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Abstract: As a dual-modal imaging technology that has emerged in recent years, cone-beam
X-ray luminescence computed tomography (CB-XLCT) has exhibited promise as a tool for the
early three-dimensional detection of tumors in small animals. However, due to the challenges
imposed by the low absorption and high scattering of light in tissues, the CB-XLCT reconstruction
problem is a severely ill-conditioned inverse problem, rendering it difficult to obtain satisfactory
reconstruction results. In this study, a strategy that utilizes dictionary learning and group structure
(DLGS) is proposed to achieve satisfactory CB-XLCT reconstruction performance. The group
structure is employed to account for the clustering of nanophosphors in specific regions within
the organism, which can enhance the interrelation of elements in the same group. Furthermore,
the dictionary learning strategy is implemented to effectively capture sparse features. The
performance of the proposed method was evaluated through numerical simulations and in vivo
experiments. The experimental results demonstrate that the proposed method achieves superior
reconstruction performance in terms of location accuracy, target shape, robustness, dual-source
resolution, and in vivo practicability.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

X-ray luminescence computed tomography (XLCT) is a hybrid X-ray CT/optical imaging modality
[1,2]. In XLCT, imaging probes, known as nanophosphors, are excited by X-ray beams to emit
visible or near-infrared (NIR) light, which is then captured by photon detectors, resulting in a
natural combination of high-resolution X-ray structural imaging with the high-sensitivity and
high-specificity optical molecular imaging [3,4]. XLCT has been used in tumor imaging and
treatment, for example, Hyeon et al. used XLCT for angiography and bimodal image-guided
lymph node imaging [5]. J.Sailor et al. applied XLCT to breast cancer tumor imaging [6]. These
preclinical studies will promote the clinical application of XLCT. Moreover, compared with
other optical molecular imaging modalities such as bioluminescence tomography (BLT) [7,8]
and fluorescence molecular tomography (FMT) [9,10], XLCT offers several advantages. Due
to the high penetration and limited scattering of X-rays in biological tissue, XLCT can avoid
background optical signals and autofluorescence [11,12].

In general, there are two primary types of XLCT systems based on the shape of the X-ray beam.
One type is the pencil-beam XLCT (PB-XLCT) or narrow-beam XLCT (NB-XLCT) imaging
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system, while the other is the cone-beam XLCT (CB-XLCT) [13]. However, although the first
type of XLCT technique can achieve higher spatial resolution, its long data acquisition time
makes it unsuitable for fast biomedical applications [14]. CB-XLCT, on the other hand, utilizes
cone-beam geometry to cover the entire body simultaneously, eliminating the translation scanning
process required in PB-XLCT and NB-XLCT, thereby speeding up the imaging and acquisition
process [11]. Furthermore, CB-XLCT has the advantage of making full use of the X-ray dose
compared to PB-XLCT [15]. Therefore, this study was only carried out using CB-XLCT.

However, due to the high scattering and low absorption of photons transmitted through
biological tissues, CB-XLCT reconstruction is an ill-posed problem [3]. In addition, the
inadequate external measurements also hinder the ability to obtain satisfactory reconstruction
results [16]. To address these issues and improve the quality of reconstruction, several methods
have been proposed by researchers in recent years. Zhang et al. proposed using a Bayesian method
with a Gaussian Markov random field model to preserve target edges [17]. Considering that the
distribution of nanophosphors in vivo is sparse, compressed sensing (CS) technology [18] can be
adopted in the CB-XLCT reconstruction process, and L1-norm as a convex relaxation of L0-norm,
which is often used to promote the sparsity of the solution [19]. Based on L1-norm, a primal–dual
Newton conjugate gradient method (pdNCG) was proposed by Gao et al. to alleviate ill-posedness
[13]. There are also some hybrid regularization methods with L1-norm proposed, for example,
Zhang et al. proposed the joint L1 and total variation regularization method (L1-TV) [1] and Zhao
et al. proposed an elastic net-L1L2 method based on the combination of the L1 and L2 regular
terms for CB-XLCT reconstruction [3]. Moreover, with the help of CT images, group sparse
priori is also used by Gao et al. to describe the relationship between elements [20]. In addition
to sparse prior information, structural priori, optical properties, multi-spectral information and
permission source regions have also been effectively used to improve reconstruction performance
[9,21–23].

In this paper, a sparse reconstruction method based on dictionary learning and group structure
(DLGS) strategy is proposed to improve the reconstruction quality of CB-XLCT. Most traditional
convex or proximal convex optimization methods tend to neglect the spatial interdependence of
relationships within the subspace after imposing a sparse constraint, leading to inaccurate spatial
positioning and low morphological recovery. To address this issue, the fact that nanophosphors
usually cluster in specific regions within the organism is considered during the reconstruction
process. Specifically, DLGS groups adjacent nodes together, which strengthens the relationships
between nodes within the group. In addition, dictionary learning (DL) aims to linearly represent
redundant raw signals using sparse signals [24,25],effectively capturing important sparse features,
and making it suitable for solving the problem of CB-XLCT reconstruction. To evaluate the
reconstruction performance of our method, a series of numerical simulations and simulation
experiments are performed and DLGS method was compared with the adaptive Tikhonov
regularization algorithm with L2-norm (Adaptik-L2) [26], the orthogonal matching pursuit based
on L0-norm (OMP-L0) [27], and the incomplete variables truncated conjugate gradient with
L1-norm (IVTCG-L1) [28] in terms of location accuracy, target shape, robustness, dual-source
resolution and in vivo practicability.

The structure of the remainder of this paper is organized as follows. In Section 2, a detailed
description of the CB-XLCT imaging model and the proposed DLGS method is provided. In
Section 3, detailed numerical simulations and in vivo experiments are conducted to evaluate the
performance of the reconstruction method. In Section 4, the experimental results obtained using
different reconstruction methods are summarized. Finally, in Section 5, the main findings of this
work are discussed and concluded.
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2. Methodology

2.1. Photon propagation model

In CB-XLCT, X-rays are emitted by cone-beam incoherent X-ray sources, which travel through
biological tissues and excite nanophosphors to produce luminescence. According to Beer-
Lambert’s law, the X-ray intensity X(r) along the primary path of the propagation process of
X-ray in the tissue can be expressed as follows [29]:

X(r) = X(r0)exp
{︁
− ∫

r
r0 µx(τ)dτ

}︁
(1)

where X(r0) is the X-ray intensity (W cm−3) at the initial position r0, and µx(τ) is the X-ray
attenuation coefficient at position τ, which can be obtained from CT data. Sequentially, when the
excitable nanophosphors emit visible or NIR light after irradiation, the source energy density
S(r) (W cm−3) can be calculated as follows [15]:

S(r) = ΓX(r)nc(r) (2)

where Γ represents the light yield of nanoparticles (mg/mL), and nc(r) represents the concentration
of nanophosphors at position r, respectively. The transportation process of visible light or NIR
light in biological tissue can be modeled by the radiative transfer equation (RTE) [30], but it is
challenging to solve RTE directly because of its high mathematical complexity. Due to the highly
scattering and weak absorption properties of visible or NIR spectral window in biological tissue,
in general, the RTE model can be simplified to the following steady-state diffusion equation (DE)
model with Robin-type boundary condition, which is defined as follows [31,32]:⎧⎪⎪⎨⎪⎪⎩

−∇[D(r)∇Φ(r)] + µa(r)Φ(r) = S(r) (r ∈ Ω)

Φ(r) + 2κD(r)[v∇Φ(r)] = 0 (r ∈ ∂Ω)
(3)

where D(r) is the diffusion coefficient, which can be calculated by D(r) = [3(µa(r) + µ′s(r))]−1,
and µa(r) and µ′s(r) are the absorption and reduced scattering coefficients at the position r,
respectively. Φ(r) is the photon flux at position r, and Ω is the domain of the imaged object and
∂Ω is the boundary of Ω. κ is the boundary mismatch factor and v is the outward unit normal
vector on the boundary ∂Ω.

Based on the finite element method (FEM) [33], after the imaging domain is discretized,
Eq. (3) can be rewritten into the following matrix equation:

KΦ = Fρ (4)

with

Kij = ∫Ω(D(r)∇ψi(r)∇ψj(r) + µa(r)∇ψi(r)∇ψj(r))dr + 1
2κ ∫∂Ω ψi(r)∇ψj(r)dr

Fij = ∫ΩΦ(r)ψi(r)ψj(r)dr
(5)

where ρ is the nanophosphors density to be reconstructed; Kij and Fij are the elements of matrix
K and A, respectively; ψi and ψj denote the corresponding elements of the test function.

Since the matrix K is positive definite, Eq. (4) can be rewritten as

Φ = Aρ (6)

where A = K−1F is the weight matrix with size of M × N, andΦ is the photon measurements
vector on the object surface, and its size is N × 1.
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2.2. Reconstruction based on DLGS method

The distribution of unknown nanophosphors ρ is reconstructed using the visible or NIR
measurement Φ captured by the highly sensitive electron multiplying charge coupled device
(EMCCD) camera, which is the CB-XLCT imaging goal. However, due to the severe scattering
of visible and NIR light in biological tissue, the system matrix A becomes ill-conditioned. As
a result, it is impractical to solve Eq. (6) directly. Compared to the entire imaging object, the
distribution of nanophosphors is small and sparse [34]. Inspired by CS theory, Lp regularization
term can be applied to the objective function to obtain stable and robust solutions, as follows [35]:

min| |Aρ −Φ| |22 + λ | |ρ| |p (7)

where λ is the regularization parameter, and | |ρ| |p =
(︂∑︁N

i=1 |ρi |
p
)︂1/p

is the Lp-norm of ρ. When
p = 0, Eq. (7) becomes L0 regularization problem which ensures the sparsest CB-XLCT
reconstruction; When p = 1, Eq. (7) will be a L1 regularization problem which approximates
the L0-norm, and if p = 2, Eq. (7) is a Tikhonov regularization and usually results in over-
smoothed reconstruction. Since then, the CB-XLCT reconstruction problem is transformed
into an optimization problem of ρ in Eq. (7). In this work, the p = 0 is adopted by us, and its
constrained optimization form can be expressed as follows:

argmin| |Aρ −Φ| |22 s.t. | |ρ| |0 ≤ K (8)

where K is the sparsity level of the reconstruction result.
Inspired by DL strategy, the matrix A in CB-XLCT reconstruction can be viewed as a redundant

dictionary and the vector ρ as its corresponding sparse coefficient. The DLGS strategy takes
into account the group structure of nanophosphor distribution in organisms and consists of three
main stages: grouping, sparse coding, and dictionary update. The orthogonal matching pursuit
(OMP) algorithm [36] is adopted in the sparse coding stage for its fast convergence and high
efficiency. The K-Singular value decomposition (K-SVD) algorithm [37], as an extension of
the K-means algorithm, is used in the dictionary update stage for its efficient training. And the
simple flowchart of DLGS strategy is summarized in Algorithm 1.
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2.2.1. Grouping stage

In this stage, the main task is to combine a node i with the nearest three nodes to form a group of
Gi. In addition, the photon measurements vectorΦ and reconstruction result vector ρ also need
to be adjusted according to the node grouping results. The specific grouping information is as
follows.

Under the FEM, the CB-XLCT imaging object is divided into a Cartesian mesh system.
Tetrahedral mesh data, similar to graph structure, contains two types of data: nodes and
tetrahedral node geometric information. It is necessary to integrate the tetrahedral geometry into
the reconstruction method during CB-XLCT reconstruction. Based on the discrete tetrahedral
mesh structure, four adjacent nodes are assigned to the same group to preserve the local spatial
information. The reconstruction result ρ can then be reformulated as:

ρ = (ρG1 , ρG2 , · · · ρGN )
T (9)

where Gi ⊂ {1, 2, 3, · · ·N} denotes the subscripts set of i-th group of nodes, ρGi denotes the
tetrahedron nodes under the same group Gi, and the size of ρ becomes N × N. Similarly, surface
photon measurement needs to be rewritten as:

Φ = (ΦG1 ,ΦG2 , · · ·ΦGN )
T (10)

whereΦGi denotes the photon measurement of nodes under the same group Gi, and the size ofΦ
becomes M × N. Therefore, in the following, both the reconstruction result ρ and the surface
photon measurementΦ contain group structure.

2.2.2. Sparse coding stage

In this stage, the dimensions of the system matrix A, the surface photon measurementΦ and the
reconstruction result vector ρ are consistent with the respective dimensions after the grouping
stage.

The objective optimization function to be dealt with in the sparse coding stage can be expressed
as follows:

argmin
ρ

| |Φ − Aρ| |22 s.t. | |ρ| |0 ≤ K. (11)

Finding a stable solution using traditional optimization methods is difficult because it is
Np-hard. The OMP algorithm can be used as a greedy algorithm to find an approximate solution.
An empty support set Ss is defined to contain the index of the selected column. In each iteration,
after calculating the correlation between the column of matrix Ai and the residual matrix rk−1

with size of M × N, the group with maximum correlation is selected into the support set S,
expressed as follows:

sk = argmax
i

| |AT
i rk−1 | |1

S = S ∪ sk

(12)

where k represents the current iteration. When the number of elements in the support set S meets
the sparsity level, the iteration stops. The residual vector r can be calculated as follows:

r = Φ − Aρ =Φ − AA+Φ (13)

where A+ represents the pseudo-inverse of A, and its dimension is N × M, which can be
calculated as:

A+ = (ATA)−1AT (14)



Research Article Vol. 31, No. 15 / 17 Jul 2023 / Optics Express 24850

Consequently, based on Eq. (12), the residual vector in the current iteration k can be reformulated
as follows:

rk = Φ − ASA+SΦ (15)

where AS and A+S denote the system matrix and its pseudo-inverse in the support set S, respectively.
Let L denotes the length of support set S, then the dimension of AS is M × L, and the dimension
of A+S is L × M. Finally, the value of the element ρS corresponding to the subscript in the
support set S is updated as follows:

ρS = A+SΦ (16)

It should be noted that the matrix ρ is initialized to 0, and only the rows corresponding to ρ in
the support set are updated, and the updated results are saved in ρS.

2.2.3. Dictionary update stage

The K-SVD algorithm is used in the dictionary update stage, and the objective function that needs
to be optimized becomes:

argmin
A

| |Φ − Aρ| |22 s.t. | |ρ| |0 ≤ K. (17)

The column of matrix A can be regarded as a set of atoms or basic vectors. Then Eq. (17) can
be rewritten as:

argmin
A

| |Aρ −Φ| |22 = argmin
A

|︁|︁|︁|Φ −
∑︁N

j=1 Ajρ
T
j

|︁|︁|︁ |22
= argmin

A

|︁|︁|︁| (︂Φ −
∑︁N

j≠i Ajρ
T
j

)︂
− Aiρ

T
i

|︁|︁|︁ |22 (18)

where Aj represents the j-th column vector of dictionary A, and ρT
j represents the j-th row vector

of sparse representation ρ. For the purpose of mathematical derivation, let E =
(︂
Φ −

∑︁N
j≠k Ajρ

T
j

)︂
with size of M × N denotes an error matrix. The dictionary only updates the corresponding
columns of ρS in the support set to ensure sparsity, then a new error matrix Es is formed. Next,
the error matrix ES with size of M × L is decomposed by SVD as follows:

ES = UΛT (19)

where the dimensions of matrices U, Λ and T are M × M, M × L and L × L, respectively. Then,
the i-th column of the dictionary is updated to Ai = U(:, 1), where U(:, 1) denotes the first column
of U. When each column of the AS is updated, the iteration stops.

3. Experiment design

In this section, several numerical simulations and in vivo experiment were designed to evaluate
the proposed method. Three existing algorithms: Adaptik-L2, OMP-L0, and IVTCG-L1 were
used for comparison in terms of location accuracy, morphological recovery, robustness, and in
vivo practicability. All experiments and programs were executed on a laptop with an AMD Ryzen
7 5800 H CPU (3.20 GHz) and 16GB RAM.

3.1. Evaluation indexes

To further quantify the performance of different methods in CB-XLCT reconstruction, three
evaluation indexes were adopted: position error (PE) [38], Dice similarity coefficient (DICE)
[39], and relative quantity error (RQE) [40].
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PE was used to evaluate spatial positioning accuracy by calculating the Euclidean distance
between the reconstructed region center coordinates (xr, yr, zr) and the actual region center
coordinates (xa, ya, za):

PE =
√︂
(xr − xa)

2 + (yr − ya)
2 + (yr − ya)

2 (20)

DICE is applied to assess morphological recovery between the reconstructed target region Rr
and the real target region Ra:

DICE =
2|Rr ∩ Ra |

|Rr | + |Ra |
(21)

The value of DICE ranged from 0 to 1. The greater the DICE value, the more overlap
between the reconstructed target region and the real target region, indicating a higher degree of
morphological recovery.

RQE is adopted to assess intensity recovery between the reconstructed target region and the
real target region:

RQE =
|RDr − RDa |

RDa
(22)

where RDr and RDa are the reconstructed target density and the actual target density. The closer
the RQE is to 0, the closer the density of the reconstructed target is to that of the actual target.

3.2. Numerical simulation setup

A heterogeneous cylindrical phantom with a height of 30 mm and a radius of 10 mm was used
for simulation. It consists of five main organs: muscle, bone, heart, liver, and lungs, as shown in
Fig. 1(a). According to the work of Tian et al. [41], the optical properties of these five organs at
a wavelength of 650 nm were listed in Table 1.

Table 1. Optical properties of the heterogeneous cylindrical phantom at 650 nm

Tissue µa(r)[mm−1] µs(r)[mm−1] g

Muscle 0.010 4.000 0.900

Bone 0.002 20.000 0.900

Heart 0.200 16.000 0.850

Liver 0.035 6.000 0.900

Lungs 0.350 23.000 0.900

In the cylindrical phantom, the single-target is a sphere with a radius of 1 mm located at (0.0,
-4.0, 18.0) mm to simulate early tumors, as shown in Fig. 1(b). The dual-target consists of two
identical spheres with a radius of 1 mm located at (-3.0, -6.0, 6.0) mm and (-3.0, 0.0, 6.0) mm,
respectively, as shown in Fig. 1(c). In the anti-noise experiment, based on the single-target
experiment, Gaussian noise of 5%, 10%, 15%, 20% and 25% was added in turn and reconstruction
results of different methods under different Gaussian noise ratios were observed.

The attenuation coefficient of X-ray was set to 0.0535 mm−1 and the voltage and current of the
cone-beam X-ray source were set to 50 KVp and 1 mA, respectively. The cylinder model was
rotated 360° and luminescent images were collected every 90°for reconstruction, resulting in
total of 4 projections.

The cylinder model was discretized into a tetrahedral mesh model with 4626 nodes and
25840 tetrahedral elements using COMSOL Multiphysics 5.6 (COMSOL, Inc., Burlington,
Massachusetts) software [42], the mean element edge size is 1.37 mm, as shown in Fig. 1 (b).
The forward simulation results of single-target and dual-target can be obtained using the Monte
Carlo (MC) method implemented by molecular optical simulation environment (MOSE, Version
2.3) software [43], as shown in Fig. 1 (e) and Fig. 1(f).
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Fig. 1. Heterogeneous cylindrical phantom for numerical simulation studies: (a) The 3D
view of the main organs of cylindrical phantom. (b) The 3D view of meshed biological
tissues. (c) Cylindrical phantom with single-target. (d) Cylindrical phantom with dual-target.
(e) Forward simulation of cylindrical phantom with single-target. (f) Forward simulation of
cylindrical phantom with dual-target.

3.3. Implanted experiment

To ensure the feasibility of the proposed method for in vivo CB-XLCT, data was collected from an
eight-week-old BALB/C nude female mouse was collected using an XLCT imaging system. All
experimental procedures are under the approval of the Animal Ethics Committee of the Northwest
University of China. In detail, a flexible plastic tube with a radius of 1 mm and a height of 2
mm containing Gd2O2S:Tb nanophosphors (about 20 µl), which was used to simulate an early
tumor. The homogeneous absorption coefficient and reduced scattering coefficient were set to
0.3 mm−1 and 10 mm−1, respectively. The imaging system included a cone beam X-ray source
(Apogee, Oxford Instruments, USA), a CMOS X-ray detector panel (C7921CA-02, Hamamatsu,
Japan), an electron-multiplying CCD (EMCCD) camera (PIXIS 2048, Princeton Instruments,
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USA) and a rotation stage, as shown in Fig. 2. In detail, the X-ray source excited nanophosphors
in biological tissue with a voltage and current of 50KVp and 1 mA, respectively. The CMOS
X-ray detector panel had a pixel size of 50 µm, which was used to detect transmitted X-rays,
and then obtained high-resolution CT imaging. The EMCCD with a micro 55-mm f/2.8 lens
(Nikkor, Nikon, Japan) was placed perpendicular to the X-ray source to capture the optical data at
a wavelength of 620 nm with an integration time and binning of 30 s and 2× 2, respectively. The
mouse was fixed on the rotation stage and rotated 360° at 1° intervals to obtain both micro-CT
images and the X-ray projection images.

Fig. 2. The schematic diagram of the CB-XLCT system.

After collecting the 3D volume data, the Feldkamp–Davis–Kress (FDK) method [44] was
used to perform 3D reconstruction of the XCT projections. The forward measurement of
nanophosphors was then mapped onto the surface. The nanophosphors target was implanted into
the abdomen of the mouse at the coordinates (11.5, 6.5, 15.1) mm. For the inverse reconstruction,
the mesh of the in vivo experiment was discretized into 6061 nodes and 27776 tetrahedral
elements.

4. Results

4.1. Numerical simulations results

4.1.1. Single-target experiment

The reconstruction results of the single-target experiment were shown in Fig. 3. The first row
displayed the 3D view of the reconstruction results of Adaptik-L2, OMP-L0, IVTCG-L1, and
DLGS methods, where the dark red region indicated the 3D distribution of the nanophosphors
target. The second row showed the cross-section view of the single target reconstruction result
by different methods at the Z = 1 mm plane, with the white circle representing the actual
location and edge of the real target. Additionally, the quantitative evaluation results of the four
reconstruction methods were summarized in Table 2.

It is obvious that, compared with the other three methods, the reconstruction result of DLGS
is closest to the actual target region in terms of location accuracy and morphological recovery.
Meanwhile, DLGS has a lower RQE, as shown in Table 2, indicating that DLGS performs well in
terms of density recovery.
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Fig. 3. Reconstruction results of four methods for a single spherical target.

Table 2. Quantitative results of different methods in single-target reconstruction experiment.

Method Reconstructed region center (mm) PE (mm) DICE RQE

Adaptik-L2 (-1.145, -3.758, 17.867) 1.178 0.427 0.765

OMP-L0 (-0.671. -4.404, 18.367) 0.865 0.553 0.271

IVTCG-L1 (0.597, -4.286, 18.052) 0.663 0.625 1.269

DLGS (0.356, -3.941, 17.969) 0.362 0.821 0.446

4.1.2. Dual-target experiment

Fig. 4 showed the results of the dual-target simulation experiment, with each row corresponding
to the axial view, coronal view, sagittal view (two sheets), and 3D view of the reconstruction
results of the Adaptik-L2 method, OMP-L0 method, IVTCG-L1 method, and DLGS method.
The reconstructed and actual targets were represented in the same way as in single-target
experiment. The edge-to-edge distance between the two targets was 4 mm. Through Fig. 4, it
can be found that the location accuracy and spatial overlap degree of the Adaptik-L2 method
and OMP-L0 method were poor, while IVTCG performed better than these two methods but the
reconstruction performance by DLGS method was the best. Table 3 confirmed our conclusion
with its quantitative results showing that the result by DLGS had the lowest PE and RQE and the
highest DICE.
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Fig. 4. Reconstruction results of four methods for dual-target.
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Table 3. Quantitative results of different methods in dual-target reconstruction experiment.

Method Reconstructed region center (mm) PE (mm) DICE RQE

Adaptik-L2
(-3.503, -5.500,6.823) 1.086 0.522 0.383

(-3.587, -1.165, 6.630) 1.448 0.494 1.101

OMP-L0
(-3.597, -5.208, 6.641) 1.181 0.433 0.531

(-3.161, 0.630, 6.461) 0.797 0.400 0.319

IVTCG-L1
(-2.866, -6.626, 5.294) 0.953 0.609 0.878

(-3.541, -0.573, 5.451) 0.960 0.432 0.382

DLGS
(-2.962, -5.656, 6.489) 0.599 0.852 0.205

(-3.510, 0.115, 6.040) 0.524 0.647 0.348

4.1.3. Anti-noise experiment

The experimental results of anti-noise performance were shown in Fig. 5. Based on the single-
target experiment, Gaussian noise was added to the measurement data at ratios of 5%, 10%, 15%,
20%, and 25%. Obviously, it can be observed that even as the Gaussian-noise ratio increased, the
reconstruction performance of DLGS method did not deteriorate and even improved in some
cases. These experimental results demonstrated that the DLGS method was robust when applied
to CB-XLCT reconstruction, maintaining its performance even in the presence of significant
noise.

(b)(a)

(c)

Fig. 5. (a) Illustration of PE at different noise levels. (b) Illustration of DICE at different
noise levels. (c) The changes of PE and DICE at different noise levels.

4.2. In vivo experiment results

The results of the in vivo experiment were shown in Fig. 6. In the 3D view, the reconstructed
area was represented in red. The cross view at the plane Z= 15.1 mm was also shown next to it.
At the same time, for quantitative analysis of the reconstruction results by different methods, PE
and DICE were calculated and summarized in Table 4.
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Fig. 6. Reconstruction results of the in vivo experiment. (a)-(d) 3D-view and transverse
view of in vivo experiment result. (e)-(h) Images fused by the transverse view and CT image.
The red area is the reconstruction result, and the gray-white circular area represents the
section of the real source.
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Table 4. Quantitative results of in vivo experiment.

Method Reconstructed region center (mm) PE (mm) DICE

Adaptik-L2 (12.842, 7.572, 14.592) 1.791 0.176

OMP-L0 (12.215. 5.827, 15.708) 1.155 0.335

IVTCG-L1 (11.303, 6.833, 14.708) 0.551 0.685

DLGS (11.198, 6.509, 14.843) 0.397 0.802

According to the reconstruction results obtained by various methods, it was found that in terms
of location accuracy, the PE of the reconstruction result obtained by Adaptik-L2 and OMP-L0
were 1.791 mm and 1.115 mm respectively. These values indicate a significant discrepancy
between the reconstructed source center and the actual location, which is also confirmed by
examining their cross-section. The PE of the reconstruction result obtained by IVTCG-L1 method
was 0.551, showing a small center error between the reconstruction result and the real source.
However, the PE of reconstruction result of DLGS method was the lowest at 0.397, making it the
most accurate of the four methods. In terms of morphological recovery, Adaptik-L2 and OMP-L0
also performed poorly with DICE values of 0.176 and 0.335, respectively. Compared with these
two methods, IVTCG-L1 had a higher degree of morphological recovery. However, among the
four reconstruction methods, the reconstruction results by DLGS method had the highest DICE
value at 0.802, indicating that the spatial overlap between its reconstruction results and the real
source was also the highest, that is, its morphological recovery was more accurate.

5. Discussion and conclusion

CB-XLCT is a powerful hybrid imaging technique that provides unique imaging advantages.
However, the reconstruction process for CB-XLCT is ill-posed, resulting in inferior image quality.
To address this issue and improve the reconstructed quality, we proposed a reconstruction method
named DLGS in this work. This method incorporates some specific prior knowledge, such as
sparse priors and group structure, to alleviate the ill-posedness of the inverse problem. Due to
the small and sparse distribution of nanophosphors in the body compared to the overall imaging
object, and the tendency of nanophosphors to cluster together, it is reasonable to create an internal
connection between adjacent nodes base on FEM. Hence, the group structure is considered to
be used to enhance this internal relationship. The DLGS method is based on the DL approach
and uses sparse approximation to establish an adaptive basis for specific imaging instances,
preserving desirable features. The DLGS mainly consist of three stages: grouping, sparse coding,
and dictionary learning. The last two stages are solved iteratively using the OMP algorithm and
K-SVD algorithm. The OMP algorithm ensures stable convergence speed, while the K-SVD
algorithm requires less computation and provides better reduction effects.

To evaluate the performance of our proposed DLGS method, several groups of numerical
simulations and one group of in vivo experiment were designed and carried out. We employed
three typical reconstruction methods, namely Adaptik-L2, OMP-L0, IVTCG-L1, based on L2-
norm, L0-norm, and L1-norm respectively, to quantitively compare with our DLGS method. In
the single-target simulation and dual-target simulation, as seen in Figs. 3 and 4, the reconstructed
regions using the comparison methods exhibited some problems such as inaccurate location,
over-sparse, over-smoothing. In contrast, our proposed method greatly overcame these problems,
which is also verified by the results of quantitative analysis. In single-target reconstruction, our
proposed DLGS method has the lowest PE of 0.362 and the highest DICE of 0.821. These results
indicate that DLGS offers improved accuracy and better shape recovery compared to the other
methods in CB-XLCT for single-target reconstruction. For dual-target reconstruction, DLGS
shows similar performance to single-target reconstruction, with the lowest PE and the largest
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DICE, suggesting that DLGS exhibits stronger dual-source reconstruction capabilities compared
to the other three methods. In the anti-noise experiment, where different proportions of Gaussian
noise (5%, 10%, 15%, 20%, 25%) were added, as observed in Fig. 5, the reconstruction results
obtained by our proposed DLGS method demonstrate minimal fluctuations. The evaluation
indexes show a PE range of 0.5 to 0.6 and a DICE range of 0.6 to 0.7, indicating the robustness
of DLGS to noise in the reconstruction process. In vivo experiment was conducted to further
verify the practicality of DLGS for FMT reconstruction in a real environment. As shown in
Fig. 6 and the quantitative analysis listed in Table 4, the in vivo single-target experimental
results showed that the reconstructed area obtained by DLGS was a better approximation of
the real region than that obtained by other traditional method used for comparison, and the
specific quantization result is PE = 0.379 mm and DICE = 0.802, which is superior to the other
three reconstruction methods. In summary, the simulation experiments and in vivo experiments
consistently demonstrate that DLGS outperforms the other methods in terms of localization
accuracy and morphological recovery. The reconstruction performance of IVTCG-L1, is ranked
second, while the reconstruction performance of Adaptik-L2 and OMP-L0 exhibit less satisfactory
results.

However, it should be noted that there are still a few challenges need to be addressed. Firstly,
the value of sparsity K needs to be determined manually and cannot be adjusted automatically.
Secondly, the DLGS method needs to be further validated in other optical tomography modalities
to assess its effectiveness and generalizability. In addition, the attenuation coefficient obtained
from CT data is not necessarily accurate for complex imaging samples, and in addition to the
attenuation coefficient, the diffraction coefficient also has a certain influence on the intensity of
X-ray computed tomography. Therefore, in our future work, we will focus on developing an
adaptive sparsity adjustment scheme to address the first issue, and evaluate the performance of
DLGS in other optical tomography techniques, such as Cerenkov luminescence tomography
(CLT) [45–47], BLT, FMT, to investigate its potential utility in different imaging scenarios.
Then we will find a method to correct attenuation coefficient in complex environment. For
example, Feng et al. add the attenuation maps in the contribution value of the pixel in the X-ray
fluorescence computed tomography (XFCT) reconstruction process to correct the attenuation
coefficient [48]. Moreover, we will analyze the influence of diffraction coefficient.

In summary, we proposed a method based on dictionary learning and group structure to
improve the accuracy of CB-XLCT reconstruction. The DL strategy is employed to address the
ill-posedness of the system matrix and account for the sparsity of the nanophosphors targets,
while the group structure is utilized to fully consider the internal relationship between nodes.
Experimental results demonstrate that the DLGS method outperform other typical regularization-
based methods, providing superior reconstruction quality in terms of location, morphology,
and intensity. We believe that our proposed method will be beneficial for various preclinical
applications of CB-XLCT.
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