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Abstract: Potential inconsistencies between the goals of unsupervised representation learning and
clustering within multi-stage deep clustering can diminish the effectiveness of these techniques.
However, because the goal of unsupervised representation learning is inherently flexible and can be
tailored to clustering, we introduce PointStaClu, a novel single-stage point cloud clustering method.
This method employs stable cluster discrimination (StaClu) to tackle the inherent instability present in
single-stage deep clustering training. It achieves this by constraining the gradient descent updates for
negative instances within the cross-entropy loss function, and by updating the cluster centers using
the same loss function. Furthermore, we integrate entropy constraints to regulate the distribution
entropy of the dataset, thereby enhancing the cluster allocation. Our framework simplifies the
process, employing a single loss function and an encoder for deep point cloud clustering. Extensive
experiments on the ModelNet40 and ShapeNet dataset demonstrate that PointStaClu significantly
narrows the performance gap between unsupervised point cloud clustering and supervised point
cloud classification, presenting a novel approach to point cloud classification tasks.

Keywords: deep clustering; point cloud clustering; unsupervised representation learning;
self-supervised learning

1. Introduction

With the advancement of 3D acquisition technology, obtaining large volumes of 3D
data—like grids, point clouds, and depth images—has become increasingly straightfor-
ward [1–3]. These data provide a more realistic and natural representation of objects and
environments, surpassing the capabilities of traditional 2D images. Consequently, it has
garnered significant attention in burgeoning sectors such as autonomous driving, robotics,
and virtual reality, thereby accelerating the growth of research in point cloud processing.
Among the various applications of point cloud analysis, classification emerges as a key
challenge. It involves assigning predefined semantic labels to the complex and diverse data
points within point clouds (e.g., aircraft, tables, lights, etc.).

The rapid evolution of deep neural networks (DNNs) has significantly advanced point
cloud processing [4–6]. Earlier pioneering works, such as PointNet [7], applied neural net-
works directly to process discrete and irregular point cloud data for tasks like classification
and segmentation. This has ignited extensive research into analyzing 3D point clouds using
DNNs. Recent developments in neural networks for raw 3D point cloud data have further
advanced the various point cloud processing tasks. However, the manual annotation of
datasets is often time consuming [8–10], laborious, and prone to errors. Moreover, models
trained on manually labeled data may exhibit limited generalization capabilities. Therefore,
there is an urgent need for neural networks that can autonomously learn the distinctive
feature representations of point clouds and cluster them into semantically meaningful
groups without human intervention.
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Unsupervised representation learning in point clouds is extensively studied regard-
ing its capability to learn distinctive feature representations without relying on labeled
data [11–13]. Clustering, a fundamental task in unsupervised learning, involves parti-
tioning an unlabeled dataset into clusters based on instance characteristics, with similar
instances within the same cluster determined by a distance function [14]. Clustering
algorithms, including k-means [15] and subspace clustering, generally concentrate on
identifying suitable distance metrics and developing efficient algorithms for established
features. Although depth image clustering methods provide flexibility in capturing data
distribution and learning representations, they may occasionally result in the convergence
of all instances into a single feature [16]. To address this issue, researchers are investigating
multi-stage training strategies that decouple representation learning from clustering. Stud-
ies indicate that pre-training on extensive unlabeled datasets can generate rich features that
capture semantic similarities without collapsing [17–19]. Multi-stage deep image clustering
methodologies begin with an unsupervised representation learning phase, followed by a
model enhancement stage aimed at bolstering the clustering efficacy. In contrast, single-
stage clustering techniques produce definitive clustering outcomes from initial data in
a single computational pass, avoiding the need for preliminary training or subsequent
refinements, thus enabling rapid data aggregation with straightforward efficiency. Multi-
stage methodologies outperform their single-stage counterparts by utilizing the optimized
proximities from the pre-training phase to enhance the clustering precision.

Although multi-stage clustering methods show promise, they encounter challenges.
The optimization in these methods is more intricate compared to current end-to-end learn-
ing approaches. Moreover, the goals of phased unsupervised representation learning may
conflict with the clustering objectives, potentially impeding the deep clustering perfor-
mance. The objective of unsupervised representation learning is arbitrary and depends
on the pretext task selected, which might encompass reconstruction generation [20–22],
instance identification [23,24], mask modeling [25–27], and so on. Many multi-stage meth-
ods pre-train with instance discrimination, aiming to uniquely categorize each instance,
contrasting with clustering’s aim to group similar instances. To tackle this issue, SwAV [28]
has been proposed and demonstrated that clustering can serve as an effective pretext task
for unsupervised representation learning. Consequently, the focus should shift towards
single-stage deep clustering strategies that simultaneously optimize representation and
clustering, without the need for additional pretext tasks. Therefore, inspired by Secu [29], a
single-stage depth image clustering method, we try to focus on single-stage depth point
cloud clustering.

Deep clustering methods frequently employ cross-entropy losses to refine both the
representations and the clustering centers. Cross-entropy loss is a commonly used metric
in classification tasks, quantifying the difference between the predicted probabilities and
actual outcomes. The core of this measure is to compare the model’s predicted probability
distribution to the distribution of the true labels. This comparison is crucial for gauging the
accuracy of the model’s predictions against reality. However, standard cross-entropy losses
can be unstable in the context of single-stage clustering. This instability arises because the
gradients that update the cluster centers include the contributions from both the relevant
positive instances and irrelevant negative ones. Given the limited batch sizes typical in
stochastic gradient descent (SGD), many clusters may not contain positive instances in
each iteration, which can allow the influence of negative instances to dominate. Unlike
supervised learning, which has static labels, cluster assignments in deep clustering are
dynamic, evolving throughout the training process. As a result, the optimization process
can become unstable due to the noise incrementally introduced by the high variance
associated with negative instances.

To address the aforementioned issues, we introduce the PointStaClu method, based
on stable clustering discrimination. This approach stabilizes single-stage deep clustering
in unsupervised contexts by omitting the gradients of negative instances from the cross-
entropy loss function that updates the cluster centers. Unlike k-means, which applies
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uniform weights to positive instances during cluster center updates, PointStaClu’s stable
discriminant task adjusts weights according to the instance difficulty, placing greater
emphasis on the challenging instances [30,31]. Furthermore, we incorporate an entropy
constraint strategy to enhance the distribution of clusters within the dataset. Our framework
streamlines deep point cloud clustering through a unified loss function and encoder. The
key contributions of this work are as follows:

• We introduce PointStaClu, a point cloud clustering method that utilizes stable cluster-
ing discrimination, eliminating the need for additional pretext tasks. The stable cluster
discrimination (StaClu) task bolsters the stability of single-stage deep clustering by
omitting the gradients from the negative instances in the cross-entropy loss function
responsible for updating cluster centers. It also adaptively assigns greater weight to
challenging instances during the update process.

• We incorporate an entropy-constrained strategy to refine the distribution of clusters
within the dataset.

• Our framework for deep point cloud clustering is streamlined, employing a single loss
function and encoder.

2. Related Work

In this section, we provide a concise overview of the recent progress in two intercon-
nected domains: unsupervised representation learning and deep clustering.

2.1. Unsupervised Representation Learning

Unsupervised representation learning is gaining prominence, driven by the prolif-
eration of real-world data and the prohibitive costs associated with large-scale manual
annotation. Its goal is to extract the robust and generic features from unlabeled data,
thereby facilitating the easier resolution of subsequent tasks. Traditional methods, such as
autoencoders, generative adversarial networks (GANs), and autoregressive models, learn
representations by reconstructing inputs [32–34]. However, these methods often overlook
the local geometric details, focusing instead on the low-level data changes, potentially
limiting their performance on tasks such as classification.

Recently, contrast learning has emerged as an effective strategy for unsupervised rep-
resentation learning. It focuses on identifying the shared features among similar instances
while distinguishing the differences among dissimilar ones. In contrast to generative learn-
ing, contrast learning operates at a higher, more abstract semantic level, which simplifies
the model and optimization process, thereby enhancing the generalization capabilities.
Liu et al. [35] proposed a strategy for 3D point cloud representation that incentivizes the
network to produce consistent features for points within the same local shape region, and
distinct features for the points from different regions or noise points, leveraging point
discrimination learning.

Furthermore, masked autoencoder frameworks have been investigated for their utility
in unsupervised pre-training. These frameworks employ the random masking of the point
cloud, compelling the autoencoder to reconstruct the obscured regions. Zhang et al. [26]
introduced Point-M2AE, a multi-scale masked autoencoder framework designed for hi-
erarchical feature representation of 3D point clouds. In a separate study, Zhang et al. [27]
capitalized on the 2D knowledge from pre-trained models to inform the learning of 3D point
cloud features through their I2P-MAE model, thereby attaining state-of-the-art performance
in 3D representation.

2.2. Deep Clustering

Acknowledging the limitations of the traditional clustering methods when dealing
with high-dimensional data, deep clustering has emerged as a solution that simultane-
ously optimizes representation learning and the clustering process. Recent studies have
underscored the importance of integrating representation learning with clustering tech-
niques to address the complexities inherent in data challenges. Some researchers have
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concentrated on fortifying representation learning through the application of equilibrium
entropy constraints, which ensure a balanced distribution of instances across clusters [36].
For example, SimCLR, developed by Chen et al. [37], employs case discrimination as a
pretext task, categorizing each sample uniquely and utilizing data augmentation strategies
during training. Conversely, SwAV [28] eschews pairwise comparisons, opting to compare
cluster representations across the various perspectives.

Moreover, significant endeavors have been directed towards refining the clustering
process. The two-stage approach capitalizes on pre-trained representations to ascertain
the nearest neighbors, followed by a fine-tuning phase that enhances the model’s clus-
tering capabilities. Dang et al. [38] pre-trained an unsupervised model utilizing contrast
loss, discerned the nearest neighbors predicated on the feature similarity, and realized
an improved clustering performance via their NNM algorithm. In contrast, SCAN [19]
initiates the process by learning feature representations through proxy tasks, subsequently
integrating the semantically significant nearest neighbors, enriched with prior knowledge,
into a trainable framework. Distinct from end-to-end methods, this methodology places
emphasis on the significance of features over reliance on the network architecture alone.
Constructing upon the premise that pre-trained targets can be acquired through clustering
across various tasks, we introduce a deep stable cluster discrimination-based approach for
point cloud clustering, aiming to optimize both the representation and clustering efficacy.

3. Methods

Given a dataset containing N point clouds
{

Pi}N
i=1 , with the corresponding labels{

xi}N
i=1 , the representations of these samples can be learned by optimizing a classification

task. In order to mitigate the overfitting of the network, the traditional data enhancement
was first performed on each data sample cluster to improve the diversity of the training
samples while preserving the structure of the original data. Then, the universal DGCNN [5]
was used as the backbone network to extract the features. The Dynamic Graph CNN
(DGCNN) represents a sophisticated variant of graph convolutional networks, adept at
dynamically apprehending and learning the intricate patterns within data structured as
graphs. DGCNN achieves this through the synergy of graph convolution operations and
the dynamic refinement of node attributes, proving efficacious for a spectrum of tasks
including, but not limited to, node classification and graph matching. Besides the backbone
network, a 2-layer MLP projection head is attached, and the output dimension is 128. After
that, after the MLP header, the learned representation is classified by the fully connected
(FC) layer encoding the clustering center, which has a size of 128 × K. At the same time, in
the loss function, we adopted StaClu as the loss function module, which is embodied in
stopping using the gradient of negative instances to update the cluster center in the cross
entropy loss. Finally, as a clustering method, we set K to the number of real categories
and used the direct predictions of the model as cluster assignments for evaluation. We
evaluated our approach on ModelNet40 and the ShapeNet [39] benchmark dataset and
achieved optimal results in the comparison methods. Figure 1 shows an overview of the
framework process for our approach.
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Figure 1. PointStaClu’s framework process. In the figure, T represents point cloud data enhancement,
p1 and p2 are enhanced views, p1 and p2 are predicted results after encoder input, yp is the label of a
previous epoch, y1 and y2 are soft labels calculated by Equation (12), loss f represents learning loss,
and lossc represents cluster center loss. The final loss is the sum of the two losses.

3.1. Cluster Discrimination

Given a dataset containing N point clouds
{

Pi}N
i=1 , with the corresponding labels{

xi}N
i=1 , the representations of these samples can be learned by optimizing a classifica-

tion task.
min

θ
∑N

i=1 ↕(Pi, xi; θ) (1)

where ↕(.) denotes the cross-entropy loss function with softmax normalization operation
and θ represents the parameters of the deep neural network. For unsupervised learning
with a lack of label information, the cluster discrimination objective on K clusters can be
formulated as:

min
θF ,{wj},yi∈∆

L = ∑N
i=1 ∑K

j=1 −yi,jlog
(

pi,j
)

(2)

where Yi represents the learnable label for the sample Pi, and ∆ =
{

yi

∣∣∣∑K
j=1 yi,j = 1,∀j,yi,j ∈ {0,1}

}
.

The predicted value pi,j is computed as:

pi,j =
exp
(

f T
i wj/λ

)
∑K

k=1 exp
(

f T
i wk/λ

) (3)

where fi = F(Pi), and F(.) indicates the encoder network. θF represents the network
parameter of the encoder F.

{
wj
}K

j=1 stands for the K clustering center. λ is the temperature
parameter, after normalization ∀i, j, | | fi| |2 = | |wj| |2 = 1.

In contrast to the supervised paradigm, the problem in Equation (2) must simulta-
neously optimize the cluster assignment {y}, cluster center {w}, and encoder network
F.

3.2. Steady Loss for Small Batch Optimization

Unlike supervised learning, where instance labels are fixed, clustering in unsupervised
learning is dynamic. The collocation {y} changes dynamically as the instance representa-
tion and cluster center are trained. Consequently, the original cross-entropy loss, which
relies on fixed instance labels, becomes unstable for unsupervised learning scenarios. This
instability can be elucidated by analyzing the update criteria of the cluster center. Let yi
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represent the learnable label corresponding to fi, and let the gradient of wj of the standard
cross-entropy loss in Equation (2) be calculated as:

∇wjL =
1
λ

(
∑i:yi=j

(
pi,j − 1

)
fi + ∑k:yk ̸=j pk,j fk

)
(4)

The former is to pull the cluster center wj closer to the assigned instance, and the latter
is to push it away from the other cluster instances. However, this update is unstable for
deep clustering. The explanation is as follows:

(a) When a small batch of b samples is taken for K clusters, at least K − b clusters have
no positive instances at all. This means that in the case of cross-entropy loss, many
clustering centers will only be updated by negative instances.

(b) Let Varpos and Varneg represent the variance of the positive and negative instances
of the sample, respectively. If each instance has a unit norm and the norm of the
cluster mean is α, then there is Varpos = O

(
1

1−a2

)
Varneg. This shows that when each

cluster is compact, i.e., α approaches 1, the variance of the negative instances sampled
is much larger than the variance of the positive instances. Due to the small size of
the small batches when training the deep neural networks, the variance cannot be
sufficiently reduced.

Therefore, in many cases, the clustering center can only access a small batch of negative
instances in each iteration, and the influence of negative instances is dominant. Unlike
supervised learning with fixed labels, the cluster assignment of deep clustering changes
continuously during training. Therefore, the update bias caused by the large variance in
the negative instance will accumulate and mislead the learning process.

In order to alleviate this problem, we recommend the method of eliminating negative
instance gradients for stability training:

∇wjL =
1
λ∑i:yi=j

(
pi,j − 1

)
fi (5)

The corresponding stable clustering discrimination loss (StaClu) is calculated as:

↕StaClu(Pi, yi) = −log

 exp
(

f T
i wyi /λ

)
exp
(

f T
i wyi /λ

)
+ ∑k:k ̸=yi

exp
(

f T
i
∼
wk/λ

)
 (6)

where
∼
Wk indicates wk with a stop gradient operation. Compared with the standard cross

entropy loss, the cluster center in the stable cluster discrimination loss is only updated by the
positive instance, which is more stable for deep clustering using small batch optimization.

In k-means, positive instances have uniform weights when updating cluster centers:

wj = ∏∥w∥2=1

(
∑i:yi=j fi

∑i L(yi = j)

)
(7)

where L(.) is the indicator function, and ∏
∥w∥2=1

projects the vector to the unit norm. On

the contrary, our proposed stable clustering discriminant objective implies novel difficult-
sensing clustering criteria for deep clustering. When {yi} and { fi} are fixed, the {w∗} for
the loss function in Equation (6) is adopted for the problem of the optimal solution, and
assuming ∀i, ∥ fi ∥2= 1; ∀j, ∥ wj ∥2 = 1, then we have:

w∗
j = ∏∥w∥2=1

(
Σi:yi=j

(
1 − pi,j

)
fi

∑i:yi=j 1 − pi,j

)
(8)
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When updating the cluster center, our method assigns weights to instances based on
their difficulty, i.e., pi,yi . By assigning more weight to difficult instances (pi,yi smaller), the
corresponding center can better capture the distribution of difficult instances, as shown in
Figure 2.
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Figure 2. Schematic diagram of difficulty sensing clustering criteria. Ten of the data points were
randomly sampled from two different Gaussian distributions, with points of the same color coming
from the same distribution, squares representing corresponding clustering centers obtained by
different methods, and stars representing misclassified data.

In contrast to k-means, which apportions uniform weights across various instances,
our methodology takes into account the intrinsic difficulty of each instance during the
cluster center update process, rendering it more adept for discrimination-based clustering
scenarios. Armed with the stable clustering discrimination (StaClu) loss function, we will
provide an in-depth exposition of our proposed deep clustering method in the subsequent
section.

3.3. Deep Clustering Based on Stable Clustering Discrimination

According to the proposed loss function, the stable clustering discrimination objective
of deep clustering can be expressed by the following:

minθF ,{wj},yi∈∆∑N
i=1 ↕StaClu(Pi, yi) s.t. hm(Y) ≥ bm, m = 1, 2, . . . , M (9)

where Y = [y1, . . . , yN ], M represents the number of constraints, and hm(.) is the first m
clustering distribution constraint. Considering the interaction between the variables, we
solve the problem alternately.

Update of θF. First, when fixing
{

yt−1} and
{

wt−1} of the previous epoch, the
represented subproblem of learning of the t epoch is:

minθF ∑
N
i=1 ↕StaClu

(
Pi, yt−1

i

)
(10)

The stable cluster discrimination loss degenerates to standard cross-entropy loss,
which can be optimized by the SGD optimizer. The one-hot tag yt−1 is retained from the
(t − 1) epoch, which makes the optimization consistent between adjacent epochs, but the
update of the representation may be delayed. To consolidate the information about the
current epoch, we include two enhanced views of a single instance in each iteration, which
is popular in representation learning [40–42].
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Let P1
i and P2

i be the two randomly enhanced views of the original point cloud, and
the prediction is:

ps
i,j =

exp
(

f sT

i wt−1
j /λ

)
∑K

j exp
(

f sT
i wt−1

j /λ
) ; s = {1, 2} (11)

where the feature f s
i = Ft

(
Ps

i
)

is extracted via the encoder in the current stage. The soft
target for each enhanced view is calculated as follows, where τ is the weight for labels from
the last epoch [43].

y1
i = τyt−1

i + (1 − τ)P2
i ; y2

i = τyt−1
i + (1 − τ)P1

i (12)

The soft target contains the predictions from another view of the same instance, which
optimizes the consistency between the different views in the same iteration. The dual-view
optimization problem is expressed as follows:

minθF ∑
N
i=1 ↕StaClu

(
P1

i , y1
i

)
+ ↕StaClu

(
P2

i , y2
i

)
(13)

Update of y. When fixing f t
i and

{
wt}, the assignment of the cluster can be updated

by solving the following problem:

minyiϵ∆ − ∑N
i=1 ∑K

j=1 yi,jlog
(

pi,j
)

s.t. hm(Y) ≥ bm, m = 1, 2, . . . , M (14)

where pi,j is obtained via the calculation of f t
i and wt, as shown in Equation (3). Without

constraint {hm}, the learning goal implies a greedy solution that assigns each instance to
the most relevant cluster. It can lead to simple solutions that crash, especially for online
deep clustering, where each instance can only be accessed once per epoch, and there is no
way to perfect the cluster assignment with multiple iterations over the entire dataset.

Based on the above problems, we propose a global entropy constraint to balance the
distribution of all the clusters. The boundary of the cluster size is implicit in the entropy
constraint. Given the cluster allocation set {y}, the entropy of the entire dataset is defined
as:

H(y) = −∑K
j=1

∑N
i yi,j

N
log

(
∑N

i yi,j

N

)
(15)

Using entropy as regularization, the cluster assignment is updated by solving the
following problems:

minyiϵ∆
− ∑N

i=1 ∑K
j=1 yi,jlog

(
pi,j

)
s.t. H(y) ≥ γ (16)

where γ is the ratio to the average size, and γ = 1 indicates the equilibrium constraint.
The target controls the size of all the clusters simultaneously through only one constraint.
According to the duality theory, this problem is equivalent to:

minyiϵ∆
− ∑N

i=1 ∑K
j=1 yi,jlog

(
pi,j

)
− αH(y) (17)

with dual view optimization, the update becomes:

j = argminj −
(

log
(

p1
i,j

)
+ log

(
p2

i,j

))
/2 − αH

(
yt−1, yi:j

)
(18)

Update of w. Fix ft
i and the pseudo-tag {yt}, and then optimize the clustering center

by minimizing the stable clustering discrimination loss on the two enhanced views by
using SGD:

min{wj}∑
N
i=1 ↕StaClu

(
f1
i , yt

i

)
+ ↕StaClu

(
f2
i , yt

i

)
(19)
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The entire framework is illustrated in Algorithm 1:

Algorithm 1 Pseudo-code of single-stage deep clustering based on stable clustering discrimination

Input:
F: encoder network
c: cluster center
cp: cluster center from the last epoch
y: list of pseudo one-hot labels
τ: weight for labels from the last epoch
λ: temperature
Initialization: keep the last cluster centers before each epoch. cp = c.detach()
Train one epoch
for P in loader do # load a minibatch with b samples
f1, f2 = F(aug(P)), F(aug(P)) # two random enhanced views
yp = y(pid ) # retrieves the tag of the previous epoch
Calculate the predictions for each view
p1= softmax( f1 @ cp/λ)
p2= softmax( f2 @ cp/λ)
# soft labels are obtained for identification
y1= τ × yp+(1 − τ ) × p2
y2= τ × yp+(1 − τ ) × p1
# lossf: loss of representational learning
lossf = (StaClu(p1, y1) + StaClu (p2, y2))/2
Update prediction is used for clustering
p1= softmax( f1 .detach() @ c/λ)
p2= softmax( f2 .detach() @ c/λ)
Update cluster allocation using entropy constraints
y(pid ) = yp= cluster_assign(p1 , p2)
# lossc: loss of clustering center
lossc = (StaClu (p1, yp) + StaClu (p2, yp))/2
Update the encoder and clustering center
loss = loss f +lossc
loss.backward( )
end
Output: Loss of stable discriminant clusters: loss

4. Experiments and Results

To assess the efficacy of our method, we have undertaken an extensive series of
experiments. This section delineates the performance metrics of PointStaClu within the
domain of deep clustering, utilizing an established benchmark dataset, namely ModelNet40
and ShapeNet. ModelNet serves as a synthetic dataset designed for 3D object classification,
whereas ShapeNet is an aggregation of CAD models sourced from an online, open-source
repository, featuring 55 categories of synthetic 3D objects, including furniture, aircraft,
vehicles, and humans.

4.1. Dataset and Evaluation Metrics

During the training phase, we adhered to the principle of a balanced dataset, ensuring
a roughly equal number of samples per category, aligning with the configuration commonly
employed in two-dimensional image clustering methods [17,44]. Additionally, we trained
and evaluated our network on the complete dataset, eschewing the need to partition it into
discrete training and test subsets. It should be noted that the test dataset was not constrained
by the balanced assumption; we retained the option to conduct training and testing on
a distinct dataset if desired. To forge a balanced dataset for conducting comprehensive
clustering experiments, we amassed ten categories of point clouds, representing those
with the most abundant samples, from the two preeminent benchmark datasets: ShapeNet
and ModelNet40 [8]. The pertinent details regarding each of our balanced cloud datasets
are encapsulated in Table 1. For each point cloud sample, we designated 2048 points
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as inputs, relying solely on the 3D coordinate data of these sampled points throughout
our experiments.

Table 1. Necessary details of the dataset.

Dataset Sample Class

ShapeNet 14,890 10
ModelNet40 4350 10

Three standard clustering performance indexes were used to evaluate the performance
of the clustering methods: Cluster Accuracy (ACC), Normalized Mutual Information (NMI)
and Adjusted Rand Index (ARI) [45–47].

4.2. Implementation Details

In this section, we delineate the specific network architecture and training regimen
of PointStaClu, aimed at attaining performance parity. Furthermore, we elucidate our
optimization strategies and data augmentation methodologies, both of which are standard
practices within the realm of unsupervised point cloud learning.

4.2.1. Architecture

To ensure a fair comparison with other methods, we adhered to standard practices
for configuring the network architecture and training protocols. Specifically, we used
the generic DGCNN as the backbone network to extract features. In addition to the
backbone network, we added a 2-layer MLP projection head with 128 output dimensions.
With the MLP header, the total number of parameters was almost the same as the original
DGCNN. And after the MLP header, the learned representations were classified via the fully
connected (FC) layer that encoded the clustering center. The size of the FC layer was 128 ×
K. As a clustering method, we set K to the number of real categories and used the model’s
direct predictions as cluster assignments for evaluation. In addition, we used 10 different
classification heads for clustering, which is conducive to target clustering. To avoid the
problem of selecting suitable headers for evaluation when 10 headers had the same K, we
used a different cK as the cluster number for each head, where c ∈ {1, 2, . . . , 10}, where the
predicted result of the cluster head of c = 1 was used as the baseline for comparison.

4.2.2. Optimization

Before training the encoder network, we used an epoch to initialize the cluster allo-
cation and center. The encoder network was optimized via SGD with a batch size of 48.
Momentum and the learning rate were set at 0.9 and 0.05, respectively. Additionally, the
first 10 epochs were used for warm-up, followed by Cosine annealing for the learning
rate. For each dataset, the model was optimized with 300 epochs, and the cluster centers
were learned with SGD at a constant learning rate of 0.3. The soft label parameter τ and
temperature parameter λ in Equation (12) were fixed at 0.2 and 0.05, respectively. For the
ModelNet40 dataset, the unique parameter α for the global entropy constraint was set to
700, and for the ShapeNet dataset, the parameter α was set to 2200. The parameter α was
determined from the ablation studies on the corresponding dataset.

4.2.3. Enhancement

Data augmentation is pivotal to the efficacy of unsupervised representation learning.
To ensure an equitable comparison, we implemented established settings utilized in prior
works [11,40,41]. Specifically, we incorporated a suite of enhancement techniques, including
random cropping, upsampling, flattening, rotation, scaling, jitter, and random discarding.
The efficacy of these specific data enhancement methods was substantiated through the
corresponding ablation study.
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4.3. Comparative Experiment and Analysis of Clustering Performance

To demonstrate the superiority of our clustering algorithm relative to the existing meth-
ods, we performed comparative experiments on the two benchmark datasets, ShapeNet
and ModelNet40. For the comparative analysis, we selected a range of algorithms, en-
compassing traditional clustering methods (K-Means++ [48], SC [49], AC [50]) as well as
representation-based clustering approaches (STRL [40], PointMAE [25], PointM2AE [26],
I2P-MAE [27]). Furthermore, to ensure a balanced comparison, we included DGCNN,
which serves as the foundational network of our approach, as a representative of su-
pervised learning methods. Table 2 presents the quantitative performance metrics of the
compared methods, with those incorporating pre-training stages indicated as “multi-stage”.

Table 2. Comparison of clustering methods on baseline dataset.

Method Multi-Stage
ShapeNet ModelNet40

ACC NMI ARI ACC NMI ARI

Supervised(DGCNN) 0.9514 0.8865 0.9053 0.9854 0.9782 0.9839
K-means++ 0.5039 0.4704 0.3099 0.1324 0.019 0.003

SC 0.2975 0.3170 0.1001 0.1391 0.0316 0.0061
AC 0.5776 0.5144 0.3698 0.1007 0.0267 0.0033

STRL
√

0.7133 0.6755 0.5483 0.8856 0.8406 0.8025
Point-MAE

√
0.7222 0.6352 0.5292 0.7713 0.7874 0.6843

Point-M2AE
√

0.7793 0.7054 0.6038 0.8179 0.8059 0.7356
I2P-MAE

√
0.7952 0.7328 0.6779 0.8528 0.8343 0.8367

PointStaClu 0.9236 0.8558 0.8440 0.9660 0.9410 0.9297

Through an exhaustive evaluation across the two distinct datasets, our method,
PointStaClu, demonstrated a significant outperformance over the alternative methods
across all the metrics. When juxtaposed with the traditional and representation-based
clustering algorithms—typically employing K-means++ for post-processing—our end-to-
end deep clustering framework excelled by optimizing the instance representations and
delving into the data’s intrinsic distribution, rendering it exceptionally well-suited for
clustering high-dimensional datasets, such as point clouds. Concurrently, PointStaClu,
with its streamlined design featuring a solitary loss function and encoder and devoid of
the need for supplementary pre-training, underscores the potency of our stable clustering
discrimination task through its superior clustering performance. Furthermore, as depicted
in the initial row of Table 2, PointStaClu’s clustering accuracy is marginally inferior to
that of the supervised DGCNN method, exhibiting a negligible variance of 2.7% on the
ShapeNet dataset (92.4% compared to 95.1%). On the ModelNet40 dataset, this disparity
was even more reduced to 1.9% (96.6% compared to 98.5%), thereby substantially bridging
the performance gap between unsupervised clustering and supervised classification within
the point cloud domain.

4.4. Visual Experiment and Analysis

To provide an intuitive illustration of PointStaClu’s clustering capabilities, this section
showcases the semantic clustering outcomes of our method alongside the representational
features of point cloud samples obtained from a spectrum of clustering techniques, with
PointStaClu being a key inclusion. These features were visualized through a t-SNE analysis
conducted on the ShapeNet dataset.

4.4.1. Visualization of Semantic Clustering

On the ShapeNet dataset, we present the semantic clustering outcomes as discerned by
our method. For each cluster, a random selection of seven point cloud instances is displayed
in Figure 3. The point clouds in each column are assigned to the same cluster. However,
the samples with blue borders are misclassified and should actually belong to a different
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cluster. Specifically, the second point cloud in the second column should be classified as
an aircraft, but it is incorrectly classified as a ship. Similarly, the last point cloud in the
tenth column should be in the automotive category, not the audio category. In addition,
confusion can easily arise between the categories of tables, sofas, and benches. In the table
category, the fourth point cloud should be classified as a bench. And in the sofa category,
there are two point clouds that should also be classified as benches. Overall, we observed
that the cluster assignments obtained by our method mostly match natural clusters. The
visual results show that our method successfully learns semantically meaningful clusters.
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4.4.2. Visualization of the Presentation Features

To ensure an equitable comparison, we utilized t-SNE for visualizing the represen-
tative features of the point cloud samples clustered via the methodologies enumerated
in Table 2. As illustrated in Figure 4, the majority of the categories are discernible across
all the evaluated methods, despite occasional imprecision or ill-defined boundaries in
certain categories. In aggregate, the representative features gleaned by these clustering
methodologies demonstrated no substantial disparities in quality. Notably, PointStaClu,
our single-stage deep clustering approach, acquired the discernible features despite the
absence of a distinct unsupervised representation learning phase, a fact corroborated by
the visual outcomes. This highlights the efficacy of clustering as a viable precursor task
in unsupervised learning. Consequently, PointStaClu is adept at mastering both instance
representations and cluster allocations, thereby providing enhanced adaptability in data
distribution modeling.
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4.5. Sensitivity Analysis

To further elucidate and assess the significance of each component and setting within
the proposed PointStaClu framework, we conducted comprehensive ablation studies on
the ShapeNet dataset.

4.5.1. Effect of Negatives

Following the ablation experiments on our framework, we scrutinized the stable
cluster discrimination loss, as articulated in Equation (6). We then juxtaposed its impact
against the impact of the conventional standard cross-entropy loss (CE), as detailed in
Table 3. The results clearly demonstrate that our method surpasses the cross-entropy-
based approach when employing stable clustering, achieving a notable enhancement of
approximately 37.1% in ACC, thereby affirming the essential role of our stable clustering
discrimination loss. Moreover, upon examining the distribution of the learned clusters, it
became apparent that, influenced by the global entropy constraint, the minimum cluster
sizes across various loss functions exhibited negligible variation; in contrast, the maximum
cluster sizes displayed considerable divergence. Utilizing our method to ascertain the stable
clusters via the loss function, we observed a maximum cluster size of 1563 instances and a
minimum of 1408 instances, closely mirroring the authentic distribution of the ShapeNet
dataset, where each class encompasses 1489 instances. Conversely, the application of CE
loss resulted in a maximum cluster size of 1989 instances and a minimum of 1326 instances,
which significantly diverged from the dataset’s actual distribution. This divergence is
attributable to the influence of negative instances, which impede the accurate learning of
cluster centroids and consequently result in suboptimal cluster allocations.

Table 3. The effect of loss function.

Loss Function #Max #Min ACC NMI ARI

CE 1989 1326 0.5533 0.5328 0.4125
StaClu 1563 1408 0.9236 0.8558 0.8440
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4.5.2. Effect of MLP Heads

In our PointStaClu clustering network architecture, as delineated in Table 4, a standard
MLP layer for projection can be complemented with an additional prediction head MLP
layer. We conducted a comparative analysis to assess the impact of varying the MLP header
architectures on the performance of our method. In this context, “#Proj” and “#Pred” denote
the MLP layers corresponding to the projection head and prediction head, respectively,
with performance metrics including ACC (Cluster Accuracy), NMI (Normalized Mutual
Information), and ARI (Adjusted Rand Index) presented in the table.

Table 4. The effect of different numbers of MLP heads.

#Proj #Pred ACC NMI ARI

0 0 0.8665 0.7952 0.7611
1 0 0.9006 0.8278 0.8037
2 0 0.9236 0.8558 0.8440
3 0 0.9172 0.8440 0.8257
3 2 0.9147 0.8360 0.8315

Initially, in the absence of both the projection and prediction head MLP layers, PointSta-
Clu demonstrated a significant advantage over the other clustering methods in terms of
accuracy (ACC), as documented in Table 4. This outcome confirms the efficacy of our deep
clustering strategy. Introducing a single-layer MLP to the projection head further enhanced
PointStaClu’s performance by 3.4%, suggesting that the integration of a dimensionality
reduction layer is advantageous for the deep clustering process. Moreover, augmenting
the projection head using a two-layer MLP configuration yielded an additional 2.3% im-
provement in ACC. However, the employment of more complex MLP layers in either the
projection or prediction heads did not result in notable performance increments, indicating
that a two-layer MLP is adequate for the point cloud dataset. Consequently, we elected to
adopt the two-layer MLP for our projection head, eschewing the addition of further MLP
layers in our final network architecture.

4.5.3. Effect of the α Parameter in Entropy Constraint

In our methodology, a global entropy constraint is employed to ensure an equitable
cluster allocation. To ascertain the impact of the pivotal hyperparameter α within the en-
tropy constraint on the clustering performance and distribution, we conducted experiments
across a spectrum of α values, with the outcomes presented in Table 5.

Table 5. The effect of α parameter in entropy constraint.

α #MAX #MIN ACC NMI ARI

10,000 1489 1478 0.8893 0.8063 0.7792
4000 1638 1310 0.9165 0.8416 0.8290
2200 1563 1408 0.9236 0.8558 0.8440
1000 1660 1192 0.8890 0.8070 0.7801
100 6500 0 0.3294 0.3375 0.2505

0 14,890 0 0.1 0.0 0.0

First, a larger α will make the distribution even, resulting in a suboptimal performance.
By lowering the weights, the allocation becomes more flexible and the desired performance
can be observed when α = 2200. However, a smaller α would result in an unbalanced
distribution, which is not appropriate for our balanced dataset. α = 0 abandons the
constraint and causes a crash. Obviously, entropy constraints can effectively balance the
size of clusters, and using appropriate entropy constraints can not only obtain a relatively
balanced cluster distribution but also obtain superior clustering results.
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4.5.4. Effect of Data Enhancement Methods

Data enhancement is a key technique to enhance the performance of deep neural
networks by increasing the number and diversity of training samples. Next, we will
introduce the point cloud data enhancement method used in this method. Input the
original point cloud as shown in Figure 5a, and the effect of each enhancement method is
shown in Figure 5b–i, as follows:

(a) Translate, as shown in Figure 5b: for the input original point cloud, calculate its
coordinate value range in the X, Y, and Z directions, and randomly move the whole
point cloud object in each axial direction, and the moving distance is less than 10% of
the original point cloud range;

(b) Scale, as shown in Figure 5c: scale the entire point cloud sample to between 80% and
125% of the original point cloud;

(c) Rotate, as shown in Figure 5d: the rotation method randomly rotates the point cloud
object in three axial directions, X, Y, and Z, with a rotation range of 15 degrees;

(d) Random jitter, as shown in Figure 5e: the three-dimensional position of each point is
measured with a uniform random bias within the range of [0, 0.05];

(e) Crop, as shown in Figure 5f: Sample evenly between 60% and 100% of the original 3D
point cloud to crop out a random 3D cube patch. The aspect ratio is controlled within
the range of [0.75, 1.33];

(f) Cutout, as shown in Figure 5g: randomly cut out a three-dimensional cube, and
each dimension of the three-dimensional cube is within the range of [0.1, 0.4] of the
original dimension;

(g) Drop out, as shown in Figure 5h: drop out three-dimensional points, and the ratio is
within the range of [0, 0.7];

(h) Subsampling, as shown in Figure 5i: randomly select some points from the three-
dimensional point cloud, and the number of points is based on the input dimension
of the encoder.
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To investigate the impact of data augmentation on our method’s performance, we
conducted comparative experiments using seven different augmentation techniques: ran-
dom clipping, cutting, rotation, translation, scaling, jitter, and random discarding, with the
results summarized in Table 6. Specifically, model A1 used all the enhancement methods
and achieved the best performance, in which the clustering accuracy (ACC) reached 92.4%.
In contrast, model B1 did not use any data enhancement, and the two views of the point
cloud were identical. Therefore, the model cannot be driven to output consistent predic-
tions for different transformations. The clustering performance was the worst, where the
ACC dropped to 85.5%.

Table 6. The effect of data enhancement methods.

Model Crop Cutout Rotate Translation Scale Jitter Drop ACC NMI ARI

A1
√ √ √ √ √ √ √

0.9236 0.8558 0.8440
B1 × × × × × × × 0.8550 0.7890 0.7595
C1 × ×

√ √ √ √ √
0.8737 0.8028 0.7764

D1
√

×
√ √ √ √ √

0.9156 0.8418 0.8297
E1 ×

√ √ √ √ √ √
0.8792 0.8117 0.7737

Except for any of the enhancement methods, the clustering performance will decrease,
which indicates that each enhancement method plays a positive role in the accurate cluster-
ing of point clouds. It is worth noting that when both clipping and clipping transformations
were removed (model C1), the network performance was significantly affected, and the
ACC decreased by 5.1% (92.4% vs. 87.3%) compared with the full model A1. However,
removing only the shear transform (model D1) had the least effect on the network perfor-
mance, because the shear transform broke the structural continuity of the point cloud to
some extent, which is crucial for the point cloud representation learning. In addition, re-
moving only the clipping transform (model E1) resulted in a significant decline in clustering
performance, suggesting that random clipping can significantly improve the performance.

4.5.5. Performance on an Imbalanced Dataset

In alignment with numerous 2D image clustering methodologies, our approach ad-
heres to the principle of employing a balanced dataset for training purposes. Utilizing a
balanced dataset promotes unbiased model training, averting the potential for class imbal-
ances to distort the model’s focus. For the construction of a balanced dataset to conduct
extensive clustering experiments, we selected the widely recognized ShapeNet benchmark.
From this dataset, which includes a diverse range of point clouds, we curated ten categories
that represented the highest number of point cloud samples (imbalance level ζ = 1) [51].
Table 7 illustrates the results derived from training our model on both the balanced and
imbalanced datasets, characterized by the imbalance levels ζ = 0.8 and 0.6, within the
aforementioned benchmark dataset.

Table 7. Performance on an imbalanced dataset (imbalance level ζ).

Metric ACC NMI ARI #MAX #MIN

ζ = 1.0 0.9236 0.8558 0.8440 1563 1408
ζ = 0.8 0.9104 0.8332 0.8233 2081 1335
ζ = 0.6 0.9028 0.8243 0.8117 2109 1392

The objective of this evaluation was to assess the robustness of our approach when
applied to an imbalanced dataset. As depicted in Table 7, we generated three levels of im-
balanced dataset with ζ = 1.0, 0.8, 0.6, respectively, where 1.0 means a balanced dataset and
the smaller the ζ, the more the imbalance. The distribution of clusters presented in Figure 6
provides a visual complement to the numerical findings. However, a reduction in the level
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of imbalance corresponds to a decrement in clustering performance, suggesting that the
performance of our method on an imbalanced dataset requires further enhancement.
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Cluster indexGround Truth 
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Figure 6. Cluster distribution on imbalanced dataset. The first column is the cluster distribution
of the original dataset, and the second column is the cluster distribution under the imbalance level
ζ = 0.8 and 0.6. The horizontal axis of each statistical graph is cluster index and the vertical axis
is samples.

5. Discussion

Our proposed PointStaClu method marks a significant advancement in the realm of
point cloud clustering, effectively bridging the performance gap between unsupervised
clustering and supervised classification within the domain of 3D point clouds. PointStaClu
addresses the training instability inherent in supervised learning for 3D point cloud cluster-
ing through the following strategies: (1) The exclusion of negative instance gradients in the
cross-entropy loss function updates for cluster centers; (2) The incorporation of a global
entropy constraint to enhance the cluster allocation; and (3) The provision of a streamlined
framework that employs a single loss function and encoder for deep point cloud clustering.
Our approach, rigorously validated through extensive benchmark testing, exemplifies the
robust clustering capabilities and exhibits an enhancement in performance for single-stage
deep point cloud clustering.

While PointStaClu boasts an impressive performance, it is not without limitations.
The method presupposes prior knowledge of the cluster category K, information that may
be inscrutable in real-world datasets, thereby complicating the network training process.
Furthermore, PointStaClu necessitates a balanced sample distribution, a condition that
is not consistently observed in real-world data. Future research, focusing on imbalanced
datasets and the potential integration of the nearest neighbor techniques, could further
enhance the efficacy of PointStaClu.

6. Conclusions

In summary, PointStaClu pioneers the integration of a stable clustering discriminant
task alongside an entropy constraint strategy, both aimed at refining the clustering alloca-
tion in an unsupervised manner. Its superior performance over the existing methodologies
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substantiates the efficacy of single-stage deep clustering for point clouds. Considering
the dearth of research on single-stage deep clustering within the 3D point cloud domain,
PointStaClu significantly advances the collective comprehension and application potential
of point cloud learning endeavors.
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