
Change detection for multispectral images using
modified semantic segmentation network

Linzhi Su, Qiaoyun Xie, Fengjun Zhao, and Xin Cao *
Northwest University, School of Information Science and Technology, Xi’an, China

Abstract. Change detection is a significant issue for understanding the changes occurring on
the land surface. We propose a change detection approach based on a semantic segmentation
network from multispectral (MS) images. Different from the traditional approaches that learn
deep features from the change index or establish mapping relations from patches, the proposed
approach employs the semantic segmentation network UNet++ for end-to-end change detection.
Nevertheless, in UNet++, the deep feature is directly upsampled from the node in the lower level
and does not involve much information from the nodes in the other levels. To cope with this
problem and further enhance its robustness, the zigzag UNet++ (ZUNet++) is developed. In
ZUNet++, the zigzag connection between nodes can be found, so the inputs of the node involve
not only the upsampled deep feature but also the downsampled shallow feature, i.e., the network
fuses multiple feature information. In addition, as few MS training datasets are available, we
designed a strategy in which each MS image is transferred into several pseudo-RGB images;
thus the network is trained by available RGB training sets and can be applied to the testing MS
datasets. In the experiment, three real testing MS datasets that reflect different types of changes
in Xi’an City are used. Experimental results show that, upon determining the appropriate param-
eter, the proposed ZUNet++ outperforms the other state-of-the-art approaches, demonstrating its
feasibility and effectiveness. © 2022 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:
10.1117/1.JRS.16.014518]
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1 Introduction

The last few decades have witnessed the rapid development of cities, with old facilities being
updated and new constructions being built. Such changes can be detected from various remote
sensing images and through change detection techniques.1–4 In the literature, change detection
aims to find the changed area occurring on the land surface in a series of sequential multitem-
poral images.5

Early studies mainly focus on the gray level or patch-based techniques. A three-step frame-
work, which contains image preprocessing, the generation of a change index (CI), and its analy-
sis, has been proposed.6,7 Image preprocessing includes the image co-registration,8 geometric
correction,9 and image filtering.10 In the second step, the CI is usually obtained through a differ-
ence operator (which leads to a difference image)11 or through concatenation (to form a joint
feature image).12 Finally, changes are detected by analyzing the CI. Based on this framework,
many basic techniques have been designed. For example, threshold or clustering-based
approaches have been proposed in several basic studies.6,13–17 The change vector analysis
(CVA) technique18 along with its improved versions was then proposed to cope with the problem
of particular types of images, such as multispectral (MS) and hyper-spectral (HS) images.7,12,19,20

These approaches work well when highly accurate results are not necessarily needed and have a
relatively low time cost. When it comes to some complicated problems or a demand for more
accurate results, however, they are quite limited. Therefore, researchers turned to deep learning
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techniques, which are able to obtain and analyze the deep features from images to detect real
changes. Deep learning means adopting deep network architectures to automatically learn hier-
archical feature representations using supervised or unsupervised strategies,21 and it has wide
application in many research fields. In the field of change detection, some new approaches, both
unsupervised and supervised, were then developed.

For the unsupervised techniques, two main categories are mainly involved. One category is
that the deep neural network itself works as an unsupervised method. It usually involves an
unsupervised network (i.e., different types of autoencoders and their stacked versions to form
deep architectures) and traditional classification algorithms. Lv et al.22 proposed a simple frame-
work that involves the stacked contractive autoencoder for feature extraction and the K-means
clustering algorithm for generating the final map. Geng et al.23 proposed an unsupervised
saliency guided nonnegative- and Fisher-constrained autoencoder (NFCAE). The approach
involves extracting a salient region (which probably represents the changed region) from the
DI and hierarchical fuzzyC-means clustering.24 The pseudotraining samples are used to facilitate
the NFCAE to obtain reliable detection results. To cope with multiple change detection for
single-channel images, Su et al.25 suggested using stacked denoising AE (DAE) to generate the
corresponding multichannel feature imaging, broadening the scope of the application of the
CVA technique as the feature change analysis (FCA). A similar method was proposed by
Su and Cao in which the novel fuzzy AE was developed to obtain more accurate feature
representation.26 The other unsupervised category involves the training-and-testing process.
Different from the supervised approaches, the training inputs are preselected from the given
image according to a rough classification, and then all of the image data (as the testing data)
is put into the trained network. This process works without necessary supervision. Gao et al.27

showed a framework that contains deep seminonnegative matrix factorization, which serves as a
rough classifier to preselect the training samples, and a singular value decomposition network to
obtain reliable high-quality features. Zhang et al.28 employed the deep belief network to facilitate
the FCA, not only capturing the robust features of changed region but also suppressing the irrel-
evant variations. Similarly, some unsupervised frameworks that involve two different kinds of
networks were then put forward. One network is for feature extraction, and the other establishes
the function between features from relevant samples. Zhang et al.29 adopted this idea to cope with
multiresolution change detection through the DAE and a simple mapping network. This idea was
then improved by Su et al. to cope with the ternary change detection problem.30 After the feature
extraction through stacked DAE, three mapping functions are established for the three classes,
and the final changed map is generated through clustering to the corresponding feature mapping
index. Gong et al.31 further improved this framework by updating the feature extraction and
mapping networks into the stack sparse AE (SAE) and convolutional neural network (CNN),
respectively. Thus the improved framework achieved more robust feature and more flexible map-
ping functions. Some other excellent networks are also in the related literature. For example, the
generative discriminatory network (GAN) learns to produce novel data with the same statistics as
the original data, and the generator network finally competes against an adversary.32 Thus it is
useful when there are not many samples for training. Gong et al.33 developed a GAN-based
change detection approach. First, a generator is used to generate fake data; then after a rough
segmentation, which discriminates the unlabeled data from the labeled data, the discriminatory
network updates the label for each pixel by combining and training the fake, labeled, and unla-
beled data together. The generative and discriminatory networks are alternately trained until the
objective function converges. Saha et al.34 further developed the unsupervised CVA technique by
choosing a trained CNN, extracting robust features, and facilitating the classification.

On the one hand, these unsupervised techniques are simple in practice and rely little on the
training sets as in the supervised approaches. On the other hand, the training samples in some
unsupervised techniques are selected or derived from the testing data itself, leading to inaccurate
parameters in the networks. In addition, the selection of the training samples by rough classifiers
also engenders inaccuracy. To cope with these issues, researchers have built supervised archi-
tectures for both training and learning. Wang et al.35 proposed the general end-to-end 2D CNN
(GETNET) for HS image change detection, which is highlighted by their subpixel information
fusion method. In GETNET, each pixel is turned into a mixed data cube after linear and nonlinear
unmixing, and then the corresponding mixed-affinity matrix is generated, forming the direct
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inputs of the network. Amin et al.36 proposed an approach based on CNN; the features are
extracted from the CaffeNet model by activating the pretrained CNNs, generating a feature vec-
tor for each pixel. Zhan et al.37 suggested using a supervised deep Siamese CNN to generate two
16-dimensional pixel-wise feature vectors. To generate the final changed map, both approaches
employ the Euclidean distance. Mou et al.38 brought together a CNN and a recurrent neural
network (RNN) into a one end-to-end network. In their work, three types of RNN architectures,
the fully connected (FC) RNN, the long-short-term memory, and the gated recurrent unit, are
used to construct the corresponding subnetwork.

To further detect and recognize the changes on the land surface, recent studies have adopted
the semantic segmentation algorithms. Some techniques based on semantic segmentation and
recognition networks have been developed. Saha et al.39 proposed an unsupervised semantic
segmentation approach in which the deep feature is extracted and then clustered to obtain the
final label for the changed area. In addition to such approaches, the fully convolutional network
(FCN)40 serves as a common and basic tool to build up this architecture. Traditional CNNs usu-
ally output a single prediction for each input image, whereas FCNs are able to predict labels for
each pixel independently and efficiently with an arbitrary size of input. Hence, the FCNs are
especially suited for image semantic analysis. Wiratama et al.41 showed a Siamese architecture in
which two dense-CNN are connected in series for each image and eventually a probability output
is generated, hence the name dual-dense convolutional network. Zhang et al.42 introduced a fully
atrous CNN, the encoder of which consists of several fully atrous convolution layers, expanding
the receptive field in the convolution process. Daudt et al.43 made a deep study on semantic
change detection and proposed several multitask learning strategies based on integrated deep
FCNs. They showed the two simple and two integrated semantic change detection strategies
with land cover maps. In addition to the architectures mentioned above, some special versions
of FCN, such as SegNet,44 UNet,45 and RefineNet,46 have also become popular. It has been
summarized from the literature that UNet can be considered to be one of the standard architec-
tures used for this issue.47 The general structure of UNet is symmetric (similar to the letter “U”),
and it has an encoder that extracts spatial features and a decoder that generates the segmentation
map from the feature. UNet is effective for processing medical images,48 and the related literature
also demonstrates its applicability in change detection. Jaturapitpornchai et al.49 proposed a
novel change detection method based on UNet for detecting building construction. The new
buildings can be thus detected between two synthetic aperture radar images captured at two
different times. A similar architecture was also proposed by Li et al.,50 who applied the residual
UNet to urban building change detection. Hamdi et al.51 also used UNet to detect the damaged
forests, and the network was trained on the database of a forest area in Bavaria, Germany. In
addition to these, UNet++,52 an enhanced version of UNet proposed by Zhou et al., was also
applied to the field. UNet++ is also referred to as nested UNet, in which several UNet archi-
tectures are nested together and the dense skip connections are established between the nodes at
the same depth. Actually, considering UNet++, Alexakis and Armenakis53 made a further evalu-
ation and comparison of these two on several RGB datasets, and the results by UNet++ were
demonstrated to be better than those by UNet. From the corresponding experiments, the authors
also suggested using the binary cross-entropy loss with the Dice coefficient function (BCE-Dice
loss) to train the network and obtained satisfactory results. Peng et al.54 studied UNet++ and
applied the network to change detection for high-resolution satellite images. The backbone
of the network proposed by Zhou et al. was adopted, and using the multiple side-output fusion,
the final output was obtained from the four direct outputs. Their qualitative and quantitative
results also demonstrate the superiority of UNet++ over the other architectures.

Despite the effectiveness of the aforementioned methods, it is found that supervised semantic
change detection still faces some challenges. First, although the skip connections are introduced
to enhance the performance, these types of networks still need to be improved by exploring
sufficient information from full scales. Second, the training sets are limited because few MS
training image pairs are available, whereas natural RGB training images are abundant. To cope
with these issues, in this paper, we propose a zigzag UNet++ (ZUNet++) architecture for super-
vised end-to-end semantic change detection based on MS images. The highlights of the work can
be summarized as follows.
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(1) Different from the ordinary UNet++ model, in the proposed ZUNet++ architecture, the
skip connection of two nodes at the same depth is modified into a zigzag manner, form-
ing an indirect skip connection and thus utilizing more information from the other nodes.

(2) To adapt the available training sets and fully utilize the information provided by the
spectral channels, one MS image is transferred into several pseudo-RGB images; thus
each channel of the image can be fully tackled, further improving the accuracy.

This paper is organized as follows. Section 2 provides basic background knowledge, and
Sec. 3 introduces the proposed ZUNet++ and the entire framework in detail. The datasets and
experimental settings and the related evaluation criteria are given in Sec. 4. Experimental results
are given in Sec. 5. Finally, we give the concluding remarks in Sec. 6.

2 Background

In this section, an introduction to the background knowledge, including the task description and
the available related networks, is given.

2.1 End-to-End Semantic Change Detection

Let us consider I1 and I2, an image pair consisting of two A × B × S MS images taken over the
same geographical area at two different times, respectively. A and B are the height and width, and
S is the spectral channel number. The aim of change detection is to find a final map IF that
indicates the changes occurring between two times. As summarized in Ref. 43, the problem
can be treated as a dense classification problem, aiming to predict a label for each pixel in
an input image pair, i.e., achieving semantic segmentation. As introduced in Sec. 1, some
approaches involve several steps, in which image features are represented (or extracted) first
and then analyzed. In general, this entails an excellent algorithm for extracting and analyzing
essential features. In some methods, this process is viewed as two individual aspects in series.
For example, Su et al.,30 Gong et al.,31 and Gong et al.33 developed methods that improved the
robustness of the features and effectively analyzed them. These approaches, however, involve
some complicated networks in both aspects and are mainly applied to unsupervised change
detection. Therefore, for supervised change detection, it is necessary to develop an end-to-end
network that displays the final result directly from the original inputs.

According to the summaries by Wiratama and Sim,55 related supervised studies are divided
into two categories: the front-end differential network (FDN) and the back-end differential net-
work (BDN). In the FDN, the CI is generated to represent low-level features, and a network is
used to analyze it. In the BDN, two Siamese networks are used to extract the respective high-
level features of two images, and the final map are generated by computing their corresponding
distance. Both categories consist of a rather complicated network and an affiliated simple
method. If considered as a whole, these frameworks, whether FDN or BDN, are end-to-end
in both training and testing. Several networks have been proposed and adopted to achieve
end-to-end semantic change detection, and the FCN as well as some of its modified versions
are introduced here.

2.2 FCN

FCN is a basic semantic classification tool proposed by Shelhamer et al.40 A traditional
CNN architecture mainly consists of convolutional layers and pooling layers, and the rectified
linear unit (ReLU) usually serves as the activation function (AF) and is defined as
ReLUðtÞ ¼ maxft; 0g. At the back-end, the FC layers are applied, mapping the feature data
into a vector with a given size. Many networks have been designed for classifying and
identifying the inputs by outputting a vector that denotes the memberships (probability) to all
possible classes, achieving the image-level classification. Different from traditional CNN archi-
tectures, FCN is mainly designed to achieve pixel-level classification for an input image with
arbitrary size by showing the classification result of each pixel. The comparison of their typical
architectures is shown in Fig. 1.
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2.3 UNet

UNet, a special form of FCN, is a symmetric encoder–decoder structure. The encoder part con-
sists of several convolutional units, and the decoder part is symmetric with respect to the encoder
in the structure. A typical architecture of UNet is shown in Fig. 2(a) with its abstract backbone
shown in Fig. 2(b).

There are two main distinctions between a normal FCN and UNet. First, the upsampling
process (decoder) in FCN merely involves deconvolution, whereas the decoder part of UNet
also involves several convolution layers to deepen the network, forming a symmetric architec-
ture. Second, the skip connections are a summation in FCN and a concatenation in UNet. These
are also considered to be the main advantages of UNet over FCN.

Despite these advantages, some problems can still be found. First, UNet is not very flexible
because there is only one end-to-end pathway. Second, the skip connection is quite simple, and
the node at the upsampling path only receives the skip connection from that the same level.
Therefore, based on UNet, the UNet++ architecture is developed, and in this paper we propose
the ZUNet++ architecture to further improve the performance of the network.

3 Methodology

In this section, we first introduce the UNet++ architecture followed by our proposed ZUNet++.
Then we show the way to apply ZUNet++ to MS image change detection. Finally, the establish-
ment of the loss function is discussed.

Crop & skip

Conv+ReLU

Max pooling

Deconv

Concat

Down–sampling

Up–sampling

Skip connection

Encoder conv unit

Decoder conv unit

(a) (b)

Fig. 2 Basic architectures of UNet: (a) one typical detailed UNet architecture and (b) backbone of
UNet.

Flower

Convolution units

FC layers

Conv+ReLU Max pooling

(a)

Convolution units

Deconvolution units

+

+

Skip Skip

Conv+ReLU Max pooling

(b)

Fig. 1 Basic architectures of (a) CNN and (b) FCN.
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3.1 Nested UNet: UNet++

UNet++, as introduced in Sec. 1, is the nested version of UNet. A typical UNet++ architecture
consists of convolution units, downsampling and upsampling modules, and, above all, skip
connections. Figure 3 shows the main architecture used in Ref. 54.

In Fig. 3, Xi;j is the convolution unit, where i denotes the number of the downsampling level
and j denotes the number of the convolutional layer along the skip connection path. X0;0 is the
initial node with the original image input. The relationship illustrated in Fig. 3 can also be dem-
onstrated mathematically in the following equation:

EQ-TARGET;temp:intralink-;e001;116;445xi;j ¼
�
FðDðxi−1;jÞÞ; j ¼ 0

FðCðxi;0; : : : ; xi;j−1;Uðxiþ1;j−1ÞÞÞ; j ≥ 1
; (1)

where xi;j is the output of Xi;j and Fð·Þ denotes the convolution operation followed by an AF
(e.g., ReLU). Cð·Þ, Dð·Þ, and Uð·Þ denote the concatenation, the downsampling, and the upsam-
pling operations, respectively. Actually, when j ¼ 0, Xi;j is at the downsampling path; thus it is
directly related to its direct lower-level node. When j > 0, Xi;j is at several upsampling paths and
is not only related to its direct higher-level node but also is skip-connected by the previous nodes
at the same level, similar to DenseNet.56 This rearranged skip connection gives its remarkable
characteristics and is the main difference between UNet and UNet++.54 Let us take node X0;4 in
Fig. 3 as an example and make a comparison of the skip connection to the corresponding node in
Fig. 2(b), i.e., X 00. The skip connection applied to X 00 is only from X0 in the UNet architecture,
whereas X0;4 receives skip connections from X0;0, X0;1, X0;2, and X0;3 in the UNet++ architec-
ture. In addition, UNet++ contains several output nodes (X0;1, X0;2, X0;3, and X0;4 in Fig. 3), and
these outputs can be either fused to generate the final output or viewed as an individuals, enhanc-
ing the flexibility compared with UNet.

In general, UNet++ performs better than UNet because of its excellent skip connection strat-
egy. Nevertheless, these skip connections are between two nodes at the same level without suf-
ficiently utilizing the information provided by the other levels. Therefore, ZUNet++ is proposed
to cope with this issue and to achieve a more robust end-to-end semantic change detection.

3.2 Backbone of ZUNet++

In the UNet++ architecture, when j > 0, the node Xi;j is at an upsampling pathway and only
receives skip connections from Xi;0; : : : ; Xi;j−1. These nodes share the same value of i, i.e., they
are at the same level. To fully utilize the information provided by the adjacent nodes at both the
same level and different levels, we propose the ZUNet++ architecture shown in Fig. 4.

A comparison between ZUNet++ and UNet++ shows that the skip connections between X0;j

and X0;jþ1 stay the same for the two networks. Nevertheless, there is no skip connection between
Xi;j and Xi;jþ1 (i > 0), which are two adjacent nodes at the same level. Instead, it is modified into

Fig. 3 Basic architecture of UNet++.
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a zigzag propagation as Xi;j → Xi−1;jþ1 → Xi;jþ1. This process involves up and downsampling
operations, which means that Xi;jþ1 also receives information from the upper level. In addition,
despite the modification of such a connection, the skip connection still exists for Xi;j and Xi;jþk

(k > 1). In this way, xi;j in ZUNet++ can be expressed as

EQ-TARGET;temp:intralink-;e002;116;499xi;j ¼

8>>><
>>>:

FðCðxi;0; : : : ; xi;j−1;Uðxiþ1;j−1ÞÞÞ; i ¼ 0; j > 0

FðDðxi−1;jÞÞ; i > 0; j ¼ 0

FðCðUðxiþ1;j−1Þ;Dðxi−1;jÞÞÞ; i > 0; j ¼ 1

FðCðxi;0; : : : ; xi;j−2;Uðxiþ1;j−1Þ;Dðxi−1;jÞÞÞ; i > 0; j > 1

: (2)

Let us, again, take node X0;4 for example and make a comparison with UNet++.
In UNet++ shown in Fig. 3, only one basic path from X0;0 to X0;4 can be found:
X0;0 → X1;0 → X2;0 → X3;0 → X4;0 → X3;1 → X2;2 → X1;3 → X0;4, i.e., the data are restricted
within this path; thus it is quite difficult to learn more robust features. In ZUNet++, however,
there are many paths available to X0;4. Take three feasible paths P1, P2, and P3 for examples:

EQ-TARGET;temp:intralink-;sec3.2;116;359

P1∶ X0;0~
D
X1;0~

D
X2;0~

D
X3;0~

D
X4;0~

U
X3;1~

U
X2;2~

U
X1;3~

U
X0;4;

P2∶ X0;0~
D
X1;0~

U
X0;1~

D
X1;1~

U
X0;2~

D
X1;2~

U
X0;3~

D
X1;3~

U
X0;4;

P3∶ X0;0~
U
X1;0~

D
X0;1~

D
X1;1~

U
X2;1~

D
X3;1~

U
X2;2~

U
X1;3~

D
X0;4;

where ~
D
and ~

U
denote the downsampling and upsampling propagations, respectively. P1 is

exactly the same path as that in UNet++, and it contains sequential downsamplings followed
by sequential upsamplings. P2 is arranged in a zigzag manner with alternate downsampling and
upsampling. P3 is the mixture of the two cases. Many more similar paths can be found, and these
paths actually involve many more nodes than those in a single P1. Thus deep robust features are
further extracted and utilized in both training and testing processes, facilitating the fusion of
multiscale features from the nodes at different levels.

3.3 Basic Convolution Unit in ZUNet++

Here an introduction to the inner structure of the basic unit Xi;j in ZUNet++ is made. Based on
Ref. 54, the basic convolution unit of ZUNet++ is designed as shown in Fig. 5.

Here “Conv2D” means the 2D convolution layer, and here we use 3 × 3 filters with both
padding and stride set as 1. “BN” and “AF” are short for batch normalization and activation
function, respectively. Here a discussion is made on the BN layer and AF.

Fig. 4 Proposed ZUNet++ architecture.
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BN is first proposed by Ioffe and Szegedy.57 Li et al.58 made a further study on BN and then
proposed the adaptive BN (AdaBN) for practical domain adaptation to reduce the influence by
domain shift. Remote sensing images involve the difference of distribution between various data-
sets, and Saha et al.59 demonstrated the effectiveness of AdaBN when dealing with the change
detection problem. Hence, we employ the AdaBN to make the network more adaptive here.

As for the AF, it is usual to use the ReLU function. Nevertheless, there are some other types
of AFs, and the scaled exponential linear unit (SELU) is one of these. SELU is defined as

EQ-TARGET;temp:intralink-;e003;116;429SELUðtÞ ¼
�
ρt; t ≥ 0

ραðet − 1Þ; t < 0
; (3)

where ρ ≈ 1.051 and α ≈ 1.673, as given in Ref. 60.
According to the theoretical analysis and practical experiments in Ref. 61, SELU has two

quite conspicuous advantages over ReLU. One is its speed of convergence regardless of the
choice of hyperparameter when most optimization algorithms are adopted, and the other is its
ability to use a big and deep network and gain a better test accuracy.61 Hence, in the basic unit of
ZUNet++, the SELU is used as the AF.

Based on the discussion above, the final detailed form of Xi;j in ZUNet++ is shown in Fig. 6.

3.4 Framework of MS Image Change Detection Using ZUNet++

Each testing MS image that we use consist of four spectral channels: red (R), green (G), blue (B),
and near-infrared (NIR). However, few training datasets have exactly the same spectral property
as the testing ones, i.e., it is difficult to find abundant RGB-NIR image pairs that can serve as the
training data here. At the same time, we have yet to find a group of RGB data with 10,000 image
pairs obtained by Google Earth (DigitalGlobe). To tackle this disparity problem, we utilize these
RGB data as the training sets and do not directly input the four-spectral MS images in the testing
process. Instead, one MS image I is first decomposed to generate four pseudo-RGB images Ið1Þ,
Ið2Þ, Ið3Þ, and Ið4Þ by combining every three spectral channels. Upon the decomposition of an
RGB-NIR image into four three-channel images, we also notice that one of them is a real RGB
image and the other three are pseudo-RGB images. Each pseudo-one involves an NIR channel
along with two from the RGB channels. Therefore, this operation not only allows the testing data
to adapt the trained network but also fully utilizes the spectral information. This spectral recom-
bination strategy is depicted in Fig. 7 intuitively.

Change detection involves two images, and therefore four groups of pseudo-RGB

image pairs are generated. Let IðkÞ1 and IðkÞ2 be two corresponding pseudo-RGB images
(k ¼ 1;2; 3;4), and they are concatenated to generate IðkÞ, which serves as the direct input of

Conv2D BN Conv2D AF +

Xi, j

AF BN

Fig. 5 Illustration of the basic convolution unit.

Conv:
filters (3×3)

stride = 1
padding = 1

AdaBN +

Xi, j

SELU

Conv:
filters (3×3)

stride = 1
padding = 1

AdaBN SELU

Fig. 6 Detailed illustration of the basic convolution unit used in the ZUNet++ architecture.
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ZUNet++. The network has four individual output nodes: X0;1, X0;2, X0;3, and X0;4, and a sig-

moid layer is followed to obtain the corresponding output results: YðkÞ
1 , YðkÞ

2 , YðkÞ
3 , and YðkÞ

4 , which
is similar to the operation in Ref. 54. Then they are concatenated to generate the fusion feature
map YðkÞ:

EQ-TARGET;temp:intralink-;e004;116;267YðiÞ ¼ CðYðiÞ
1 ; YðiÞ

2 ; YðiÞ
3 ; YðiÞ

4 Þ: (4)

This process is illustrated in Fig. 8.
Upon generating four fusion feature maps Yð1Þ, Yð2Þ, Yð3Þ, and Yð4Þ that correspond to four

channel combinations shown in Fig. 7, we concatenate them to further generate the integrated
feature map Y, which involves the entire spectral information and reflects the deep feature:

EQ-TARGET;temp:intralink-;e005;116;182Y ¼ CðYð1Þ; Yð2Þ; Yð3Þ; Yð4ÞÞ: (5)

Finally, the fuzzy C-means clustering algorithm is utilized to generate the final change
detection map IF. This is illustrated in Fig. 9.

3.5 Loss Function

In Figs. 4 and 8, four output nodes from ZUNet++ are determined: X0;1, X0;2, X0;3, and X0;4.
Based on Ref. 52, the overall loss function L is defined as

I (1)
I (2) I (3) I (4)

I

Fig. 7 Decomposition of one four-spectral MS image into four pseudo-RGB images.

Fig. 8 Illustration of the generation of the fusion feature map Y ðkÞ.
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EQ-TARGET;temp:intralink-;e006;116;553L ¼ 1

4

X4
k¼1

Lk; (6)

where Lk represents the loss function corresponding to the output node X0;k and Lk is defined
as

EQ-TARGET;temp:intralink-;e007;116;487Lk ¼ Lk
bce þ λLk

dice; (7)

where Lk
bce and Lk

dice denote the binary cross entropy and the dice coefficient loss, respectively.
Obviously, Lk is the weighted summation of the two terms with the weight λ, the value of
which is tested in the experiments. Here we omit the superscript k if no confusion is
engendered.

Lbce is a commonly used in machine learning. Let us suppose that y is the real label array of
samples and ŷ is the corresponding estimated value. Here we have ym ∈ f0;1g, m ¼ 1;2; : : : ; N,
where N is the sample number. Thus Lbce is defined as

EQ-TARGET;temp:intralink-;e008;116;369Lbce ¼ −
1

2N

XN
m¼1

fym log½sðŷmÞ� þ ð1 − ymÞ log½1 − sðŷmÞ�g; (8)

where sð·Þ is the sigmoid function.
The dice coefficient loss is also used in semantic segmentation and is defined as

EQ-TARGET;temp:intralink-;e009;116;295Ldice ¼ 1 −
2jy ∩ ŷj
jyj þ jŷj ; (9)

where

EQ-TARGET;temp:intralink-;e010;116;238

8>><
>>:

jyj ¼ P
N
m¼1 ym

jŷj ¼ P
N
m¼1 ŷm

jy ∩ ŷj ¼ P
N
m¼1 ŷmym

: (10)

In practice, Eq. (9) is usually modified as Eq. (11).

EQ-TARGET;temp:intralink-;e011;116;157Ldice ¼ 1 −
2jy ∩ ŷj þ δ

jyj þ jŷj þ δ
; (11)

where δ is a small positive number. This operation gives the case in which the denominator
equals 0, which avoids overfitting to some extent.

Fig. 9 Illustration of the generation of the final change detection map.
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4 Testing Datasets and Experimental Settings

This section shows the testing datasets and experimental settings as well as the introduction to
some evaluation metrics.

4.1 Testing Datasets

In the experiments, three four-channel MS datasets that reflect the changes in Xi’an City by the
WorldView-2 satellite are used to test the effectiveness. Each of these three involves one image
taken in August 2013 and one taken in August 2015 as well as a reference changed map that is
obtained through on-the-spot investigation. Note that, although the datasets are from the same
satellite, two different sensors were used to generate the two images in every dataset, which
makes it a little difficult to detect real changes.

The first dataset is the factory dataset, which shows the construction of an automobile factory
at Huyi District near the Qingling Mountains (Fig. 10). This place was a farmland before 2012,
and the factory began and finished its construction in 2013 and 2015, respectively. The size of
either image is 244 × 257 × 4.

The second dataset is the Jinghe dataset and reflects the changes in the south side of the
Jinghe River with a size of 174 × 161 × 4 (Fig. 11). These land changes include the emergence
of a roundabout and several foundations built later for modern buildings.

The third dataset is the park dataset and shows the construction of a new park in the Xixian
New Area with a size of 156 × 145 × 4 (Fig. 12). The government began its construction in 2014
and was still under construction in 2015. An obvious change can be seen from the two images.

4.2 Experimental Settings

First, we make a test on the parameter λ, which is the weight in Eq. (6). Here λ is set to 0, 0.25,
0.5, 0.75, and 1, and the optimal value can be selected according to the performance of the
results.

Fig. 10 Factory dataset: (a) image taken in 2013, (b) image taken in 2015, and (c) reference
ground truth map.

Fig. 11 Jinghe dataset: (a) image taken in 2013, (b) image taken in 2015, and (c) reference ground
truth map.
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Upon determining the optimal value of λ, the experimental results from several comparison
algorithms are given to show the excellent performance of ZUNet++. These comparison results
are FCN, SegNet, UNet, and UNet++. Note that a true-and-false comparison is made for UNet++
and ZUNet++. It is used to demonstrate the effectiveness of concatenating the outputs from the
four output nodes, which are X0;1, X0;2, X0;3, and X0;4 in Fig. 2. A “true” result is generated from
the concatenation of the four output nodes, whereas a “false” one is only from X0;4.

4.3 Evaluation Metrics

As a binary classification problem, a 2 × 2 classification matrix P is adopted to describe the
performance as illustrated in the following equation:

EQ-TARGET;temp:intralink-;e012;116;454P ¼ 1

A × B

�
TN FP

FN TP

�
; (12)

where TP, FP, TN, and FN denote the number of true positives, false positives, true negatives,
and false negatives, respectively. Three evaluation metrics, the precision value (Pr), the recall
value (Re), and the F1-score (F1), are employed to describe the performance of detecting
changes. Pr and Re are calculated as shown in the following equation:

EQ-TARGET;temp:intralink-;e013;116;362

�
Pr ¼ TP

TPþFP

Re ¼ TP
TPþFN

: (13)

And F1 is defined as their harmonic mean value:

EQ-TARGET;temp:intralink-;e014;116;302F1 ¼ 2 Pr · Re
PrþRe

: (14)

These three metrics emphasize the performance of the detection of changes, and generally
higher values correspond to a better detection result. To illustrate the overall performance of
classification, the percentage correct classification (PCC) and the kappa coefficient (KC) are
used. PCC is calculated as

EQ-TARGET;temp:intralink-;e015;116;211PCC ¼ TPþ TN

A × B
¼ trðPÞ: (15)

KC is calculated as

EQ-TARGET;temp:intralink-;e016;116;157KC ¼ trðPÞ − qTP2q
1 − qTP2q

; (16)

where q ¼ ½1;1�T. The derivation of Eq. (16) can be found in Refs. 30 and 62.

Fig. 12 Park dataset: (a) image taken in 2013, (b) image taken in 2015, and (c) reference ground
truth map.
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5 Experimental Results

5.1 Parameter Testing

This experiment determines the optimal value of the parameter λ, which varies from 0 to 1 at
intervals of 0.25. Figure 13 illustrates the effect of λ on the accuracy of ZUNet++.

It can be seen that, when λ ¼ 0.5, quantitative evaluation results achieve their maximum.
Other values of λ may lead to results that are not so good or stable. In particular, when
λ ¼ 0 (the case in which the loss function only involves Lbce), all five criterion values indicate
low values, and this suggests the indispensability of Ldice. A comparison between the cases with
λ ¼ 0.25 and λ ¼ 0.5 indicates that Ldice should not account for such a small percentage. On the
other hand, a further increase in the value of λ (0.75 and 1 here) also leads to downward trends of
the criterion values. Therefore, λ can be set to 0.5 to balance the two parts better in the following
experiments.

(a) (b)

(c) (d)

(e)

Fig. 13 Effect of λ on (a) Pr, (b) Re, (c) F1, (d) PCC, and (e) KC.
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5.2 Results from the Factory Dataset

The final maps from the factory dataset by different approaches are shown in Fig. 14, and the
corresponding quantitative results are listed in Table 1.

From Fig. 14, all of the approaches are capable of detecting some obvious changes.
Therefore, we focus more on detecting some subtle changes. In general, two nested networks,
UNet++ and ZUNet++, show better detection results than the other networks in terms of the
changes in the north, which is subtle and not so obvious. In the true-and-false comparison experi-
ment, as anticipated, the true results perform better than the corresponding false results, dem-
onstrating the effectiveness of concatenating the four outputs in the network. The advantages of
ZUNet++ over UNet++ can be seen by making a comparison of the metric values in terms of
their true experiments in Table 1. The values of F1, PCC, and KC from ZUNet++ reach 0.9162,
0.9766, and 0.9027, respectively, higher than those from UNet++, indicating the excellent per-
formance of the zigzag propagation.

Fig. 14 Results from the factory dataset by (a) FCN, (b) SegNet, (c) UNet, (d) false UNet++,
(e) true UNet++, (f) false ZUNet++, and (g) true ZUNet++. (h) the reference map.

Table 1 Quantitative evaluation results of different approaches from the factory dataset.

Pr Re F1 PCC KC

FCN 0.9682 0.4787 0.6406 0.9263 0.6048

SegNet 0.9284 0.5987 0.7279 0.9386 0.6951

UNet 0.9159 0.7461 0.8223 0.9558 0.7974

UNet++_false 0.9116 0.7960 0.8499 0.9614 0.8279

UNet++_true 0.9003 0.8648 0.8822 0.9683 0.8639

ZUNet++_false 0.8690 0.8890 0.8789 0.9664 0.8593

ZUNet++_true 0.9016 0.9314 0.9162 0.9766 0.9027
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5.3 Results from the Jinghe Dataset

Figure 15 shows the final maps from the Jinghe dataset by different approaches, and Table 2 lists
the quantitative results.

It can be seen that the obvious change in the Jinghe dataset is the constructions of the round-
about and a few building foundations around it, which is detected by all of the approaches. For
the detailed detection, however, the two nested networks perform much better. This is manifested
in two aspects, which are their excellent capability of edge detection and noise suppression in the
heterogenous and homogenous areas, respectively. In addition, the true-and-false comparison
also demonstrated the essentiality and superiority of the final concatenation operation. In addi-
tion, a comparison of the quantitative results in Table 2 shows the superiority of ZUNet++ to
Unet++. Actually, such a detection contrast can also be seen visually by Figs. 15(e) and 15(g).

5.4 Results from the Park Dataset

The final maps from the park dataset by different approaches are shown in Fig. 16 with their
corresponding quantitative results listed in Table 3.

Fig. 15 Results from the Jinghe dataset by (a) FCN, (b) SegNet, (c) UNet, (d) false UNet++,
(e) true UNet++, (f) false ZUNet++, and (g) true ZUNet++. (h) the reference map.

Table 2 Quantitative evaluation results of different approaches from the Jinghe dataset.

Pr Re F1 PCC KC

FCN 0.9058 0.7157 0.7997 0.8981 0.7326

SegNet 0.8812 0.8017 0.8396 0.9130 0.7800

UNet 0.8986 0.8448 0.8709 0.9288 0.8218

UNet++_false 0.9155 0.8415 0.8770 0.9329 0.8310

UNet++_true 0.9069 0.9099 0.9084 0.9478 0.8720

ZUNet++_false 0.9142 0.9015 0.9078 0.9480 0.8716

ZUNet++_true 0.9596 0.9112 0.9348 0.9639 0.9098
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The park dataset is characterized by its large changed area, and the results from the true
experiments [Figs. 16(e) and 16(g)] are closer to the reference map than the others. In addition,
from Table 3, the values of F1, PCC, and KC by the proposed ZUNet++ network in its true
experiment are 0.9422, 0.9528, and 0.9023, respectively, which are higher than those by the
true UNet++ network. The results suggest that ZUNet++ also applies to such extensive changes
with higher accuracy than other approaches.

6 Concluding Remarks

Change detection has facilitated urban study to a large extent by analyzing multitemporal
images. In this paper, we propose the ZUNet++ framework to cope with the semantic change
detection problem for MS images. Serving as a modified version of UNet++, ZUNet++ involves
nodes that retain more information from the other levels, which makes the network more robust
and flexible. In addition, according to the characteristics of the training and testing data, the four
channels in one MS image are recombined into four pseudo-RGB images, making it possible to
apply the trained network to the testing data. Experimental results from the real satellite data also
demonstrates the effectiveness of the proposed ZUNet++.

Fig. 16 Results from the park dataset by (a) FCN, (b) SegNet, (c) UNet, (d) false UNet++, (e) true
UNet++, (f) false ZUNet++, and (g) true ZUNet++. (h) the reference map.

Table 3 Quantitative evaluation results of different approaches from the park dataset.

Pr Re F1 PCC KC

FCN 0.9142 0.8535 0.8828 0.9059 0.8044

SegNet 0.9455 0.8721 0.9073 0.9260 0.8459

UNet 0.9146 0.8948 0.9046 0.9216 0.8381

UNet++_false 0.9315 0.9024 0.9167 0.9319 0.8592

UNet++_true 0.9427 0.9210 0.9318 0.9440 0.8843

ZUNet++_false 0.9488 0.8921 0.9196 0.9352 0.8655

ZUNet++_true 0.9583 0.9266 0.9422 0.9528 0.9023
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In general, the contributions of the work can be summarized as follows. First, it further devel-
ops the nested network for end-to-end semantic change detection and is able to utilize more
information between levels, which is robust and flexible in the training and testing process.
Second, the framework is also designed to tackle the problem of characteristics disparity between
training and testing data by adopting the spectral recombination strategy. These two contribu-
tions are considered to broaden the applicability of the available frameworks. Despite these
advantages, some hyper-parameters in the framework are still worth studying. In addition, it
is considered that the technique can also be extended to the problem of multiple change detec-
tion. Therefore, in the future, we will put more emphasis on its further study.
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