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Abstract: Fluorescence molecular tomography (FMT) is an optical imaging technology with
the ability of visualizing the three-dimensional distribution of fluorescently labelled probes
in vivo. However, due to the light scattering effect and ill-posed inverse problems, obtaining
satisfactory FMT reconstruction is still a challenging problem. In this work, to improve the
performance of FMT reconstruction, we proposed a generalized conditional gradient method
with adaptive regularization parameters (GCGM-ARP). In order to make a tradeoff between
the sparsity and shape preservation of the reconstruction source, and to maintain its robustness,
elastic-net (EN) regularization is introduced. EN regularization combines the advantages of
L1-norm and L2-norm, and overcomes the shortcomings of traditional Lp-norm regularization,
such as over-sparsity, over-smoothness, and non-robustness. Thus, the equivalent optimization
formulation of the original problem can be obtained. To further improve the performance of
the reconstruction, the L-curve is adopted to adaptively adjust the regularization parameters.
Then, the generalized conditional gradient method (GCGM) is used to split the minimization
problem based on EN regularization into two simpler sub-problems, which are determining
the direction of the gradient and the step size. These sub-problems are addressed efficiently to
obtain more sparse solutions. To assess the performance of our proposed method, a series of
numerical simulation experiments and in vivo experiments were implemented. The experimental
results show that, compared with other mathematical reconstruction methods, GCGM-ARP
method has the minimum location error (LE) and relative intensity error (RIE), and the maximum
dice coefficient (Dice) in the case of different sources number or shape, or Gaussian noise of
5%–25%. This indicates that GCGM-ARP has superior reconstruction performance in source
localization, dual-source resolution, morphology recovery, and robustness. In conclusion, the
proposed GCGM-ARP is an effective and robust strategy for FMT reconstruction in biomedical
application.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Fluorescence molecular imaging (FMI) is a non-invasive imaging technique that detects the
surface fluorescence distribution emitted from fluorescent sources within biological tissue by
using a high-sensitivity detectors such as charge-coupled device (CCD) or scientific comple-
mentary metal–oxide–semiconductor (sCMOS) camera, photomultiplier tubes (PMT), and other
photosensitive technologies [1–3]. However, due to the absorption and scattering of light

#486339 https://doi.org/10.1364/OE.486339
Journal © 2023 Received 24 Jan 2023; revised 26 Mar 2023; accepted 8 Apr 2023; published 15 May 2023

https://orcid.org/0000-0003-3560-6523
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.486339&amp;domain=pdf&amp;date_stamp=2023-05-17


Research Article Vol. 31, No. 11 / 22 May 2023 / Optics Express 18129

transmission [4,5], FMI can only obtain the photon distribution information on the surface of
the object, but three-dimensional (3D) spatial information of the fluorescent target cannot be
obtained [6]. Therefore, based on FMI, fluorescence molecular tomography (FMT) has been
developed as an imaging modality to obtain the spatial distribution and quantitative analysis
of interior fluorescent probes via the reconstruction method, which overcomes the difficulty of
quantifying FMI [7,8]. Because of its high specificity, strong sensitivity, and low cost, FMT has
been widely applied in preclinical study and diagnosis based on various small animal models
[9–11].

Due to the severe scattering of photons propagation through heterogeneous tissues, the
complexity of the photon propagation model, and the highly ill-posed inverse problem, FMT
reconstruction is still a challenging problem [12–14]. To solve these critical problems, researchers
have proposed many different model-based optimization methods, which need appropriate priors
or penalties to promote reconstruction and restrict the search space to a specific solution set. One
of the effective strategies is to utilize the anatomical information of different biological tissues,
which is obtained by computed tomography (CT) or magnetic resonance imaging (MRI), and
is used as the prior information of the photon propagation model to construct a more accurate
forward model [15,16], so the spatial resolution can be promoted. Furthermore, the Lp-norm
regularization (p ∈ [0, 2]) of the unknown fluorescent source is also used to constrain the FMT
reconstruction [17–19]. Mathematically, L0-norm is a sparsest constraint, but the reconstruction
algorithm based on L0-norm is a combinatorial optimization problem and an NP-hard problem
[20,21]. When p = 2, the over-smoothness of the Lp-norm will cause reconstruction artifacts
and exacerbates the noise effect [22,23]. When the value of p is small (p ∈ (0, 1]), the Lp-norm
tend to produce an over-sparse and incomplete boundary of the reconstruction target [24]. To
overcome the drawbacks of the classical sparsity regularization, Zou et al. proposed an elastic-net
(EN) regularization [25], which combines L1 and L2 norms with different weights. It not only
ensures the sparsity, but also improves the smoothness of the reconstruction source [26]. Liu
et al. applied EN regularization to FMT reconstruction for the first time and achieved good
reconstruction performance [27]. Later, Wang et al. proposed an adaptive parameter search
elastic net (APSEN) method for FMT reconstruction [26], which addresses the issue of parameter
selection in reconstruction. However, the coordinate descent method is adopted by APSEN to
optimize the objective function, and the optimal solution is solved linearly along the coordinate
axis, which is easy to fall into local optimization when solving large-scale sparse models.

It should be noted that the reconstruction performance of the regularization method will be
affected by the regularization parameters [28]. The larger the regularization parameters, the
greater the influence of the regularization term on the reconstruction results. However, the
optimal selection of regularization parameters is usually unknown, which depends on the specific
reconstruction problem and the properties of the sparse vector [29]. Recently, some methods for
selecting the optimal regularization parameters have been proposed, such as L-curve, U-curve,
and cross-validation [30–32], which are of great significance to improve the reconstruction
performance of FMT.

In addition to numerical methods, deep learning has also been introduced into FMT recon-
struction. Guo et al. proposed an end-to-end 3D depth encoder network [33], which can
significantly improve image quality and reduce reconstruction time. Meng et al. proposed a local
connection network based on the K-nearest neighbor to improve the morphological reconstruction
performance of FMT [34]. Zhang et al. proposed a three-dimensional fusion double-sampling
convolution neural network to achieve FMT ultra-high spatial resolution reconstruction [35]. The
deep learning method reconstructs the fluorescent source by directly establishing an end-to-end
mapping model on a large dataset, which can greatly eliminate the modeling error [36]. Never-
theless, the deep learning method has two common shortcomings. On the one hand, the trained
neural network can only be used for specific imaging objects, which means its generalization



Research Article Vol. 31, No. 11 / 22 May 2023 / Optics Express 18130

ability is weak [37–39]. On the other hand, compared with traditional mathematical methods, the
interpretability of neural network is poor.

In this work, a generalized conditional gradient method for adaptive regularization parameters
(GCGM-ARP) is proposed. The ill-conditioned inverse problem is interpreted as a non-
differentiable object function with EN regularization, in which the EN regularization is a
combination of L1 and L2-norms to balance the sparsity and shape recovery of the reconstructed
fluorescent source. GCGM-ARP adopts L-curve to effectively generate regularization parameters
suitable for different fluorescence distributions. The objection function is solved using the
generalized conditional gradient method (GCGM). The per-iteration cost of the GCGM is
particularly cheap and globally convergent, making it widely applied in fast sparse approximation.
The method consists of two minimization sub-problems: determining the descent direction and
determining the step size. The minimization process of determining the descent direction is
simplified to a shrinkage process by the iterative soft thresholding algorithm (ISTA) [40], and the
step size sub-problem can be efficiently solved by the alternating direction method of multipliers
(ADMM) [41].

To assess the performance of the GCGM-ARP method, a series of numerical simulations and
in vivo experiments were carried out. Iterative shrinkage with L1-norm (IS-L1) [13], incomplete
variables truncated conjugate gradient with L1-norm (IVTCG-L1) [42], Nesterov’s method with
EN regularization (N-EN) [27], and APSEN method were used for comparison. The results of
the numerical experiments showed that GCGM-ARP performed the lowest location error (LE)
and relative intensity error (RIE), as well as the highest Dice coefficient (Dice), as compared to
the other methods. These findings indicated the superiority of the GCGM-ARP methods in terms
of localization, shape recovery, and dual-source resolution. Moreover, the in vivo experiments
further verified the practical applicability of GCGM-ARP method.

The novelty of this paper lies in the proposal of a GCGM-ARP method based on the EN
regularization model. Firstly, in comparison to other methods based on the EN regularization
model applied to FMT, the principle of the L-curve in the GCGM-ARP method is easier to
understand and use in parameter selection. Secondly, the GCGM algorithm avoids falling into
local optimization by selecting the gradient descent direction.

The remainder of this paper is structured as follows: the Section 2 introduces the FMT
reconstruction model and GCGM-ARP reconstruction algorithm. The Section 3 introduces the
evaluation index, the design of experiments and the result of experiments. Finally, the Section 4
gives discussion and conclusion of our work.

2. Methodology

2.1. Photon propagation model

In highly scattering media, such as biological tissues, the photon propagation model can be
approximated by the diffusion equation (DE). In steady-state FMT with point excitation sources,
the photon propagation can be described by a coupled diffusion equation with Robin boundary
condition, which is defined as [43,44]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · [Dx(r)∇Φx(r)] − µax(r)Φx(r)

= −Θδ(r − rl), (r ∈ Ω)

∇ · [Dm(r)∇Φm(r)] − µam(r)Φm(r)

= −Φx(r)ηµaf (r), (r ∈ Ω)

2Dx,m(r)∇Φx,m(r) + qΦx,m(r) = 0, (r ∈ ∂Ω)

(1)
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where ∇ is the gradient operator, Ω denotes the entire domain of the problem, and r denotes the
position of the nodes in the Ω; rl is the position of a point excitation source with an amplitude
of Θ of the mean free path of photon transmission located below the surface of Ω; η is the
quantum efficiency, and q is the optical reflectivity. The subscripts x and m denote the excitation
wavelength and emission wavelength, respectively. Φx(r) andΦm(r) denote the excitation and
emission photon flux density at position r, respectively. Dx,m = 1/3[µax,am + (1 − g)µsx,sm]
denotes the diffusion coefficient, where g denotes the anisotropy parameter, µax,am and µsx,sm
denote the absorption coefficient and scattering coefficient respectively. ηµaf (r) is the unknown
fluorophore distribution to be reconstruct, where µaf is absorption coefficient of the fluorescence
agent. Θδ(r − rl) represents the excitation light which is considered as the point source, where
δ(r − rl) represents the Dirac function.

By using the finite element method (FEM) to discretize the photon propagation model, the
partial differential Eq. (1) is linearized into the following linear equations:⎧⎪⎪⎨⎪⎪⎩

MxΦx = Sx

MmΦm = GxX
(2)

where Mx and Mm is forward system matrices of the excitation and emission propagation process,
respectively. The vector Sx represents the distribution of discrete excitation point source. The
matrix Gx is obtained according to the discretization of fluorescent source, which can be calculated
as follows:

Gx(i, j) = ∫ΩΦx(r)Bi(r)Bi(r)dr (3)

where Bi(r) and Bi(r) denote the base functions of the node i and node j, respectively. The vector
X represents the reconstructed fluorescent source. Mm is symmetric positive matrix [45], so the
relationship betweenΦm and X in Eq. (2) can be expressed as a Matrix-form equation:

Φm = Mm
−1GX = AmX (4)

Because only partial nodes can be detected, the immeasurable nodes are removed fromΦm and
the corresponding rows are removed from Am. The final matrix equation can be expressed as:

Φ = AX (5)

whereΦ ∈ RM×1 represents the measured photon flux at the boundary of the biological tissue,
A ∈ RM×N denotes system matrix, and X ∈ RN×1 denotes the distribution of internal fluorescent
source.

In general, the inverse problem of Eq. (5) is ill-posed, so it is impractical to solve X directly.
To alleviate the ill-posedness of the inverse problem, the EN regularization was adopted in FMT
reconstruction, which is defined as:

min
X

E(X) =
1
2
∥AX −Φ∥2

F + α∥X∥1 +
β

2
∥X∥2

2 (6)

where E(X) represents the objective function. ∥·∥F represents the Frobenius norm; α>0 and β>0
represent the regularization parameters of L1-norm and L2-norm, respectively. The objective
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function in Eq. (6) can be equivalently expressed as:

min
X

E(X) =
1
2
∥AX −Φ∥2

F + R(X) (7)

where R(X) = α∥X∥1 +
β
2 ∥X∥2

2 is the EN regularization. Compared with the classical L1-norm
sparse regularization, there is an additional L2-norm in R(X). And EN regularization has
the advantages of both L1-norm regularization and L2-norm regularization [46]. Moreover,
statistically, EN regularization is more stable than the classical L1-norm regularization [47]. So,
it is more suitable for ill-conditioned inverse problem.

Obviously, EN regularization is non-differentiable, so the simple gradient descent minimization
method cannot be used to solve the problem. For this reason, here, the GCGM-ARP algorithm
was utilized to address the inverse problem.

2.2. Reconstruction based on GCGM-ARP scheme

The GCGM algorithm is proposed by Bredies K et al. to address the following form of
minimization problem [48]:

min
X

F(X) + G(X) (8)

where F is assumed to be smooth, but G is assumed to be proper, convex, lower semi-continuous
and coercive in Hilbert space. More detailed conditions about the functional G that need to be
satisfied can be found in [48].

In this work, GCGM is considered for FMT reconstruction. The objective function in Eq. (6)
is rewritten as follows:

E(X) = F(X) + G(X) (9)

where:
F(X) = 1

2 ∥AX −Φ∥2
F − Ψ(X)

G(X) = R(X) + Ψ(X)

Ψ(X) = λ
2 ∥X∥2

2 −
β
2 ∥X∥2

2 , λ>0

(10)

There are two reasons for Ψ(X) = λ
2 ∥X∥2

2 −
β
2 ∥X∥2

2. Firstly, in this case, Ψ(X) has possess
of desirable properties, such as proper, convex, lower semi-continuous and coercive in Hilbert
space. Secondly, it can be found that ISTA can be applied to the minimization of the objective
function E(X), as the both sub-problems of GCGM involve L1-norm regularization.

Thus, Eq. (8) can be expressed as:

min
X

{(X) = F(X) + G(X)} (11)

Next, the GCGM from the literature [48] is showed in Algorithm 1.
It is worth noting that throughout this paper, the operator symbol ⟨· , ·⟩ represents the inner

product.
In Algorithm 1, there are two sub-problem of minimization that need to be solved, which are

the determining direction sub-problem and the determining step size sub-problem. To explain
our proposed method more intuitively, these two sub-problems will be discussed respectively.
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Algorithm 1. GCGM

Input: System matrix , measured surface photon distribution , regularization parameters 

 and .

Initialization: fluorescent source distribution , descent direction , step size , iteration 

number index , maximum iteration number , threshold error 

While  or  do

1: Determine a descent direction  as a solution of

2: Determine a step size  as a solution of

3: 

4: 

Output: 

2.2.1. Sub-problem of determining the descent direction

Since the Fréchet derivative of F is used in Algorithm 1, its mathematical formula is given:

F′(X) = AT (AX −Φ) − (λ − β)X. (12)

Thus, the descent direction Yk in the Algorithm 1 can be rewritten as follows:

min
Y

⟨AT (AXk −Φ) − (λ − β)Xk, Y⟩ + α∥Y ∥1 +
λ

2
∥Y ∥2

2 (13)

The Eq. (13) can be solved by explicit calculation. Then, the explicit componentwise expression
can be obtained:

Yk
i +
α

λ
sign(Yk

i ) =

(︃
1
λ

AT (Φ − AXk) +

(︃
1 −
β

λ

)︃
Xk

)︃
i

(14)

where the subscript i represents the i-th component. The solution of the Eq. (14) can be expressed
by soft threshold function Sγ, which is defined as:

Sγ(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
t − α

λ , t ≥ α
λ

0, −α
λ ≤ t ≤ α

λ

t + α
λ , t ≤ −α

λ

(15)

where γ = α
λ and t ∈ R.

It is obvious that determining the descent direction sub-problem can be addressed by ISTA,
which can be formulated as:

Yk = Sγ
(︃
1
λ

AT (Φ − AXk) +

(︃
1 −
β

λ

)︃
Xk

)︃
(16)

2.2.2. Sub-problem of determining step size

In this sub-problem, our objective function can be simplified to the following form:

min
Z

F(Xk +WZ) + G(Xk +WZ) (17)
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where Xk is a constant, and to avoid confusion, we let Xk = X. The symbol W ∈ RN×N is a
diagonal matrix, which can be defined as follows:

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Yk
1 − Xk

1

Yk
2 − Xk

2
. . .

. . .

Yk
N − Xk

N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18)

Combining Eq. (6) and Eq. (10), then G(X) can be formulated as:

G(X) = α∥X∥1 +
λ

2
∥X∥2

2 (19)

ADMM is a method for solving convex optimization problems. It breaks the objective function
of the original problem into smaller sub-problems, then solves each sub-problem in parallel, and
finally balances the solution of each sub-problem to obtain the global solution of the original
problem [49]. It can be noticed that the objective function of the Eq. (17) is non-differentiable
but convex, so ADMM is applied to address the minimization problem in the Eq. (16).

An auxiliary variable is defined as S = X + WZ. According to ADMM, Eq. (17) can be
reformulated as an optimization problem with equality constraints:

1
2 ∥A(X +WZ) −ΦF ∥

2 + λ
2 ∥X +WZ∥2

2 −
β
2 ∥X +WZ∥2

2 + α∥S∥1 +
β
2 ∥S∥2

2 ,

s.t S = X +WZ
(20)

The augmentation Lagrange function of the Eq. (20) can be expressed as:

Lρ(S, Z, V) =
1
2 ∥A(X +WZ) −Φ∥2

F +
λ−β

2 ∥X +WZ∥2
2 −

β
2 ∥X +WZ∥2

2 + α∥S∥1

+
β
2 ∥S∥2

2 + VT (S − X − WZ) + ρ
2 ∥S − X − WZ∥2

2

(21)

where ρ>0 is a penalty parameter, V is a Lagrange multiplier. The Eq. (21) is solved by the
following iterative scheme:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk+1 = argmin
S

Lρ(S, Zk, Vk) =

argmin
S

⎧⎪⎪⎨⎪⎪⎩
α∥S∥1 +

β
2 ∥S∥2

2 + VT ( S − X − WZ)

+
ρ
2 ∥S − X − WZ∥2

2

⎫⎪⎪⎬⎪⎪⎭
Zk+1 = argmin

Z
Lρ(Sk, Z, Vk) =

argmin
Z

⎧⎪⎪⎨⎪⎪⎩
1
2 ∥A(X +WZ) −Φ∥2

F +
λ−β

2 ∥X +WZ∥2
2

VT ( S − X − WZ) + ρ
2 ∥S − X − WZ∥2

2

⎫⎪⎪⎬⎪⎪⎭
Vk+1 = Vk − ρ(Sk+1 − X − WZk+1)

(22)

where Zk+1 can be solved directly by derivation, but Sk+1 can not. However, the soft threshold
function in Eq. (15) can be adopted to address this optimization problem. First, the explicit
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calculation result of the Sk+1 minimization problem is as follows:

Sk+1 +
α

β + ρ
sign(Sk+1) =

1
β + ρ

(ρX +WZ − V) (23)

By comparing Eq. (13), the solution of Eq. (22) can be obtained, as follows:

Sk+1 = S α
β+ρ

(︃
1
β + ρ

(ρX +WZ − V)
)︃

. (24)

So, the sub-problem of determining the step size is solved.p g p

Algorithm 2. GCGM-ARP

Input: System matrix , measured surface photon distribution , regularization parameters 

 and .

Initialization: fluorescent source distribution , descent direction , step size , iteration 

number index , maximum iteration number , error threshold , penalty 

parameter , optimal regularization parameter list , regularization 

parameter .

Step1: Reconstructed fluorescent source obtained by using different regularization 

parameter .

For  to  do

1: optimal regularization parameter 

2: While  or  do

1): The descent direction  is determined via Eq. (16)

2): The step size  is determined by iterative Eq. (22)

3): 

4): 

End while
3: Save the reconstruction source  obtained each time

End for
Step2: The optimal parameter  and its corresponding reconstructed fluorescent source  

are obtained by L-curve.

Output: .

2.2.3. Adaptive regularization parameters

As described above, it is difficult to select the optimal regularization parameters in FMT
reconstruction. If β in Eq. (6) is forced to equal 0, the adaptive EN regularization will reduce into
the adaptive lasso. According to the opinion of Zou and Hastie [25], it can be easily proved that,
no matter what the value of β is, the adaptive EN regularization will be reduced to an adaptive
lasso [50]. Thus, regularization parameter β will be set empirically, and only regularization
parameter α needs to be adjusted adaptively.

For the optimization problem based on Eq. (6), the L-curve will be applied to adaptively adjust
the regularization parameter α. It can show the tradeoff between the size of the regularization
solution and its fitness to the given data, when the regularization parameters change. In general,
the L-curve is a log-log plot, which is composed of the solution norm X2 and the corresponding
residual norm ∥AX −Φ∥2.

Based on above statement, the complete procedure of GCGM-ARP strategy is summarized in
Algorithm 2.
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3. Experiments and results

In this section, numerical simulations and in vivo experiment were performed to validate the
reconstruction performance of the GCGM-ARP strategy. Furthermore, IS-L1, IVTCG-L1, N-EN,
APSEN methods were selected for comparison in terms of accuracy, shape recovery, and in
vivo practicability. All the programs for the reconstruction algorithm were implemented using
MATLAB (2019b) on desktop computer with Intel Core i3-10100 CPU (3.60 GHz) and 8GB
RAM.

3.1. Regularization parameters and evaluation index

Suppose η1 and η2 are the regularization parameter of L1 and L2 norms used in the algorithm
for the above comparison. In order to ensure the convergence of all algorithms, the maximum
number of iterations was set to 1000 and the error thresholds were set to 1e-6 through experience.
Moreover, the optimal regularization parameters of GCGM-ARP method were determined by
L-curve, and the best regularization parameters of IS-L1, IVTCG-L1, and N-EN methods were
determined according to related work and experience [13,27,42]. APSEN method can adaptively
adjust regularization [26]. The optimal regularization parameters of different algorithms in
different experiments have been shown in Table 1.

Table 1. Regularization parameter α for different methods in different experiments

Methods IS-L1 IVTCG-L1 N-EN APSEN GCGM-ARP

Single-source η1 : 2e-10 η1 : 1e0 η1 : 1e-5
η2 : 1e-6

η1 : 0.5
η2 : 2e-9

α : 8e-6
β : 1e-5

Dual-source
η1 : 2e-10 η1 : 1e0 η1 : 1e-5

η2 : 1e-6
η1 : 0.9
η2 :1.1e-9

α : 1e-5
β : 1e-5

5% η1 : 2e-10 η1 : 1e0 η1 : 1e-5
η2 : 1e-6

η1 : 0.5
η2 : 2e-9

α : 2e-6
β : 1e-5

Robustness
15% η1 : 2e-10 η1 : 1e0 η1 : 1e-5

η2 : 1e-6
η1 : 0.6
η2 : 1.67e-9

α : 1e-5
β : 1e-5

25% η1 : 2e-10 η1 : 1e0 η1 : 1e-5
η2 : 1e-6

η1 : 0.8
η2 : 1.25e-9

α : 1e-4
β : 1e-5

In vivo experiment η1 : 2e-10 η1 : 1e0 η1 : 1e-5
η2 : 1e-6

η1 : 0.5
η2 : 2e-9

α : 1e-5
β : 1e-5

To quantitatively assess the accuracy of FMT reconstruction using different methods, LE, Dice,
and RIE were adopted as quantitative indexes in this work.

LE measures the Euclidean distance between the real source center and the reconstructed
source center, which is defined as:

LE = ∥Lreal − Lrcon∥2 (25)

where Lreal and Lrcon denote the center coordinates of the real fluorescent source and the
reconstructed source region, respectively. The lower the LE, the more accurate the reconstruction
location.

Dice is introduced to assess the spatial overlap performance of the real source region and the
reconstructed source region, which is defined as:

Dice =
2|Rreal ∩ Rrcon |

|Rreal | + |Rrcon |
(26)

where Rreal and Rrcon represent the reconstructed region and the real fluorescent region, respectively.
The higher the Dice index, the better the morphological reconstruction. Specifically, the
reconstructed source region is determined by the non-zero tetrahedron region based on X.
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RIE is used to evaluate the intensity deviation between the real source intensity and the
reconstructed source intensity, which is defined as:

RIE =
|Ireal − Ircon |

Ireal
(27)

where Ireal and Ircon is the intensity of real fluorescent source and the reconstructed source,
respectively. The smaller the RIE, the better the fluorescent intensity recovery of the reconstructed
source.

3.2. Experimental setting

3.2.1. Numerical simulation

The heterogeneous model based on a cylinder with radius of 10 mm and height of 30 mm was
adopted in the numerical simulations. It consisted of five biological tissues: muscle, heart, lung,
liver, and bone, as shown in Fig. 1(a). In this work, all the experiments were carried out under the
excitation wavelength of 680 nm and the emission wavelength of 750 nm. The optical parameters
of each biological tissue have been listed in detail in Table 2 [51].

(a) (b) (c) (d)

Fig. 1. (a) is the 3D view of the cylinder model with single-source. (b) is the mesh for
inverse problem. (c) shows the position of 4 excitation sources. (d) is the photon distribution
simulated on the surface by the single fluorescence source.

Table 2. Optical parameters in numerical simulation

Tissue µαx(mm−1) µ′sx(mm−1) µam(mm−1) µ′sm(mm−1) g

Muscle 0.0745 0.4115 0.0474 0.3122 0.97

Bone 0.0521 2.4415 0.0326 2.114 0.93

Liver 0.3016 0.6676 0.1921 0.6023 0.93

Lung 0.1681 2.1569 0.1045 2.0477 0.93

Heart 0.0504 0.9437 0.0331 0.8203 0.90

In the forward process, a mesh consisting of 29415 nodes and 168046 tetrahedral elements
was used to simulate the photon propagation. The intensity of each source is 1 nw/mm3, and the
fluorescence distribution of the surface was simulated using the molecular optical simulation
environment (MOSE) [51] based on Monte Carlo method, as shown in Fig. 1(d). In the inverse
process, the cylinder model was segmented into a mesh using Comsol Multiphysics software
[52]. The mesh included 4626 nodes and 25840 tetrahedral elements, as shown in Fig. 1(b). The
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excitation sources were located at four positions along the Z = 15mm plane, as illustrated in
Fig. 1(c).

We designed single-source and dual-source simulation experiment to evaluate the performance
of the GCGM-ARP reconstruction method. In the single-source simulation experiment, one
spherical fluorescence source with a radius of 1 mm was placed at (-1, -1, 15) mm. In the
dual-source simulation experiment, two cylindrical sources with a radius of 1 mm and a height
of 2 mm, which were placed at the center coordinates of S1(2, 1, 10) mm and S2(2, 1, 18) mm,
respectively.

As noise is inevitable in FMT, the anti-noise experiment is also designed to evaluate the
robustness of our method. Gaussian noise of 5%, 15%, 25% was added to the measurement data
based on single-source numerical simulation, and then reconstructed using different methods to
observe the robustness and accuracy of these methods under different Gaussian noise ratios.

3.2.2. In vivo experiment

With the guidelines of the Animal Ethics Committee of the Northwestern University of China, in
vivo experiment was carried out to further investigate the practical performance of GCGM-ARP.
In vivo experimental data set was collected from an adult BALB/c mouse by a dual-modality
FMT/CT system, and the chief components of the dual-modality FMT/CT system was exhibited
in Fig. 2(a). To minimize the suffering of mouse, all animal experiments were performed
under isoflurane gas anesthesia (3% isoflurane-air mixture). The detailed collection process was
introduced as follows.

(a) (b)

(a) Fluorescence images
(b) Micro-CT images

Data Collection

Data Processing
(a) Segmentation
(b) Organs integration and meshing
(c) Intensity mapping

FMT reconstruction
(a) Model establishing
(b) Reconstruction

Fig. 2. (a) The chief components of the dual-modality FMT/CT system. (b) Reconstruction
workflow of FMT in vivo experiment, including data collection, data processing, and FMT
reconstruction.

First, a spherical fluorescent bead with a radius of 1 mm containing Cy5.5 solution was
implanted into the abdominal cavity of mouse as a fluorescence target. The fluorescent bead
is wrapped in a plastic material, which can be easily detected by micro-CT to locate the real
fluorescent region. Six hours later, a 680 nm continuous wave semiconductor laser was used to
provide excitation illumination, and the surface fluorescence image with a 120° field of view
was collected by a thermoelectric cooled electron multiplying charge coupled device (EMCCD)
camera (-80◦C, iXonEM+ 888) with an exposure time of 1 s. The emission light was captured
and restrained the noise by a 750± 10 nm bandpass filter. After the acquirement of fluorescence
image, the structure information of mouse needs to be collected by Micro-CT system (tube
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voltage of 60kVp, x-ray power of 40W). The CT image was processed into 3D volume data, and
Amria 5.2 (Amria, Visage Imaging, Australia) was used to segment the main organs, including
muscle, lung, heart, stomach, liver, and kidney, and then integrate into the xenogeneic mouse
model. The true central position of the fluorescent target is (17.5, 21.5, 9.0) mm, and the optical
parameter for different organs were from the literature [53]. Thus, the structure of the in vivo
experimental process can be summarized, as shown in Fig. 2(b).

3.3. Experimental results

3.3.1. Single-source simulation reconstruction

In the spherical single-source simulation experiment, the 3D and slice views of the reconstructed
results with different methods were shown in Fig. 3. In the 3D view, different organs were
depicted in different colors, and the reconstruction source was depicted in red. In the slice view,
the white circle represents the shape and region of the real source, while the red region represents
the source of the reconstruction. By observing the slice view, it can be found that although all the
methods can approximately reconstruct the fluorescence source region, the overlapping between
GCGM-ARP and real source is more, so a better morphological reconstruction is obtained. The
quantitative analysis of the reconstruction results of the four methods was listed in Table 3. From
these results, it is obvious that our method achieves the smallest LE and RIE, and the largest Dice
coefficient. This indicated that GCGM-ARP had possessed of superior positioning ability and
shape recovery ability.

Table 3. Quantitative results in the single-source numerical simulation.

Method True center (mm) Reconstructed center (mm) LE (mm) Dice RIE

IS-L1 (-1, -1, 15) (-0.198, -0.721, 15.310) 0.904 0.496 0.302

IVTCG-L1 (-1, -1, 15) (-0.829, -0.643, 14.311) 0.794 0.625 0.824

N-EN (-1, -1, 15) (-0.983, -1.193, 14.541) 0.498 0.693 0.553

APSEN (-1, -1, 15) (-8.145, -1.077, 14.737) 0.331 0.795 0.337

GCGM-ARP (-1, -1, 15) (-0.835, -0.884, 14.820) 0.270 0.952 0.181

3.3.2. Dual-source simulation reconstruction

In Fig. 4, the 3D view of the reconstruction result in the first row, and the other rows correspond
to transverse view, sagittal view, and coronal view, respectively. The enlarged view next to the
slice view provides a close view of the distribution of the reconstructed area. The reconstruction
sources obtained by IS-L1 and IVTCG-L1 were over-sparse, although N-EN and APSEN showed
improved performance, the reconstruction result obtained by GCGM-ARP reconstruction was
closest to the real sources. Obviously, the dual-source reconstruction performance of GCGM-ARP
is better than other methods. The detailed reconstruction results of the four algorithms were
shown in Table 4, which further confirms our observations. The LE of S1 and S2 obtained by
GCGM-ARP method is much lower than that of other methods, which was 0.432 mm and 0.314
mm, and the Dice is up to 0.839 and 0.834, which demonstrated that GCGM-ARP achieved more
accurate dual-source localization and morphological recovery.

3.3.3. Robustness experiment

The influence of different intensity of Gaussian noise on the reconstruction results of the
four methods is shown in the Fig. 5. Due to the influence of background fluorescent signal,
the reconstruction results of the four methods are different from the single-source numerical
simulation experiments without noise. However, under different ratios of Gaussian noise,
compared with other methods, GCGM-ARP shows excellent reconstruction performance, with
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Fig. 3. (a), (c), (e), (g) and (i) show the 3D reconstruction results of the IS-L1, IVTCG-L1,
N-EN, APSEN, and GCGM-ARP, respectively. (b), (d), (f), (h), and (j) show the transverse
slice views in the Z= 15 mm of the corresponding four methods.

Table 4. Quantitative results in the dual-source numerical simulation.

Method True center (mm) Reconstructed center (mm) LE (mm) Dice RIE

IS-L1
(2, 1, 10) (1.010, 1.075, 10.620) 1.170 0.462

0.833
(2, 1, 18) (1.313, 0.349, 17.485) 1.077 0.446

IVTCG-L1
(2, 1, 10) (1.654, 0.732, 9.262) 0.858 0.548

0.749
(2, 1, 18) (2.973, 1.407, 17.718) 1.092 0.298

N-EN
(2, 1, 10) (2.524, 0.648, 9.925) 0.636 0.545

0.731
(2, 1, 18) (1.851, 1.265, 17.510) 0.576 0.538

APSEN
(2, 1, 10) (1.766, 0.571, 9.975) 0.489 0.783

0.674
(2, 1, 18) (1.850, 1.264, 17.517) 0.571 0.698

GCGM-ARP
(2, 1, 10) (1.848, 1.339, 10.220) 0.432 0.839

0.502
(2, 1, 18) (1.832, 0.802, 18.177) 0.314 0.834
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Fig. 4. Reconstruction results of different method for dual-source simulation.
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the lowest LE and RIE, and the largest Dice. Consequently, anti-noise experiments showed that
GCGM-ARP is the most robust among these methods.

(a) (b)

(c)

Fig. 5. The quantitative analysis of different methods under different Gaussian noise levels.

3.3.4. In vivo experiment reconstruction

The 3D view and slice view were displayed in Fig. 6, which prove the practicality of our methods
in vivo. According to Fig. 6, it was showed that there was a deviation between the reconstruction
position of IS-L1 and IVTCG-L1, and there were many reconstruction artifacts produced by
N-EN. While the performance of APSEN improved, it still cannot match the accuracy achieved by
GCGM-ARP, which achieved more accurate reconstruction, including the most accurate spatial
location, and introduced less reconstruction artifacts. Here, it should be noted that, because of the
unknown real source intensity, all the evaluation indicators related to the source intensity (RIE)
were unavailable in vivo experiments. As shown in Table 5, the GCGM-ARP method indicated
the best accuracy with the least LE and largest Dice similarity. These quantitative results further
indicated the superior performance of GCGM-ARP method in obtaining the morphology and
localization of fluorescence probe distribution in mouse.

Table 5. Quantitative results of the in vivo experiment.

Method True center (mm) Reconstructed center (mm) LE (mm) Dice

IS-L1 (17.5, 21.5, 9.0) (17.998, 20.641, 8.616) 1.065 0.254

IVTCG-L1 (17.5, 21.5, 9.0) (16.652, 21.356, 8.296) 1.112 0.254

N-EN (17.5, 21.5, 9.0) (17.625, 20.999, 8.456) 0.760 0.325

APSEN (17.5, 21.5, 9.0) (17.518, 20.846, 9.178) 0.678 0.625

GCGM-ARP (17.5, 21.5, 9.0) (17.893, 21.477, 8.818) 0.434 0.659
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IS-L1 IVTCG-L1

N-EN

GCGM-ARP

APSEN

Fig. 6. The 3D view and slice view at the Z = 9.0 mm plane of reconstruction results
obtained by different method for the in vivo experiment.s
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4. Discussion and conclusion

In this work, the EN regularization with adaptive parameters via GCGM was proposed to improve
the recovery the 3D distribution of the fluorescent source. The regularization parameter was
determined by the L-curve to select the optimal regularization parameter according to different
data. Compared with the classical L1-norm and L2-norm, EN regularization offered greater
flexibility to balance the sparsity and smoothness of the reconstruction source. Nevertheless, it
also increased the computational complexity, so the GCGM-ARP with iteration was employed
to enhance the accuracy and reduce the computational complexity. Specifically, GCGM-ARP
splits the inverse problem into two sub-problems, namely gradient descent direction and step
size, which were addressed by ISTA and ADMM. In addition, GCGM-ARP is simple and easy to
implement and has convergence, which can guarantee the stability solution for FMT.

The effectiveness of GCGM-ARP was demonstrated through three groups of numerical
simulation experiments and one in vivo experiment. In the numerical simulation experiments,
the reconstruction results and quantitative analysis indicated that GCGM-ARP outperformed
IS-L1, IVTCG-L1, N-EN, and APSEN method in terms of positioning accuracy, shape recovery,
and dual-source positioning ability. Moreover, in the robustness test, GCGM-ARP showed high
reconstruction accuracy and morphological recovery ability despite the increased ill-posedness
of FMT reconstruction. The in vivo experiment further proved the superiority and practicability
of the method. It was worth noting that because of the noise in the in vivo experiment and
the error caused by organ segmentation, the results of reconstruction were worse than that of
using the same method in numerical simulation, but GCGM-ARP still obtained satisfactory
results. Overall, these experiments demonstrated the effectiveness of GCGM-ARP in improving
reconstruction accuracy, spatial resolution, and dual-source resolution.

Although GCGM-ARP had achieved satisfactory reconstruction results, there are still some
limitations. Firstly, the speed of ISTA algorithm used in GCGM-ARP can be further optimized
by incorporating acceleration methods such as gradient projection to accelerate convergence.
Secondly, the accuracy of optical parameters estimation can significantly affect the reconstruction
results. Currently, the optical parameters used in this study were estimated based on the relevant
tissues in the relevant literature [53], but using near infrared imaging method to measure the
optical properties of tissue and background optical properties can improve the accuracy of
reconstruction results. Additionally, in the in vivo experiment, the specific quantification of
the effect of low-fluorescence in the non-target region on the captured fluorescence distribution
has not been conducted. Further analysis of the effect of low- fluorescence can better simulate
the complexity of the environment in vivo and enhance the reliability of in vivo experiments.
Finally, The L-curve composed of a series of discrete points limits the accuracy of the optimal
regularization parameters, thus affecting the reconstruction results. Therefore, developing a
method for selecting more accurate optimal parameters under time constraint will be the focus of
our work in the future.

In summary, among the four methods used in the experiments, the reconstruction results of
IS-L1 and IVTCG-L1 are poor in location and morphology of the reconstructed source. The
reconstruction results of N-EN method are show higher accuracy in location and shape recovery
compared to the former two methods. The reconstruction performance of APSEN is similar to
that of GCGM-ARP, and better than that of N-EN. However, GCGM-ARP achieves lower LE and
RIE, as well as a higher Dice, which proves its better performance in localization, morphology
and fluorescent intensity reconstruction. This work has the potential to promot the application of
FMT in preclinical or clinical biology.
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