regularization. The inverse problem of CLT source reconstruction was transformed by NNITOS
into a nonconvex, nonnegative iterative, and mixed regularization minimization problem. Based
on EN regularization, the objective minimum optimization function of the inverse problem was
split into the least square operator, the L1/2-norm regularization operator, and the manifold learning
regularization operator using NNITOS. The optimal solution of this objective optimization
function was approximated by solving the indeterminate point equation, and because the Cerenkov
source was non-negativity, a non-negative constraint was added to the solution of this method.
To further speed up the convergence of the solution of the indeterminate point equation, we used
a shrinking ROI strategy to constrain the region of the next step solution based on the results of
the previous step during the iterative process of the solution.

To evaluate the performance of NNITOS based on EN regularization in CLT reconstruction,
numerical simulation and in vivo experiments were carried out. Compared with fast iterative
shrinkage thresholding algorithm (FISTA) based on L1-norm [36], incomplete variables truncated
conjugate gradient (IVTCG) algorithm based on L1-norm [37], Gaussian weighted Laplace prior
(GWLP) based on L2-norm [38]. The experimental results show that the reconstruction accuracy
and shape recovery ability are greatly improved by NNITOS.

The structure of the rest of this paper is as follows. Section 2 introduces the CLT forward
model, CLT inverse problem and NNITOS strategy. Section 3 introduces the process and results
of numerical simulation and in vivo experiments. Section 4 makes some discussion and summary
of this paper.
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2. Methodology

2.1. Forward model of CLT

The transmission of Cerenkov photons in biological tissue accords with the Radiative Transfer
Equation (RTE), but it has high computational complexity. In the process of biological tissue
transmission, the scattering rate of photons is greater than the absorption rate [39], so RTE can
be simplified as a Diffusion Approximation (DA) model. The DA model combined with the
Robin boundary condition can be expressed as [40,41]:⎧⎪⎪⎨⎪⎪⎩

−∇ · (D(r) · ∇Φ(r)) + µα(r)Φ(r) = S(r), (r ∈ Ω)

Φ(r) + 2A(r, n, n′)D(r)(v(r) · D(r)) = 0, (r ∈ ∂Ω)
(1)

where r represents the nodes in the solution domain Ω. ∂Ω is boundary of the domain. Φ(r)
denotes the photon flow rate at the node r. S(r) represents Cerenkov source distribution.
D(r) = 1/3(µα(r) + (1 − g)µs(r)), where µα(r) and µs(r) are optical absorption coefficient and
optical scattering coefficient of photons at node r, respectively, and g is the medium anisotropy
factor. A(r, n, n′) ≈

1+R(r)
1−R(r) , where R(r) is the inner reflection coefficient, n and n′ are the refractive

index within Ω and the refractive index of external medium, respectively. v(r) denotes the unit
outer normal on ∂Ω. Based on the finite element framework [41], the light propagation model
can be discretized, and the relationship between the unknown Cerenkov source distribution and
the luminous flux on the surface of biological tissue can be described as the linear equation as:

Y = UX (2)

where Y is the luminous flux measured on the surface, U denotes the system weight matrix and X
represents the unknown internal Cerenkov source distribution. Therefore, the purpose of the CLT
inverse problem is to restore the radioactive probe distribution X in the above linear equation,
and the detailed information of the forward model can be found in [42].

2.2. Inverse problem

As mentioned above, the linear relationship between the Cerenkov luminescence source and the
surface luminous flux in biological tissues has been established. As the result of the non-negativity
of the Cerenkov source distribution, and inspired by Three-Operator Splitting (TOS) algorithm
[43,44], the NNITOS approach for CLT was proposed to alleviate the ill-posedness of the inverse
problem. The TOS algorithm is described by the most straightforward mathematical formula as:

Φ(X) = minimize f (X) + g(X) + h(X) (3)

where Φ is expressed as our objective function, f is potentially nonconvex and Lipschitz
differentiable, and g and h are convex functions and potentially non-smooth. Combining the TOS
algorithm and the objective function of CLT reconstruction, our proposed objective function can
be expressed as follows:

min
X

1
2
∥UX − Y ∥2

2 + λ1 ∥X∥
1
2
1
2
+ λ2XTLX (4)

where λ1 and λ2 are the regularization parameters, ∥X∥
1
2
1
2
= Σi

√︁
|x| denotes a quasi-norm, XTLX

is the Laplacian manifold regularization term and L is the dynamic graph Laplacian matrix. This
combination of different norms is called EN regularization [45,46]. The details of the EN-based
NNITOS method are described below.
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2.2.1. EN regularization

The EN regularization proposed by us included L1/2-norm regularization and manifold regulariza-
tion. The EN combines two different regularizations, which can combine the advantages of each
regularization, so it finds a balance between the sparsity and stationarity of the results. Lp-norm
regularization can produce more sparse solutions than L1-norm regularization, and L1/2-norm
regularization is representative among all Lp-norm regularizations with p in (0, 1) [47]. Thus,
we choose L1/2-norm regularization instead of L1-norm regularization. As a popular learning
method, manifold learning is often used to constrain local linear relations [48,49]. We can use
manifold learning techniques to explore the geometric characteristics of data distribution [50]. To
improve the accuracy of the solution space, in the manifold regularization term, we propose an
adaptive grouping that adjusts the grouping according to the intensity of the grid nodes, as shown
in Fig. 1. In the finite element framework, the strength of each mesh node is closely related to the
tetrahedron, and the central node x̃i is shared by multiple tetrahedrons in Fig. 1. Therefore, the
strength of the i-th node is transformed into the strength of the i-th group, the ni represents the
initial length of the i-th group, and the threshold is Ei = Xi/ni, where Xi is the sum of the energy
values of the i-th group. Nodes whose intensity is less than the threshold will be removed from
the group. The initial length of each group may be different, but in this paper, ni = 9, refer to
related work [51]. In the adaptive grouping, we construct the adjacency matrix g. If the i-th node
and the j-th node were in the same group, then gij = 1, otherwise, gij = 0.

Fig. 1. The schematic diagram of adaptive grouping. (A) represents the initial group, with
the red node as the center node x̃i, the yellow node surrounded by the green oval region is
the neighbors of x̃i, the gij = 0 of the blue node. (B) indicates that after the adjustment of
the group, the nodes whose energy value is less than the threshold Ei are excluded from the
green ellipse region.

The adjacency matrix g is needed in solving the dynamic graph Laplacian matrix L in EN
regularization. The Laplacian manifold regularization term is defined as:

N∑︂
i=1

N∑︂
j=1

wij(xi − xj)
2 (5)

where xi and xj denote i-th node and the j-th node, N is the number of finite elements meshes,
and wij is the weight of the edge between node Ni and node Nj. The wij is defined as:

wij =

⎧⎪⎪⎨⎪⎪⎩
exp(− ∥Ni−Nj∥

2
2

4R2 )

0 , i = j or gij = 0
/

∑︂
exp

(︄
−

Ni − Nj
2
2

4R2

)︄
, gij = 1 (6)
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where
∥︁∥︁Ni − Nj

∥︁∥︁2
2 is the Euclidean distance between the i-th node and the j-th node, R is the radius

of the Gaussian kernel function which adjusts the probability density function of adjacent nodes,
gij = 1 means that the i-th node and the j-th node are in the same group, whereas gij = 0 means
that the i-th node and the j-th node are not in the same group, as shown in Fig. 1. Obviously,
wij ∈ [0, 1]. After a simple mathematical derivation, Eq. (4) can be simplified to 2XT (D − W)X,
where W is an asymmetrical weight matrix, which equivalents to (wij)NN . D is the entry diagonal
matrix of the vertex, which is defined as:

Dij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N∑︁

j=1
Wij, i = j

0, i ≠ j
(7)

Let L = D − W, we will get the dynamic graph Laplacian matrix proposed by Eq. (4).

2.2.2. NNITOS strategy based on EN

In this section, NNITOS will be explained in detail. When we combine Eq. (3) and Eq. (4), it can
be expressed as follows: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (X) = λ1 ∥X∥
1
2
1
2

g(X) = 1
2 ∥UX − Y ∥2

2

h(X) = λ2XTLX

(8)

where λ1 and λ2 are selected empirically, which are given in related works [52,53]. It is noted
that NNITOS solved our objective function by evaluating the terms h and (f + g) at two different
points, x and z. (f (x) + g(x)) + h(z) can be equal to the optimal object value, even if x and z are
not close to the solution. We can introduce the distance condition between x and z to address this
issue. The following definition of an α-close and β-stationary pair of points is crucial for solving
the Eq. (3):

∥z̄ − x̄∥ ≤ α (9)

∇f (x̄), z̄ − z + g(x̄) − g(z) + h(x̄) − h(x) ≤ β (10)

where ⟨·, ·⟩ denote the standard Euclidean inner product associated with the norm ∥·∥. α-close
β-stationary points (x̄, z̄) yield approximate solution to Eq. (3) under appropriate assumptions.
For specific assumptions, please refer to the Ref. [54]. By Eq. (9) and Eq. (10) we can know that
TOS algorithm is approximately stationary. The TOS algorithm is represented by a fixed-point
equation as follows: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xk = proxγkg(yk)

zk = proxγkh(2xk − yk − γk∇f (xk))

yk+1 = yk − xk + zk

(11)

where the proximal operator of function ġ is defined by proxγk ġ(yk) := argmin
y

{︂
ġ(y) + 1

2γk
∥y − yk∥

2
}︂

,

xk is the intermediate solution in the iterative process, γk is the step-size, k denotes the number of
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iterative rounds. Therefore, Eq. (11) is denoted as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
xk ∈ argmin

x

{︂
g(x) + 1

2γ ∥x − yk∥
2
2

}︂
zk ∈ argmin

z

{︂
h(z) + 1

2γ ∥z − (2xk − yk − γ∇f (xk)∥
2
2

}︂
yk+1 = yk − xk + zk

(12)

By designing a well-behaved fixed-point equation, the TOS method decomposes the mini-
mization of the objective function into solving the nearest neighbor mapping of two individuals.
When we combine Eq. (8) and Eq. (12), by solving the partial differential, it can be expressed as
follows: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xk =
(︂
UTU + 1

γk
I
)︂−1 (︂

UTY + 1
γk

yk

)︂
zk =

(︂
λ1(LT + L) + 1

γk
I
)︂−1 (︂

2xk − γkλ2

(︂
1

2√xk

)︂
− yk

)︂
yk+1 = yk − xk + zk

(13)

where the I denotes the unit matrix of N ×N. The value of γ1 is selected refer to related work [44].
We add non-negative constraints to the TOS algorithm. In addition, NNITOS method uses ROI
framework. In each iteration, we shrink the ROI based on the results of the iteration. Therefore,
the NNITOS method for solving the inverse CLT problem can be summarized as Algorithm 1.

Algorithm 1 NNITOS

Input: The system matrix U and the measured luminous flux vector Y.

Initialization: The global R0 as the initial ROI, set vector y1 = 0, set step-size γ1 = 0.15,
iteration index k = 1, the regularization parameters λ1 = λ2 = 1e − 5, the cosine similarity
ECk = 0, Euclidean distance ELk = 0.

Step1: Find the nine nearest neighbors of each node and assign them to the same group,
construct the adjacency matrix g. calculate the threshold Ei for each group.gij = 0 denote the j-th
node is not in the i-th group.

Step2: Calculate the dynamic graph Laplacian matrix L, via the Eq. (5), (6) and (7).

Repeat

Step3: Utilize the Eq. (13) to update xk, zk, yk+1, The point less than 0 in xk is set to 0.

Step4: Calculate the cosine similarity ECk+1 and Euclidean distance ELk+1 between Uxk and Y.

Step5: Shrinking the ROI according to the reconstruction result xk, set the node with lower
energy value in xk to 0.

Step6: Increase the iteration index k = k + 1, and then update step-size
γk = max

{︁γk−1
2 , 0.9999 × γk−1

}︁
.

Until ECk ⟨ ECk−1 or ELk⟩ ELk−1.

Output: xk.

3. Experiments and results

To verify and systematically evaluate the performance of NNITOS in CLT reconstruction, four
groups of simulation experiments and one group of in vivo experiments were introduced in this



Research Article Vol. 30, No. 20 / 26 Sep 2022 / Optics Express 35288

paper. Three types of algorithms were compared with our proposed methods, namely, FISTA
algorithm based on L1-norm, IVTCG algorithm based on L1-norm, and GWLP based on L2-norm.
The regularization parameters of these algorithms come from related work [26,18]. In addition,
to assess the stability, we also carried out a group of anti-Gaussian noise experiments with
dual-source. All the programs in this work were executed on desktop computers with an Intel
Core i3-10100 CPU (3.60 GHz) and 8GB RAM.

3.1. Evaluation metrics

To evaluate the location accuracy, shape recovery ability, and source intensity accuracy of CLT
reconstruction in ROI, the location error (LE), DICE similarity coefficient (DICE), relative
intensity error (RIE), and contrast to noise ratio (CNR) were taken as the quantitative evaluation
indexes. LE represents the error between the center position of the reconstruction source and the
center position of the real source, which is defined as:

LE = ∥L(Xr) − L(Xt)∥ (14)

where Xr denotes the vector of the reconstructed source and Xt denotes the vector of the true
source. DICE is the similarity between the reconstructed source region and the real source region:

DICE = 2
|Rr ∩ Rt |

|Rr | + |Rt |
(15)

where Rr denotes the region of the reconstructed source and Rt denotes the region of the true
Cerenkov source. DICE values range from 0 to 1, and the closer the DICE is to 1, the higher the
shape recovery of the reconstruction source. RIE is used to evaluate the relative intensity error
between the reconstructed Cerenkov source intensity and the actual Cerenkov source intensity:

RIE =
|Ir − It |

It
(16)

where Ir denotes the intensity of the reconstructed source and It denotes the intensity of the
true Cerenkov source. Obviously, the closer the RIE is to 0, the better the intensity recovery of
the reconstructed source. The contrast to noise ratio (CNR) is used to evaluate the quality of
reconstruction results, and CNR is defined as follows:

CNR =
|µROI − µBCK |

(mROIσ
2
ROI + mBCKσ

2
BCK)

1/2 (17)

where µROI and µBCK represent the mean values in the ROI and background, respectively; σ2
ROI

and σ2
BCK are represent the variances; and mROI and mBCK represent the number of nodes included

in the ROI and background, respectively. The higher value of CNR indicates better quality of the
reconstruction.

3.2. Experimental process

3.2.1. Numerical simulation

A series of numerical simulations are carried out based on the cylinder model, the main
components of the cylinder model are shown in Fig. 2(A). It consists of five organs: muscle,
heart, lung, liver, and bone. Moreover, all experiments in this work are based on single spectrum
(650 nm). Here, the optical parameters of these organs at 650 nm are consistent with those in Ref.
[35,55], as shown in Table 1. In all simulations, for the inverse reconstruction, the cylinder model
was discretized into a uniform tetrahedral mesh, including 4626 nodes and 25840 tetrahedral
elements using Comsol Multiphysics software [56], and the mean element edge size is 1.37mm,
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as shown in Fig. 2(B). the molecular optical simulation environment (MOSE) platform [57]
based on the Monte Carlo method was used to simulate the surface flux distribution, as shown in
Fig. 2(C).

Heart

Lung1

Lung2

Muscle

Liver

Bone

A B

MAX

MIN

MAX

C

Fig. 2. (A) The numerical phantom-based physical model. (B) Application of tetrahedral
mesh of physical model in CLT inverse problem. (C) shows the forward simulation result.

Table 1. Optical coefficients used in numerical simulation

Tissues µα(mm−1) µs(mm−1) g

Muscle 0.016 0.510 0.90

Heart 0.011 1.053 0.86

Bone 0.021 2.864 0.90

Liver 0.065 0.723 0.90

Lung 0.036 2.246 0.90

We simulated Cerenkov sources of different sizes, shapes, and positions in organisms. The
specific shapes, sizes, and positions of these light sources were shown in Table 2. Four groups of
simulation experiments were designed. In one group of experiments, a spherical single light
source with a radius of 1mm and 1.5mm was placed at the central coordinate (3, 3, 5) mm, while
in the other group, a spherical single light source and a cube single light source with the same
radius were placed at the central coordinate (0, -1, 25) mm. These experiments evaluate the
shape recovery accuracy of NNITOS by simulating a single source with different positions and
different shapes. We also carried out a dual-source simulation experiment to assess the spatial
positioning accuracy. The central coordinates of the dual-source were (3, 3, 8) mm and (3, 3, 16)
mm, respectively. Finally, to assess the robustness of NNITOS, we designed a set of anti-noise
simulation experiment. Specifically, 5%, 10%, 15%, 20%, 25% Gaussian noise was added to the
1.0 mm spherical dual-source simulation experiment with central coordinates of (0, -2, 15) mm
and (0, -2, 25) mm.

3.2.2. Implanted animal experiments

To further access the performance of our proposed method, we used the experimental data of
implanted adult nude mouse (about 6-8 weeks old/female) and used a CLT/micro-CT dual-
modality imaging system to acquire experimental data. Implanted animal experiments were
carried out under 2% isoflurane-oxygen mixture gas anesthesia to minimize the suffering of
the mouse. All procedures were conducted under the protocols approved by the Animal Ethics
Committee of the Northwest University of China and Use Committee.
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Table 2. Cerenkov source settings in numerical simulation

Simulation Source Shape Source Size (mm) Center(mm) Intensity

Single-source

Spherical 1mm (3, 3, 5) 1

Spherical 1.5mm (3, 3, 5) 1

Cube 1mm (0, -1, 25) 1

Spherical 1mm (0, -1, 25) 1

Dual-source

Spherical
1mm S1: (3, 3, 8) 1

1mm S2: (3, 3,16) 1

Spherical
1mm S1: (0,- 2, 15) 1

1mm S2: (0, -2, 25) 1

In the experiment, firstly, we used a spherical glass vessel with a radius of 1 mm containing
about 800± 50µCi 18F-FDG as the artificial Cerenkov luminescence source, and then implanted
it into mouse at the designed locations. Secondly, we began to collect the dual-modality raw
data. The mouse was placed on the automatic rotating stage, which was rotating 360 degrees
with 1° intervals to capture the images of CLI and X-ray projection. By using band-pass filters
(FF01-650/13-25, Semrock, USA). The CLI signal with wavelength of 650nm and white light
data were collected by a cooled high-sensitivity EMCCD (-80°C, iXonEM Ultra 888, UK). Before
acquisition process of CLT, it is set that long exposure time (5min), high given value (300), high
shift speed (13µs), and low speed readout rate (1MHz at 16bits). Then CT volume data was
acquired by a micro-CT system (tube voltage of 40kV p, tube current of 300mA).

After in vivo imaging, we proceeded with data processing, as shown in Fig. 3(C), the trunk
sections of the mouse with a height of 41mm was obtained. We segmented the main organs of the
mouse, including muscle, lung, heart, stomach, liver, and kidney, and integrated these organs into
the mouse model. The optical parameters of each organ are consistent with those in the literature
[58]. It should be noted that, the mouse was used for three times, and each time the location of
the implanted radionuclide probe is different ((17.5, 23.0, 21.0) mm, (14.5, 26.0, 33.0) mm, and
(14.5, 20.0, 36.0) mm)). Moreover, the CLI images obtained from each implanted model was
mapped and registered to the surface of the mouse torso. To assess the feasibility of this method
in vivo, NNITOS was also compared with the other three algorithms mentioned above.

A B C

Fig. 3. (A) The schematic diagram of device structure of CLT/micro-CT dual-mode system.
(B) shows the plane CLI photon distribution in a certain position of the mouse. (C) shows
the distribution of Cerenkov source at a certain location in mouse.
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3.3. Results

3.3.1. Multi-sized and multi-shape single-source reconstruction

In terms of shape restoration ability, we compare the performance of NNITOS and the above
three algorithms in a single source of different sizes and different shapes. The results of 3D
reconstruction and the shape of the axial plane prove the effectiveness of our proposed method.
As shown in Fig. 4 and Fig. 5, the reconstructed Cerenkov source was represented by a red region
under 3D-view. Figure 4 showed the comparative results of using different methods to reconstruct
a single source of different sizes, and Fig. 5 showed the comparative results of using different
methods to reconstruct a single source of different shapes. These two experiments showed that
the reconstruction result of the NNITOS method is closer to the real source. According to
Table 3 and Table 4, we found that the NNITOS had a smaller LE, so the reconstructed Cerenkov
source center is closer to the real value, and the DICE of NNITOS is smaller, indicating that
the reconstructed Cerenkov source region and the actual Cerenkov source region have a good
overlap, and the RIE of NNITOS is lower, means that the energy intensity recovery rate of the
reconstructed source is very high.

1mm 1.5mm

FI
ST
A
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TC
G

G
W
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Fig. 4. Reconstruction results of simulation experiments of single spherical source of
different sizes. The reconstruction result is cut along the z-axis of the Cerenkov source to
obtain the axial view, and the white circle on the plan represents the real location and size of
the source.
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Fig. 5. The reconstruction results of single source simulation experiments with different
shapes. The reconstruction result is cut along the z-axis of the Cerenkov source to obtain the
axial view. The white circle on the plane represents the real location and size of the sphere
source, and the white square is the real location and size of the cube source.

Table 3. Quantitative analysis of multi-sized single-source simulation reconstruction results

Size Actual source center (mm) Method LE (mm) DICE RIE CNR

1 (3, 3, 5)

FISTA 0.967 0.562 1.567 0.292

IVTCG 0.837 0.374 1.985 0.405

GWLP 0.606 0.754 1.173 0.983

NNITOS 0.126 0.911 0.192 1.369

1.5 (3, 3, 5)

FISTA 1.374 0.324 0.669 0.186

IVTCG 0.981 0.386 0.962 0.223

GWLP 0.892 0.388 0.709 0.76

NNITOS 0.32 0.704 0.058 0.853
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Table 4. Quantitative analysis of multi-shape single-source simulation reconstruction results

Shape Actual source center (mm) Method LE (mm) DICE RIE CNR

Sphere (0, -1, 25)

FISTA 0.996 0.496 0.745 0.287

IVTCG 0.641 0.51 1.773 0.361

GWLP 0.428 0.48 0.694 0.866

NNITOS 0.199 0.933 0.206 1.337

Cube (0, -1, 25)

FISTA 0.704 0.429 0.976 0.252

IVTCG 0.692 0.444 1.927 0.333

GWLP 0.576 0.472 0.721 0.799

NNITOS 0.357 0.84 0.272 1.253

3.3.2. Dual-source reconstruction

To further verify the positioning accuracy of NNITOS reconstruction, we have established a
dual-source experiment. Different methods of reconstruction of Cerenkov dual spherical sources
are shown in 3D, axial, sagittal and coronal views as shown in Fig. 6. FISTA and IVTCG produce
excessive smoothing artifacts around a single source. Although the reconstruction performance of
GWLP is better than that of the former two methods, compared with NNITOS, the center position
of NNITOS reconstruction is more accurate, the image artifacts are less, and the light source
intensity is closer to the real value. Specifically, the quantitative analysis of the reconstruction
results of dual-source simulation is shown in Table 5.

Table 5. Quantitative analysis of dual-source simulation reconstruction results

Method Actual source center (mm) LE (mm) Total LE (mm) DICE RIE CNR

FISTA
(3, 3, 8) 1.123

2.179
0.433 1.518

0.109
(3, 3, 16) 1.056 0.525 1.596

IVTCG
(3, 3, 8) 1.089

2.217
0.48 1.693

0.133
(3, 3, 16) 1.128 0.393 0.743

GWLP
(3, 3, 8) 0.898

1.933
0.497 0.773

0.284
(3, 3, 16) 1.035 0.47 0.715

NNITOS
(3, 3, 8) 0.314

0.565
0.871 0.405

0.41
(3, 3, 16) 0.251 0.899 0.237

3.3.3. Anti-noise performance

To test the robustness of NNITOS, we established an anti-noise experiment. The dual-source
simulation as an example, 5% 10% 15% 20% 25% Gaussian noise was added to detect the impact
on NNITOS reconstruction results. As shown in Fig. 7, the values of LE, DICE, RIE and CNR
fluctuate little, indicating that the method is robust to noise.

3.3.4. Implanted animal experiment

To evaluate the practicability of NNITOS imaging in vivo, we used the experimental data of a
mouse with radioactive probes in vivo. According to the mouse trunk boundary registration, the
reconstruction results obtained by different methods are shown in Fig. 8. The three-dimensional
reconstruction results and axial plane prove the effectiveness of different methods, our proposed
method successfully overcame the over-smooth problem in vivo experiment. NNITOS has
the smallest LE, the largest source matching area, and the best energy recovery ability, and
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Fig. 6. The reconstruction results of dual-source simulation experiment. Four different
methods to reconstruct the radiation source were displayed in 3D view, axial view, coronal
view and sagittal view. In 3D view, the red region was the double source of reconstruction,
and in the slice view, the location and size of the real source were depicted by white circles.

Fig. 7. The results of quantitative analysis of anti-noise experiment.
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the reconstruction performance is better than other methods. The quantitative analysis of the
reconstruction results of the real implanted animal experiment is shown in Table 6.
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Fig. 8. Reconstruction results of different methods in vivo experiments. The box under the
3D viewing angle represents the cutting surface, and after the cutting plane was enlarged,
the axial viewing plane on the right was obtained, and the white circle in the plane view was
the real position and size of the Cerenkov source.

Table 6. Quantitative analysis of in vivo reconstruction results

No. Actual source center (mm) Method LE (mm) DICE RIE CNR

1 (17.5, 23.0, 21.0)

FISTA 0.853 0.324 1.491 0.077

IVTCG 0.831 0.321 1.588 0.081

GWLP 0.809 0.407 1.079 0.093

NNITOS 0.221 0.681 0.314 0.102

2 (14.5, 26.0, 33.0)

FISTA 0.737 0.48 1.128 0.081

IVTCG 0.625 0.764 1.205 0.084

GWLP 0.524 0.753 0.897 0.085

NNITOS 0.233 0.83 0.193 0.093

3 (14.5, 20.0, 36.0)

FISTA 0.879 0.5 0.893 0.078

IVTCG 0.785 0.511 0.765 0.082

GWLP 0.732 0.449 0.532 0.085

NNITOS 0.2 0.632 0.108 0.092
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4. Discussion and conclusion

CLT can be used to visualize the three-dimensional distribution of radioactive probes in living
animals, which solves the problem of insufficient depth information in traditional CLI methods. At
present, it is considered that CLT is a highly promising imaging technology for clinical application.
However, due to the ill-posedness of the inverse problem caused by the strong scattering of
Cerenkov light in vivo, the performance of CLT reconstruction is not satisfactory. Further
improving the reconstruction performance is of great significance to promote the application of
CLT in preclinical and clinical research. Therefore, this paper proposes an NNITOS method to
achieve better CLT reconstruction performance. EN regularization combines the L1/2-norm and
manifold learning regularization to balance the sparsity, smoothness, and edge preservation of
Cerenkov sources. Because the regularization term is complex, we use the NNITOS method to
split the inverse problem into three operators: the least square operator, the L1/2-norm operator,
and the manifold learning operator to reduce the computational complexity. On this basis, we use
the method of shrinking ROI, which shrinks ROI based on the prior information generated by the
previous iteration, and further controls the sparsity of the reconstructed Cerenkov source. The
non-negative constraint of each iteration also ensures the sparsity of the reconstructed Cerenkov
source, reduces the error, and helps to improve the performance of CLT reconstruction.

To evaluate the performance of NNITOS in CLT reconstruction, we used FISTA, IVTCG
and, GWLP methods to compare with NNITOS, and carried out numerical simulation and in
vivo experiments. The experimental results show that: 1) multi-sized source and multi-shape
source simulation experiments show that NNITOS also has advantages in restoring source
shape. 2) Dual-source simulation experiments show that NNITOS guarantees high reconstruction
localization accuracy. 3) NNITOS exhibits good robustness in experimental tests against noise. 4)
All simulation experiments show that NNITOS has better intensity recovery ability for Cerenkov
sources than other methods. 5) In vivo experiments demonstrate the feasibility of NNITOS in
biomedical research.

In addition, we also find that the decrease of position error may not cause the increase of the
DICE coefficient or the decrease of the RIE coefficient. That is, there is a situation in which
the centers of two regions are very close, but there may be great differences in shape, size, or
strength between them. For example, in the spherical single source reconstruction in multi-shape
simulation, compared with the FISTA method, the IVTCG method has a lower location error, but
a higher RIE coefficient. Compared with the GWLP, the IVTCG method has a higher location
error, but a higher DICE coefficient. Compared with other methods, NNITOS performs very
well in these three evaluation indicators.

Although the NNITOS strategy performs well in CLT reconstruction, it still has some
shortcomings. Firstly, in the manifold learning regularization, to group these nodes, we must find
out the k-nearest nodes of each node, which is the initial group, and then automatically adjust
the grouping according to the threshold. The selection of k will affect the accuracy of manifold
learning gradient calculation, k is larger, the calculation accuracy is greater, but it takes more
time. Therefore, how to determine the value of k of the initial group in manifold learning needs
further research. In addition, the regularization parameters of NNITOS and some other internal
parameters are chosen empirically. It is necessary to propose an adaptive parameter selection
algorithm to objectively set these parameters. Finally, the clinical application of CLT based on
the NNITOS strategy needs to be further studied.

Overall, an EN regularization-based NNITOS strategy is proposed for CLT morphological
reconstruction. Compared with other traditional methods mentioned above, the NNITOS strategy
achieved more precise results in the localization and morphological recovery of radioactive probes.
And it has good robustness in the reconstruction. We believe that this strategy is beneficial to the
preclinical and clinical research of CLT and promotes the development of theoretical research of
optical tomography.
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