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Abstract: Optical molecular tomography (OMT) is a potential pre-clinical molecular 

imaging technique with applications in a variety of biomedical areas, which can provide 

non-invasive quantitative three-dimensional information regarding the tumor distribution 

in living animals. The construction of optical transmission models and the application of 

reconstruction algorithms in traditional model-based reconstruction processes have 

affected the reconstruction results, resulting in problems such as low accuracy, poor 

robustness, and longtime consumption. Here, a gates joint locally connected network 

method is proposed by establishing the mapping relationship between the inside source 

distribution and the photon density on surface directly, thus avoiding the extra time 

consumption caused by iteration and the reconstruction errors caused by model inaccuracy. 

Moreover, gates module was composed of the concatenation and multiplication operators 

of three different gates. It was embedded into the network aiming at remembering input 

surface photon density over a period and allowing the network to capture neurons 

connected to the true source selectively by controlling three different gates. To evaluate the 

performance of the proposed method, numerical simulations were conducted, whose results 

demonstrated good performance in terms of reconstruction positioning accuracy and 

robustness.  

Keywords: Optical molecular tomography; gates module; positioning accuracy; 

robustness. 

 

1. Introduction 

Optical molecular imaging (OMI) is an imaging technology that collects the 

distribution and intensity of light flux on the surface of living organisms, which 

comes from optical molecular probes within the organisms.1 OMI has been widely 

used in pre-clinical research due to its simplicity, high sensitivity, and non-invasive 

implementation.2-4 However, it exits an obvious bottleneck that OMI cannot 

quantify the three-dimensional (3D) distribution of the optical signals in imaging 

objects. Thus, to overcome these limitations, optical molecular tomography (OMT) 

was further developed. OMT has completed a transformation from two-

dimensional qualitative analysis to 3D quantitative analysis. By fusing structural 

information of organisms, quantitative distribution of optical probes within the 

organism can be provided.5-7 Due to the sparsity of light distribution and the high 

heterogeneity of biological tissues, imaging accuracy has always been a 

challenge.8-10  
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To address the issues existing in 3D imaging methods, model-based methods 

mainly improve from two aspects. On the one hand, by improving the accuracy 

and efficiency of the optical transmission model, the problem of biological tissue 

heterogeneity can be solved, which improve the reconstruction results. For 

example, models such as diffusion approximation, simplified spherical harmonic 

approximation, and hybrid model are used for OMT.11-14 On the other hand, 

strategies such as adding regularization constraints, allowing source regions and 

multispectral measurements are used for reconstruction, to overcome the ill posed 

problem caused by insufficient measurement data and high dimensionality of the 

model through iterative algorithms and increasing data volume.15,16 Although these 

strategies have improved reconstruction performance and achieved accurate and 

efficient 3D reconstruction. However, there are still some errors in the approximate 

optical transmission model compared to the actual optical transmission process, 

which will be introduced into the final reconstruction results. Model based methods 

depend on iterative calculations to solve inverse problems, which is time-

consuming. In addition, the accuracy and density of discretized mesh also affect 

the reconstruction accuracy and resolution seriously. 

In recent years, the development of deep learning provides a new approach for 

optical 3D reconstruction. Due to its ability to abandon the construction of imaging 

models and system equations based on mathematical equations, it greatly reduces 

the pathological nature of 3D reconstruction mathematically and has been 

successfully applied in the field of OMT.17-20 Zhang et al. proposed a method for 

CLT reconstruction using multi-layer fully connected neural networks 

(MFCNN),21 and experiments showed that this method has better accuracy and 

stability compared to incomplete variables truncated conjugate gradient method. 

Guo et al. proposed an end-to-end 3D depth encoder decoder network,22 which 

greatly improves image quality and significantly reduces reconstruction time. Li et 

al. proposed a deep convolutional framework based on the ResNet architecture for 

in vivo fluorescence reconstruction,23 achieving high-quality image reconstruction 

with fewer parameters and relatively high speed. Meng et al. developed a K-nearest 

neighbor based locally connected (KNN-LC) network to reconstruct the 

distribution of fluorescence targets in fluorescence molecular tomography,24 which 

achieved accurate reconstruction in a short period of time. Moreover, 15% gaussian 

noise was added to the KNN-LC network and achieved accurate source localization 

with noise interference. Cao et al. proposed an excitation-based fully connected 

network (EFCN) for the second near-infrared fluorescence molecular tomography 

with the excitation module and center of barycenter error are added to the network 

and the loss function to improve the positioning accuracy of the light source.25 

Furthermore, 10% Gaussian noise was added to test the robustness of EFCN. The 

results demonstrated that EFCN improved the quality of FMT reconstruction. 

However, these reconstruction methods based on deep learning generally lack 

robustness verification, and their noise resistance needs to be further strengthened. 

Therefore, 3D imaging methods still need to be further strengthened in terms of 

network efficiency, reconstruction accuracy, and robustness. 

In this paper, inspired by long short-term memory network,26 which used to deal 

with a series of sequence data and allows the network to remember inputs over a 

period of time, a gates joint locally connected network (GLCN) was proposed. 

GLCN is composed of a locally connected (LC) network with gate modules 

embedded aiming to achieve higher accuracy and robustness of OMT 

reconstruction. The gates module can control different weights for each neuron, 
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enabling the network to selectively capture neurons connected to the true source. 

To evaluate the performance of GLCN, numerical simulation experiments were 

conducted. The IVTCG and MFCNN methods were adopted as the baseline for 

comparisons. The reconstruction results showed that GLCN outperformed in terms 

of localization accuracy and robustness. 

2. Methods   

2.1. Glcn network architecture  

Inspired by long short-term memory network, we tried to use a similar backbone 

to achieve OMT reconstruction. The whole GLCN architecture is composed of a 

gate layer with three gate units, a hidden layer and three LC layers (Fig. 1(a)). The 

number of neurons in the hidden layer and three LC layers is 256, 128, 64, and 3, 

respectively. The gates module can control and capture the input and output of 

network information flow by three different gate units (Fig. 1(b)). Compared with 

standard fully connected network, locally connected layer has the advantage of 

reducing the quantity of parameter computation. The different network layers of 

GLCN are partially connected by the dashed line to achieve the neuron information 

transfer, and this dimensionality reduction operation facilitates GLCN to obtain 

more accurate results. The surface photon energy   was obtained by CCD and 

fed into the network as the input, and the output is the distribution of reconstruction 

source X . The whole GLCN-based OMT reconstruction framework as follows:  

 ( ),X f   (1) 

Where f represents GLCN model, which represents the nonlinear relationship 

between the surface energy distribution and the light source.   represents the 

surface measurements with a dimension of 1n , and n is the number of nodes in 

a discrete organism. Further, the inverse problem can be defined as follows: 

 
2

2
min (y | ) ,f   (2) 

where f  is the result of the reconstruction network with parameters vector  . y  

represents the ground-truth distribution information. The weight   is iteratively 

updated by minimizing the loss between y and 𝑓. 

The structure of gates module can be calculated as follows: 

 1 ( ( )),out inGate W Gate  (3) 

 
out2 1 ( ( ( ))),out inGate Gate W Gate    (4) 

 3 ( ( )),out inGate W Gate  (5) 

 3 ( ( 2 )),out out outGate Gate Gate  (6) 

where inGate  and 
outGate denote the input and output of gate layer, respectively; 

1outGate , 2outGate  and 3outGate represent the output of the first, second, and 

third gate units, respectively; W  refers to network weights;  ,   are sigmoid, 

and tanh activation, respectively.  
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Fig. 1. Schematic illustration of GLCN architecture. (a) the general flow chart of GLCN for OMT 

reconstruction. (b) structure of gates module. 

 

2.2. Dataset collection  

Considered that deep learning networks are data-driven methods, accumulating 

ample training samples is necessary. However, directly acquiring the actual 

distribution of source and the surface photon measurements in vivo experiments is 

unpractical. In this study, we adopted the Monte Carlo (MC) method to generate 

the simulation samples.27,28 MC method can provide both surface photon 

measurements and standard of actual distribution of source. In addition, all data 

sets used in this paper 

are collected using standard grids discretization from the numerical cylinder model 

(4626 nodes and 25840 tetrahedrons) and the numerical mouse model (13092 

nodes and 67612 tetrahedrons).  

In the numerical experiments, this paper generates samples by randomly setting 

spherical source targets with the radius of 1mm. For numerical cylinder 

experiments, 1190 single source samples were produced by the Molecular Optical 

Simulation Environment (MOSE v2.3)28 with 190 samples for test set randomly. 

Meanwhile, 960 single source samples were produced for numerical mouse 

experiments, in which 96 random samples were used as the test set. 

As for the dual-source simulation experiments, data augmentation method was 

adopted. The dual sources samples were produced by randomly choosing and 

adding two corresponding single source samples. The data augmentation method 

can be calculated as follows: 

 ,
sd i

i S

    (7) 

 ,
sd i

i S

X X


  (8) 

Where 
sd ,

sdX represent the surface photon energy and the inside source of dual 

sources assembled, respectively. i  means the surface photon of the thi  single 

source. iX  refers the thi  single source. S is the set of selected single-source 

samples. 

Finally, 8820 dual-source samples were collected for the numerical cylinder 

experiments. During the experiment, 1470 samples were selected randomly for the 

test set, while the rest of 7350 samples were collected as training set to generate 

3D coordinate of 

reconstructed sourceSurface photon intensity

relu

Hidden layer

Locally connected layer

Gate layer

σ σ σ

 

U
 

U
 

U
 tanh

multiplication

concatenation

U
 

σ σσ Gate1、Gate2、Gate3



 

(a) 

(b) 

vector
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GLCN. Similarly, 8144 dual-source samples were produced for the numerical 

mouse experiments with 880 dual-source samples were chosen for test set. 

2.3. Network implementation details and evaluation index 

All experiments in this article were accomplished on a computer equipped with an 

RTX 3080 Ti GPU and a 3.2 GHz Intel Core i9 CPU. The training and testing of 

deep learning networks are implemented by Pytorch and Python 3.7. The mean 

square error (MSE)29 was adopted as the loss function considering that spatial 

location is of great significance for OMT reconstruction and directly affects the 

pre-clinical application.    

 
21

ˆ( ) ,mse i iL y y
n

   (9) 

where ˆ
iy  and iy  represent the network’s prediction and the ground-truth label of 

thi  dataset sample, respectively; n represents the set of elements of thi  dataset 

sample. Besides, Adam algorithm30 (learning rate = 0.001, 1 :0.9, 
2 :0.99) was 

adopted as the optimization function of GLCN. 

The PE evaluation index was used in the experiments to measure the reconstruction 

performance. PE means the position error, which is calculated as the Euclidean 

distance between the reconstructed source and the ground-truth: 

 ( ) ( ) ,r tPE ED X ED X   (10) 

Where rX  and tX  means the coordinates of the reconstructed and true sources, 

respectively. The smaller PE means the more accurate reconstruction result. 

3. Results  

In this section, numerical emulation experiments were used for evaluate the 

performance of GLCN. IVTCG and MFCNN were used as comparisons. Firstly, 

numerical simulation experiments were conducted on single and dual light source 

cylinders. In additional, the results of GLCN in digital mouse simulations were 

presented, the experiments were also divided into single and dual source 

experiments. Finally, we listed the reconstruction time of these methods in single 

source simulation experiments to compare the reconstruction efficiency. 

3.1. Single-source reconstruction on numerical cylinder simulation 

For a representative sample with its axis length along z axes was 12 mm, where 

the light source is located. Fig. 2(a) shows the 3D view and 2D section images 

(slice at z = 12 mm) of the reconstructed source using three methods. From the 

reconstructed result, the IVTCG reconstructed result is over-sparse and GLCN is 

smoother relatively. The result of MFCNN has with significant overlap with the 

distribution of real light source.  

To evaluate the anti-noise ability of the proposed method, different levels (30%, 

60%, 90%) of gaussian noise were added to the measurement data in simulation 

experiments with test single samples. As displayed in Fig. 2(b-d), the results of 

three methods all show changes with noise interference. IVTCG appears blur and 

divergence. While MFCNN and GLCN gain distinct results. Compared with 

MFCNN, GLCN is closer to the true source. 
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Besides, the quantitative results (mean and standard deviation (SD)) of three 

methods are demonstrated in Fig. 3. As shown, GLCN achieves better 

reconstruction performance with a PE down to 0.36±0.18 mm. With the noise level 

ranging from 0%-30%, the PE of IVTCG, MFCNN and GLCN increase by 21.1%, 

11.1%, 5.6%, respectively. When the noise level is added to 60% and 90%, the PE 

of the three methods shows significant changes. However, GLCN still has the 

minimum PE, which are 0.51±0.19 and 0.78±0.28, respectively. The results 

indicate that GLCN possesses superior performance in terms of localization 

accuracy and anti-noise interference.  

 

 
Fig. 2. OMT reconstruction results of single sources with different level of noise interference using 

different methods. (a) displays the 3D view and transverse sections of the reconstructed sources given 

by IVTCG, MFCNN and GLCN, respectively. (b-d) depict the 3D view and transverse sections of 

reconstructed sources with 30%, 60%, 90% gaussian noise given by IVTCG, MFCNN and GLCN, 

respectively. The red cycle represents the true source region. 

 

3.2. Dual-source reconstruction on numerical cylinder simulation 

The localization accuracy of GLCN is further examined by reconstructing dual-

source samples on numerical cylinder simulations. Three dual-source samples with 

different edge-to-edge distances (EEDs) were reconstructed for display. Their axis 

length along z axes is 18, 20, 20 mm, respectively. Fig. 4 display the 2D transverse 

sections (taken from z = 18, 20, 20 mm separately) and the 3D reconstruction 

effects using three different methods. It can be seen from the Fig. 4 that when the 

EED is 3mm, the result of IVTCG showed artifact. At this point, MFCNN and 

GLCN can obtain the clearer reconstruction results. When the EED is 2 mm, 

IVTCG could not correctly reconstruct the light sources. In this case, although both 

MFCNN and GLCN could distinguish the light sources, one of the reconstruction 

sources of MFCNN is not significant. When the EED is as small as 1mm, IVTCG 

cannot recognize these two light sources, and compared to MFCNN, GLCN is 

closer to the real source region. 

MFCNN GLCNIVTCG

(a)

(b)

(c)

(d)

Color Bar
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Furthermore, the quantitative error comparison (Fig. 5) shows that the average PE 

of GLCN compared to EFCN and IVTCG are 33.3% -57.8% and 10.7% -21.8%, 

respectively. As the EEDs decrease, the average PE of all three methods increase 

by varying degrees. As shown in the Fig. 5, the error of IVTCG is the highest. 

However, GLCN gets the lowest average PE of 0.12 mm, 0.16 mm and 0.26 mm, 

which indicates that the GLCN provides higher accuracy to reconstruct dual-

source. Moreover, the PE value of reconstructed sources S1 and S2 by IVTCG has 

obvious difference. While the PE value of reconstructed sources S1 and S2 by 

MFCNN and GLCN approaches much relatively. These results all proved the 

superiority of GLCN in the reconstruction of dual-source. 

 
 

Fig. 3. Quantitative results including the mean and standard deviation (SD) of single-source 

reconstruction with 0, 30%, 60%, 90% gaussian noise given by IVTCG, MFCNN and GLCN, 

respectively. 

 

 

 
Fig. 4. OMT reconstruction results of dual-source with different Edge-to-Edge Distances (EEDs). (a-

c) demonstrate the reconstructed dual-source using different methods when EEDs are 3, 2 and 1mm, 

respectively. Both 3D rendering and 2D transverse sections are depicted for comparisons. The red 

cycle represents the true source region. 

 

IVTCG MFCNN GLCN

E
E

D
=

3
m

m
E

E
D

=
2

m
m

E
E

D
=

1
m

m

(a)

(b)

(c)

Color Bar
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Fig. 5. Quantitative analysis was conducted on dual-source reconstruction utilizing EEDs ranging 

from 3 to 1 mm. (a) and (b) present the PE of reconstructed sources S1 and S2, respectively. (c) shows 

the average PE of S1 and S2. 

 

3.3. Single-source reconstruction on digital mouse simulation 

For a representative sample with a z-axis of 13.5 mm, Fig. 6(a) shows the 3D view 

and 2D section images (slice at z=13.5 mm) of reconstructed source by three 

methods. The result of MFCNN is closer to the true source and the second is 

GLCN, then IVTCG. 

Furthermore, 30%, 60% and 90% Gaussian noise were added to the surface photon 

density of the single-source sample to test the robustness of GLCN (Fig. 6(b-d)). 

Under 30% Gaussian noise, the reconstructed results of three methods remained 

the same as those without noise in display. With the 60% Gaussian noise, the result 

of IVTCG appeared artifact. MFCNN and GLCN still could correctly reconstruct 

the sources. When Gaussian noise is added to 90% level, the experimental results 

show that only GLCN successfully reconstructs the light source, while the other 

two methods have poor reconstruction results. These results demonstrate that 

GLCN has significant advantages in resisting noise interference. 

In order to quantitatively compare the performance of reconstruction results, Fig. 

7 displays the mean and standard deviation (SD) of PE. GLCN obtains the PE of 

0.38±0.13 mm that proves the superiority of GLCN on reconstruction accuracy for 

OMT. With the Gaussian noise added to 30% level, the PE of the test sample 

reconstructed by three methods has not much change compared to that without 

noise. From 60% level Gaussian noise on, the PE of three methods has significant 

increase. However, GLCN still gains the whole minimum PE (0.37±0.15 mm, 

0.55±0.20 mm, 0.79±0.23 mm), indicating the excellent anti-noise ability of the 

network. 
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Fig. 6. OMT reconstruction results of single sources with varying noise interference levels using 

different methods. (a) displays the 3D view and transverse sections of the reconstructed sources given 

by IVTCG, MFCNN and GLCN, respectively. (b-d) demonstrate the 3D view and transverse sections 

of reconstructed sources with 30%, 60%, and 90% gaussian noise using IVTCG, MFCNN and GLCN, 

respectively. The red cycle represents the true source regions. 

 

3.4. Dual-source reconstruction on digital mouse simulation 

Dual-source with different edge-to-edge distances (EEDs) samples were 

implemented to test the reconstruction ability of GLCN. Fig. 8 shows the 3D view 

and 2D section images (slice at z=12.5 mm) of reconstructed source by three 

methods. When the EED is 3 mm, the reconstruction results of IVTCG show that 

the two light sources are not significant. Although the results of MFCNN and 

GLCN exits problems such as over-spare and over-smooth, they can clearly 

distinguish between the two light sources. And obviously, GLCN is closer to the 

true source region. When the EED is 2 mm, all three methods can clearly 

distinguish between dual light sources. GLCN has better general overlap than the 

other two methods. When the EED decreases to 1mm, adhesion occurs in the 

IVTCG reconstruction results. There is a significant deviation in the reconstruction 

position of the MFCNN dual light source. In contrast, GLCN reconstruction results 

are closer to the true light source area. 

Quantitative comparisons demonstrated the superior performance of GLCN over 

the other method in localization accuracy (Fig. 9). The average PE of GLCN 

compared to MFCNN and IVTCG are 23.3%-59.2% and 10.9%-69.9%, 

respectively. In addition, when the edge-to-edge distance of dual-source equals to 

1 mm, the average PE of GLCN wonderfully reached to 0.1 mm. These results 

revealed that GLCN had a better ability for dual-source reconstruction. 

GLCNMFCNNIVTCG
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Fig. 7. Quantitative results including the mean and standard deviation (SD) of single-source 

reconstruction with 0, 30%, 60%, 90% gaussian noise given by IVTCG, MFCNN and GLCN, 

respectively. 

 

 

 
 
Fig. 8. OMT reconstruction results of dual-source with different Edge-to-Edge Distances (EEDs). (a-

c) depict the reconstructed sources using various methods at EEDs of 3, 2 and 1mm, respectively. 

Both 3D rendering and 2D transverse sections were presented for comparisons. The red cycle 

represents the true source region.  
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Fig. 9. Quantitative analysis was conducted on dual-source reconstruction utilizing EEDs ranging 

from 3 to 1 mm. (a) and (b) display the PE of reconstructed sources S1 and S2, respectively. (c) shows 

the average PE of S1 and S2. 

3.5. Reconstruction time 

The reconstruction time of three single-source methods for numerical cylinder and 

mouse simulations was calculated to access the efficiency of GLCN's 

reconstruction (Table 1). Both model-based and data-driven methods required 

considerable preparation time. IVTCG method needed to model the precise 

forward model and solve and optimize the inverse problem through lots of iteration 

steps. MFCNN and GLCN methods needed to prepare and perform the training 

samples and the training process. Only the test time of MFCNN and GLCN 

methods and the iterative calculation time of IVTCG were collected for 

comparisons in this study. As shown in Table 1, the mean and standard deviation 

(SD) of reconstruction time of IVTCG (4.79±0.20 s) was nearly 6~7 times that of 

MFCNN (0.66±0.03 s) and GLCN (0.76±0.04 s) on cylinder simulation 

experiments. And on mouse simulation experiments, the reconstruction time (mean 

and standard deviation (SD)) accorded by IVTCG (19.59±0.41 s) was nearly 25~30 

times that of MFCNN (0.64±0.03 s) and GLCN (0.78±0.04 s). These results 

demonstrated that data-driven methods had much advantage on reconstruction 

efficiency than the model-based methods. 

 

Table 1. Time Cost Analysis for Single Source Reconstruction (in units of second). 

Methods IVTCG MFCNN GLCN 

cylinder 4.79±0.20 0.66±0.03 0.76±0.04 

mouse 19.59±0.41 0.64±0.03 0.78±0.04 

 

4. Discussion 

Optical molecular tomography (OMT) has been utilized to reconstruct the 3D 

distribution of targets within living animals. However, the ill-posedness of the 

inverse problem usually leads to inaccurate and low-robust reconstructions. 

Consequently, in this study, we proposed a deep learning approach (GLCN) to 
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solve the inverse problem of optical molecular tomography. Different from the 

conventional methods that need to model the inverse construction process. GLCN 

avoids additional calculation errors and improves reconstruction efficiency. In 

addition, GLCN brings into gates module to implement the reconstruction process. 

Compared to MFCNN, this module will benefit the network to capture the crucial 

information of neurons that relates to the true region selectively. 

Two kinds of numerical simulation experiments were carried out to evaluate the 

performance of GLCN from both qualitative and quantitative aspects. For single 

source reconstruction, GLCN obtains best reconstruction performance with a PE 

down to 0.36±0.18 mm and 0.38±0.13 mm for cylinder and digital mouse-based 

simulation experiments, respectively. In contrast, IVTCG gains the average PE of 

0.57±0.23 mm and 0.58±0.19 mm. MFCNN gains the average PE of 0.45±0.30 

mm and 0.46±0.16 mm. These results proved GLCN is superior to the other two 

methods on accuracy and robustness (having small error fluctuation). For dual-

source reconstruction, GLCN gets the lowest average PE of 0.12 mm, 0.16 mm, 

and 0.26 mm for EED equaling to 3mm, 2mm, 1mm respectively in cylinder-based 

simulation experiments. In digital mouse simulation experiments, when the EED 

of dual-source equals to 1 mm, the average PE of GLCN wonderfully reached to 

0.1 mm. These results showed that the proposed GLCN method also outperforms 

the other two methods in the dual-source reconstruction. 

In addition, 30%, 60% and 90% noise interference were added on the surface 

photon density to access the anti-noise ability of GLCN in the single-source 

numerical simulation experiments. Conventional method (IVTCG) appeared 

obvious change when gaussian noise reaches to 30% level, while MFCNN and 

GLCN appeared obvious change until noise level reaches to 60%. Moreover, 

compared to MFCNN, GLCN robustly reconstructs the single source that is more 

accurate and higher overlap with overall lower PE. These results further prove the 

superior robustness of the GLCN. 

Nevertheless, there are also some challenges. Firstly, the number of nodes used in 

cylinder and digital mouse models were 4, 626 and 13, 092, respectively. The 

number of grids will affect the reconstruction results. We believe that finer mesh 

will facilitate to improve the accuracy of the reconstruction and will not affect the 

speed of reconstruction for deep learning methods. Secondly, GLCN, as a method 

of deep learning, which needs a pre-trained standard mesh model for 

reconstruction. Once the target changes, the reconstruction performance of GLCN 

will be greatly reduced. Thus, it is necessary for us to improve the generalization 

of network. Lastly, GLCN exits some defects on the reconstruction morphology. 

In the future, we will continue to work towards these challenging directions. 

5. Conclusion 

In summary, we proposed a gates joint locally connected network (GLCN) to 

implement the accurate and robust reconstruction of OMT. The ill-posedness of 

OMT could be greatly reduced with the introduction of gates module. Meanwhile, 

gates module could improve the reconstruction accuracy and robustness of OMT. 

Two different kinds of numerical simulation experiments confirmed that GLCN 

can obtain the more accurate and robust reconstruction results compared with the 

other two methods. This study will be a trivial exploration of OMT reconstruction. 

In the future, we will promote the proposed method applying to real mice-based 

applications. 
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