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CPDC‑MFNet: conditional point 
diffusion completion network 
with Muti‑scale Feedback Refine 
for 3D Terracotta Warriors
Xueli Xu 1,2,3,6, Da Song 1,3,6, Guohua Geng 1,3*, Mingquan Zhou 1,3, Jie Liu 4,5*, Kang Li 1,3* & 
Xin Cao 1,3*

Due to the antiquity and difficulty of excavation, the Terracotta Warriors have suffered varying 
degrees of damage. To restore the cultural relics to their original appearance, utilizing point clouds 
to repair damaged Terracotta Warriors has always been a hot topic in cultural relic protection. The 
output results of existing methods in point cloud completion often lack diversity. Probability‑based 
models represented by Denoising Diffusion Probabilistic Models have recently achieved great success 
in the field of images and point clouds and can output a variety of results. However, one drawback 
of diffusion models is that too many samples result in slow generation speed. Toward this issue, we 
propose a new neural network for Terracotta Warriors fragments completion. During the reverse 
diffusion stage, we initially decrease the number of sampling steps to generate a coarse result. This 
preliminary outcome undergoes further refinement through a multi‑scale refine network. Additionally, 
we introduce a novel approach called Partition Attention Sampling to enhance the representation 
capabilities of features. The effectiveness of the proposed model is validated in the experiments 
on the real Terracotta Warriors dataset and public dataset. The experimental results conclusively 
demonstrate that our model exhibits competitive performance in comparison to other existing 
models.

The Terracotta Warriors of Qin Shi Huang is a cultural treasure of China and an important archaeological 
source for ancient Chinese science, culture, military, and other fields. Due to the long history and difficulty 
of excavation, the Terracotta Warriors often have different degrees of damage, and the restoration plan of the 
Terracotta Warriors has always been a hot topic of cultural relic protection. Manual restoration of the missing 
areas of the Terracotta Warriors usually faces the problems of large workload, high difficulty, and low efficiency. 
Using digital technology to restore cultural relics can effectively solve these problems and reduce the damage 
to the cultural relics themselves. The traditional Terracotta Warriors’ completion methods are mainly divided 
into template-based matching and grid surface fitting methods. The former method matches the most suitable 
template from the template library to repair the hole, while the latter method fits and reconstructs the hole area 
using the topological relationship of the 3D mesh. These methods are computationally expensive and cannot 
handle 3D models that are large and have many holes.

With the rapid development of deep learning, many learning-based methods (such as  Pcn1,  Topnet2, and 
 Grnet3) are proposed to recover the complete shape by inferring the missing parts. These methods typically 
employ the Chamfer Distance (CD) or Earth Mover’s Distance (EMD) as loss functions to measure the dis-
similarity between the generated complete point cloud and the ground truth. However, CD loss is not sensitive 
to overall density distribution and EMD loss is too expensive to compute in training. Generative adversarial 
network (GAN)4 is a generative method based on adversarial training, consisting of a generator and a discrimi-
nator. The generator produces images from a random vector, while the discriminator distinguishes between 
real and generated data. GAN’s advantages are that it can quickly generate images in a discrete pixel space 
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and improve the quality and diversity of generated images through different loss functions and regularization 
methods. However, GAN’s training process may be unstable, leading to mode collapse or low-quality output. 
Additionally, GAN requires careful tuning of hyperparameters and loss functions to achieve good results, which 
can be time-consuming and difficult.

Recently, probabilistic diffusion models, a novel family of generative models, have demonstrated remarkable 
results in generating 2D images and 3D point  clouds5–9. These approaches train a probabilistic model to simulate a 
denoising process. Diffusion is guided to progressively transform a Gaussian noise into a target output. Diffusion 
probabilistic models have a more stable training procedure and a better generation quality than GANs, which 
can be trained with a simple loss function.  Lyu6 finds that Denoising Diffusion Probabilistic Models (DDPM)5 
can generate uniform and high-quality point clouds, using an efficient and effective loss function. They introduce 
the Point Diffusion-Refinement (PDR) paradigm for point cloud completion, which also leads to a simultane-
ous improvement in generation speed. However, PDR directly handles the 3D point cloud and uses a complex 
Condition Feature Extraction subnet, which leads to huge network computation.  Luo10 is the first work to apply 
DDPM to the problem of unconditional point cloud generation, where the goal is to generate realistic point 
clouds from noise without any guidance. Zhou et al.11 introduce Point-Voxel Diffusion (PVD), a probabilistic and 
flexible shape generation model that addresses the above challenges by combining denoising diffusion models 
with the hybrid point-voxel representation of 3D shapes, which enables the synthesis of high-fidelity shapes and 
the completion of partial point clouds. These methods can generate diverse and high-quality results.

Inspired by  PDR6, we present a conditional point diffusion completion network with a multi-scale refinement 
network (CPDC-MFNet) model to expedite the Terracotta Warrior point cloud completion process. Meanwhile, 
we introduce an innovative sampling algorithm aiming at enhancing the precision of our generative model by 
effectively aggregating localized information. Furthermore, a probabilistic model based on diffusion is proposed 
for the completion of Terracotta Warriors’ point cloud. The model can infer the conditional probabilities of the 
position changes of each particle during the diffusion process from the observed incomplete Terracotta War-
rior fragments, and use these conditional probabilities to generate new complete models. To achieve this, we 
use the Markov chain to model the reverse diffusion process that transforms the noise distribution to the target 
distribution. However, the Markov chain only models the point distribution and cannot create point clouds with 
different shapes on its own. For this reason, we add a shape latent variable as the condition for the transition 
kernel. When generating point clouds, the shape latent variable has a prior distribution that we parameterize 
with normalizing flows for high model flexibility. When auto-encoding point clouds, the shape latent variable 
is added to the network. Our training objective is to maximize the variational lower bound of the likelihood of 
the Terracotta Warrior point cloud given the shape latent variable, which can be written in a simple form. To 
extract feature information more quickly and effectively, we propose a new sampling algorithm Partition Atten-
tion Sampling (PAS) to aggregate local information. Simultaneously, to address the issue of slow sampling in 
DDPM, we introduce a multi-scale refine network to accelerate the generation process. Extensive experiments 
on the real-world Terracotta Warriors dataset and the public dataset (ShapeNet) are conducted. The results show 
that our model can perform well on point cloud completion and is competitive on this task.

Our main contributions can be summarized as:

(1) We propose a probabilistic model based on diffusion for Terracotta Warriors point cloud completion. The 
model can infer the conditional probabilities of the position changes of each particle during the diffusion 
process from the observed incomplete point cloud, and use these conditional probabilities to generate 
complete point clouds.

(2) We propose a multi-scale refine network (MSFR) model to accelerate the generation process.
(3) We propose a new sampling algorithm Partition Attention Sampling (PAS) to aggregate local information 

effectively and efficiently.
(4) We also demonstrate the effectiveness of CPDC-MFNet on real-world scans and public dataset.

Experiments and results
Datasets
The data of the Terracotta Warriors are collected by the visualization laboratory, with a total of 78 Terracotta 
figures which are acquired by using Creaform VIU 718 hand-held 3D scanners. Furthermore, the Terracotta 
Warriors are unearthed from the K9901 pit of Emperor Qinshihuang’s Mausoleum Site Museum. The scan 
resolution is 0.05 mm, which is conducive to scan speed. First, we use Geomagic Design software to separate 
Terracotta Warriors mesh into different parts of the body. Then we use Blender software to randomly partition 
the Terracotta Warriors into 20 no-overlapping pieces. One to four parts of them are randomly selected as the 
missing part, and the remaining portion constitutes data that needs to be completed. We divide the dataset into 
three categories: (Arm: 91, Body: 60, and Leg: 80). Among them, 188 models are used for training (Arm: 74, 
Body: 50, Leg: 64), the left 43 models are used for testing (Arm: 17, Body: 10, Leg: 16). All the input point clouds 
are normalized to [− 1, 1].

Evaluation metrics
To evaluate the accuracy of completed point clouds on our datasets, we use Chamfer Distance (CD), and Earth 
Mover’s Distance(EMD) as evaluation metrics. CD is defined in Eq. (1), where |V | means the number of points 
in V. The former part measures the distance between the generated point cloud and the ground truth point 
cloud, and the latter part measures the coverage of the ground truth point cloud in the generated point cloud. 
The EMD is used to measure the shape discrepancy between the predicted point cloud V and the ground truth 
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point cloud X, both of which have the same size N. It estimates a bijection distance between V and X. EMD is 
defined in Eq. (2).

Training setting
For the diffusion model, we adopt the  PVCNN12 styled U-Net which is proposed in  PVD11 to train our diffusion 
model. Following DDPM, the variance schedules to be  β1 = 0.0001 and  βT = 0.05, and  βt (1 < t < T) is linearly 
interpolated, and the number of sample steps is 1000. We use a batch size of 32 and a learning rate of 2e−4 . Since 
our approach is probabilistic, we compare it with two distribution-fitting models Point-Flow13 and PVD. We 
evaluate our model on three categories: arm, body, and leg with 5% missing, 10% missing, 15% missing, and 
20% missing respectively. In the case of 5% missing, we conduct experiments at different resolutions, with 2048 
points, 4096 points, and 8192 points, respectively.

Results
We conduct a series of experiments to evaluate our model. As the proportion of missing parts increases, the 
generation effect gradually deteriorates, as shown in Table 1. Across all three datasets, the most optimal experi-
mental outcomes are consistently achieved when the missing parts constitute 5% of the whole. Worth noting, all 
the experiments depicted in Table 1 are executed at a resolution of 2048. In Fig. 1, we provide visual comparisons 
that offer a compelling insight into the generated results. In Fig. 1, the first, third, and fifth rows are the incom-
plete inputs, while the second, fourth, and sixth rows are the corresponding completion results. Among the two 
indicators, CD exhibits the highest sensitivity to variations in the percentage of missing parts.

We extend our examination to the completion results at various resolutions while keeping the proportion of 
missing data fixed at 5%. The outcome of these experiments, as presented in Table 2 (the visualization shown 
in Fig. 2), reveals an interesting trend: there is no significant variation in the results as the resolution adjusted. 
This observation suggests that our model’s performance remains consistently robust across different levels of 
detail. As the number of point clouds increases, we reduce the size of the patch. The increase of points’ number 
does not improve the experimental results. Instead, it leads to a reduction in both generation and training time. 
The maximum average difference in the CD index at different resolutions is a mere 0.32, signifying that setting 
the resolution to 2048 is an appropriate choice. This consistency in performance across resolutions underscores 
the effectiveness of our methodology and highlights the efficiency of the selected resolution for our specific 
application.

To evaluate the effectiveness of our approach, we conducted a comparative analysis with two probabilistic 
generation models: Point-Flow and PVD. The results of this evaluation are presented in Table 3. The table reveals 
that our method acquires comparable results with PVD and a greater advance than Point-Flow. However, the 
superiority of our approach becomes even more evident when we consider the visual quality of the generated 
output. Figure 3 showcases this distinction, emphasizing that our method consistently produces point clouds 
with clearer boundaries. The obvious redundancy points are framed in red in Fig. 3. This enhanced clarity is of 
significant importance, particularly in scenarios where the subsequent reconstruction into other data formats 
relies heavily on the precision of the generated results.

The results of comparison with other methods on the ShapeNet dataset are shown in Table 4. From Table 4, 
we can observe that we have achieved competitive results in EMD. According to  Zhou11, better EMD scores are 
more indicative of higher visual quality, and CD is blind to visual inferiority. Therefore, our model has better 
visual results. Consequently, the favorable EMD scores achieved by our model reinforce the assertion that our 
method not only excels in quantitative measures but also translates into visually superior results compared to 
alternative approaches.

Ablation studies
To validate the effectiveness of the PAS module and MSFR in our method, we implement a group experiments 
for the ablation study. The experiments are conducted on real Terracotta Warrior datasets at the solution of 
2048 points of 5% missing and results are presented in Table 5. The results show that our model using both PAS 

(1)LCD(V ,X) =
1

|V |
∑

v∈V
min
x∈X

||v − x||2 +
1

|X|
∑

x∈X
min
v∈V

||x − v||2

(2)LEMD(V ,X) = min
∅:V↔X

∑

v∈V
||v − ∅(v)||2

Table 1.  Quantitative comparison on the Terracotta Warriors dataset at the resolution of 2048 points.

Dataset

5% missing 10% missing 15% missing 20% missing

CD EMD CD EMD CD EMD CD EMD

Arm 4.07 7.68 4.35 8.19 4.83 8.42 5.29 10.92

Body 2.02 4.54 2.54 2.99 2.20 4.54 2.67 5.67

Leg 4.43 8.91 4.79 9.59 5.19 11.47 5.81 11.62
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and MSFR achieves the best results in two indicators. The CD index increased to 4.24, 2.46, and 4.65 in three 
categories, respectively, when PAS is removed. Removing MSFR, the CD index degenerates to 4.30, 2.07, and 
4.51 in three categories, respectively. The results prove that the PAS and MSFR modules can effectively boost 
the reconstruction result.

Model accelerate
To validate the effectiveness of the MSFR network in our method, we implement a group of experiments for the 
ablation study. These experiments are carried out at resolution of 2048 points and 5% missing. The results are 
shown in Table 6. Note that in the case of 1000 sample steps, we do not use MSFR to refine the output. The results 
indicate that reducing the sampling steps to 200 results in only a minor decrease in the arm and leg datasets, but 
an improvement in the body dataset. The reconstruction results show a significant decrease until the sampling 
steps are reduced to 50. The experimental results show that MSFR can effectively reduce sampling steps while 
ensuring the generation quality does not decrease.

Conclusion
In this paper, we propose the Conditional Point diffusion completion network with Muti-scale Feedback Refine 
network for Terracotta Warriors. It has achieved good results in completing the real Terracotta Warriors dataset. 
Our MSFR network effectively addresses the slow sampling speed issue of DDPM. By reducing the number of 

Figure 1.  Completion results under different missing ratios at the resolution of 2048.

Table 2.  Quantitative comparison on the Terracotta Warriors dataset at the different resolution with the 
missing percentage of 5%.

Dataset

2048 4096 8192

CD EMD CD EMD CD EMD

Arm 4.07 7.68 4.27 8.51 4.31 8.63

Body 2.02 4.54 2.43 4.86 2.52 4.85

Leg 4.43 8.91 4.50 9.00 4.47 8.94
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samples in the diffusion stage and optimizing the coarse point cloud generation, we achieve faster and more 
efficient generation results while maintaining high-quality. At the same time, the PAS module can effectively 
capture local feature information, enhancing the overall completion results. We believe that our network structure 
has the potential to be applied to other tasks. Our model has achieved competitive results on both the Terracotta 
Warriors dataset and the public dataset, and can reduce the number of samples by five times.

However, there are limitations that our method struggles with to predict salient points and small irregular 
surfaces. Addressing these challenges remains a key focus for future research and development. In the future, 
we plan to explore the application of diffusion models in latent spaces to generate richer completion results and 
to apply our structure to the class conditional generation task of Terracotta Warriors.

Related work
Point cloud completion
Point cloud generation is an essential task for many 3D vision tasks, such as filling in missing parts, increasing 
resolution, creating new shapes, and augmenting data. Following the lead of  PointNet14, some  works1,2 con-
centrate on learning global feature representations from 3D point clouds for generation, which however fail to 
capture fine and detailed shape features. To generate point clouds, some early methods adopt the approach of 
representing point clouds as matrices of N × 3  dimensions15,16, where N is the predetermined number of points 
in the point cloud. Through this approach, they transform the point cloud generation problem into a matrix 
generation problem, which enables them to apply existing generative models more easily. L-GAN16 is the first 
deep generative model for point clouds. Although it can perform shape completion tasks to some extent, its 
architecture is not primarily designed for this purpose, and therefore its performance is not considered ideal. 
 FoldingNet17 introduces a decoding operation called Folding, which serves as a 2D-to-3D mapping. Subsequently, 
Point Completion Network (PCN) proposed in Yuan’s  work1, is the first learning-based architecture that focuses 
on shape completion tasks and utilizes the Folding operation to approximate a relatively smooth surface for shape 
completion. These methods have a major drawback that they can only generate point clouds with a fixed number 
of points, and they lack the property of permutation invariance. Lately, a new viewpoint has emerged, suggesting 
that point clouds can be seen as samples drawn from a point distribution, such as these related  works13,16,18–20. 

Figure 2.  Completion results at different resolutions with the missing percentage of 5%.

Table 3.  Quantitative comparison with PVD and Point-Flow at the resolution of 2048 with the missing 
percentage of 5%. Significant values are in bold.

Methods

Arm Body Leg

CD EMD CD EMD CD EMD

Point-Flow 6.32 11.80 3.73 7.46 5.37 10.76

PVD 4.11 8.02 2.24 4.48 4.51 9.03

Ours 4.07 7.68 2.02 4.54 4.43 8.91
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This perspective encourages the investigation of the application of likelihood-based techniques to the modeling 
and generation of point clouds, often yielding excellent outcomes.

Diffusion probabilistic models
The diffusion process considered in this work is related to the diffusion probabilistic  model5,21, which is a type 
of latent variable model that can generate data from noise. Diffusion probabilistic models are a class of latent 
variable models, which also use the Markov chain to convert the noise distribution to the data distribution. 
The diffusion model has been applied to various tasks. Baranchuk and  Graikos22,23 use diffusion models in 
image segmentation, Zimmermann et al.24 explore the application of DDPM in the classification task, and other 
 works25–27 use diffusion models in image super-resolution. These models utilize the Markov chain to transform 
the noise distribution into the data distribution in a series of steps. Because the Markov chain considered in our 

Figure 3.  Comparing the point set completion results produced by PVD and Point-Flow at the resolution of 
2048 with the missing percentage of 5%.

Table 4.  Quantitative comparison with other methods on the ShapeNet dataset. Significant values are in bold.

Category Model CD EMD

Airplane

SoftFLow 0.4042 1.198

PointFlow 0.4030 1.180

DPF-NET 0.5279 1.105

PVD 0.4415 1.030

Ours 0.4671 1.011

Chair

SoftFLow 2.786 3.295

PointFlow 2.707 3.649

DPF-NET 2.763 3.320

PVD 3.211 2.939

Ours 3.109 2.901

Car

SoftFLow 1.850 2.798

PointFlow 1.803 2.851

DPF-NET 1.396 2.318

PVD 1.774 2.146

Ours 1.811 2.252
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work generates points of a point cloud conditioned on some shape latent, which can be learned from data, in this 
work, we focus on the Terracotta Warriors point cloud completion, which is a conditional generation problem.

Luo et al.10 use a Point-wise net as their generator network, which is similar to a 2 stage PointNet that has been 
used for point cloud part segmentation tasks. However, the Point-wise net has a limitation that it can only receive 
a global feature as input. It cannot leverage fine-grained local structures in the incomplete point cloud, which are 
important for capturing the shape details and diversity. Zhou et al.11. extend the conditional DDPM framework to 
the problem of point cloud completion, where the goal is to generate a complete point cloud from an incomplete 
one. Zhou et al. train a point-voxel  CNN12 as their generator network, which takes both the incomplete point 
cloud c and the noisy input xT as input. However, their way of using c is different from ours. Zhou et al. simply 
concatenate c with xT , and feed the concatenated point cloud to a single point-voxel CNN. This may degrade the 
performance of the network, because the concatenated point cloud may not have a uniform density or distribu-
tion. Moreover, xt becomes very different from c as t  increases, due to the large noise magnitude in xt . Feeding 
two point clouds with very different properties to a single network at once could confuse the network and make 
it hard to learn meaningful features. Zhao et al.6 train an additional refine network to accelerate sampling speed 
and improve generation efficiency. In our work, we draw inspiration from this approach.

Feedback mechanism
The feedback mechanism allows the network to gain information from previous states. With feedback connec-
tions, high-level features are rerouted to the low layer to refine low-level feature representations. The feedback 
mechanism has been widely employed in various 2D image vision tasks, some  works28–30 use feedback mechanism 
in image super-resolution,  Sam31 and  Feng32 use it to enrich network features, and  Chen33 use it in image derain-
ing problems. In the 3D field,  Su34 and  Yan35 use it to complete the point cloud. In our work, we use a feedback 
mechanism to refine our generation and accelerate the generation speed. Based on the feedback mechanism, 
completion results are optimized by multiple iterations to get the final refined result.

Methods
An overview of the conditional DDPM formulation is started, which is a generative model that can produce a 
completed point cloud from random noise. The overall pipeline of our network is shown in Fig. 4, which includes 
two modules, the conditional generation network with Partition Attention Sampling and a multi-scale refine 
network. The details will be described in the following sections.

Formulation
The denoising diffusion probabilistic model is a type of generative model that models generation as a pro-
cess of removing noise. It starts with Gaussian noise and performs denoising until a high-resolution shape 
emerges. Specifically, we assume that pdata is the distribution of the whole point cloud xi in the dataset, and 

Table 5.  Ablation study for different components at the resolution of 2048 with the missing percentage of 5%.

Category PAS MSFR CD EMD

Arm

✓ ✓ 4.07 7.68

⨉ ✓ 4.24 7.81

✓ ⨉ 4.30 7.69

⨉ ⨉ 4.51 7.92

Body

✓ ✓ 2.02 4.54

⨉ ✓ 2.46 4.92

✓ ⨉ 2.07 4.57

⨉ ⨉ 2.58 5.12

Leg

✓ ✓ 4.43 8.91

⨉ ✓ 4.65 9.21

✓ ⨉ 4.51 9.08

⨉ ⨉ 4.73 9.31

Table 6.  Refine coarse point clouds generated by the DDPM at the resolution of 2048 points with the missing 
percentage of 5%.

Number of sample steps

Arm Body Leg

CD EMD CD EMD CD EMD

1000 3.77 6.64 2.42 4.83 4.22 8.45

200 4.07 7.68 2.02 4.54 4.43 8.91

50 7.08 17.11 7.61 23.60 8.75 19.53
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platent = N(03N , I3N×3N ) is the latent distribution, where N represents the Gaussian distribution. Then, the con-
ditional DDPM is composed of two Markov chains named the diffusion process and the reverse process.

The diffusion process is a Markov process that adds Gaussian noise into the clean data pdata until the output 
distribution is close to platen . The diffusion process is irrelevant to the conditioner, the incomplete point cloud 
ci . The diffusion process from clean data x0 to xT is defined as

where the hyperparameters at are pre-defined, small positive constants. The formulation can be reparametrized 
as follows:

where the process of removing noise produces a series of shape variables with different levels of noise, denoted 
as xT , xT−1, ..., x0 , where xT is sampled from a Gaussian prior and x0 is the final output. The reverse process is 
conditioned on the conditioner, the incomplete point cloud c . Let xT ∼ platen be a latent variable. The reverse 
process from latent xT to clean data x0 is defined as

where the mean µθ(xt , c, t)  is a neural network that has θ as its parameters and the variance  σ 2 is a constant 
that depends on the time-step. To generate a sample that is conditioned on c , we first sample xT from a normal 
distribution, then we draw xt−1 from the conditional distribution pθ (xt−1|xt , c) for each t = T, T − 1,…, 1, and 
finally we output x0.

The goal of training the reverse diffusion process is to maximize the log-likelihood of the point cloud: 
E
[

log p(X(0))
]

 . However, since optimizing the exact log-likelihood directly is intractable, we instead maximize 
its evidence lower bound (ELOB):

Partition attention sampling
To gather local features efficiently and effectively, we propose a partition attention sampling (PAS) module. 
This module performs a subsampling operation on the input point cloud and passes the input features from 
the original points to the subsampled points. Other pooling methods employ a combination of sampling and 
query techniques. In the stage of sampling, points that will be used for the subsequent stage of encoding are 
sampled by using either farthest point sampling or grid  sampling31. For each sampled point, a neighbor query is 
carried out to collect information from the points that are close to it. In these traditional sampling procedures, 
the query sets of points are not spatially aligned due to the uncontrollable information density. To address this, 
we propose PAS module.

In the PAS module, we assume the input point set S = (P, F) , where P is the coordinate and F is the feature 
of the points. We partition S into subsets [ S1, S2, ..., Sn ] by separating the space into non-overlapping partitions. 
We fuse each subset Si = (Pi , Fi ) from a single partition as follows:

where ( p′i , f
′
i  ) is the position and features of the pooling point aggregated form subset Si , and Atten(· ) is a self-

attention layer. The PAS process is illustrated in Fig. 5. In our implementation, we choose k points in each parti-
tion, if the number of points is more than k points, we randomly select k points in each partition. If the points in 
each partition are less than k points, we repeat the center points p′i , until the total number is k. For the repeated 
points, we set the feature to zeros, so that the repeated points have no effect on the results. In Fig. 5, red points 
represent sampled points, and yellow points represent sampled points after sampling. Then we get the sampled 

(3)q(x1:T |x0) = �T
t=1q(xt |xt−1), q(xt |xt−1) = N

(

xt |
√
atxt−1, (1− at)I

)

(4)q(xt |x0) = N
(

xt |
√
rtx0, (1− rt)I

)

, q(xt−1|x0, xt) = N
(

xt−1|µ, σ 2I
)

(5)
pθ (x0:T |xT , c) = p(xT )�

T
t=1pθ (xt−1|xt , c)

pθ (xt−1|xt , c) = N
(

xt−1;µθ(xt , c, t), σ
2I
)

(6)L(θ) = E
[

log pθ
(

X0
)]

≥ Eq(x0:T )

[

log
pθ (x0:T )

q(x1:T |x0)

]

(7)f ′i = MaxPool
(

Atten
(

fi
))

, p′i = MeanPool
({

pj
})

Figure 4.  The pipeline of our network.
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points set S′ =
(

P′, F ′
)

 . This sampling strategy not only reduces the parameters of the model but also ensures 
the generated point clouds meet the desired quality requirements.

Muti‑scale Feedback Refine Network
The obvious drawback of DDPM is the slow sampling speed, typically around 1000 steps in the generation 
process, which results in a very low generation efficiency despite its good quality and diversity. To solve this 
problem, we propose a Multi-scale Feedback Refine (MSFR) network to reduce the number of sample steps in 
the diffusion stage and use the MSFR to optimize the generated coarse point cloud to improve the generation 
speed. In particular, we use a feedback mechanism to train a refined network, to refine the coarse point cloud and 
to accelerate the model generation speed. In our work, the resolutions of high-layer feature maps can align with 
lower ones strictly and easily, and the high-resolution point features are transmitted back to enrich low-resolution 
point features. The detailed structure of MSFR is shown in Fig. 6, which consists of four parts: feature extraction, 
feedback exploitation, feature expansion, and coordinate generation. We first use  EdgeConv36 to extract local 
geometric features Fti  from Pi . Then, a Multilayer Perceptron fuses present features Fti  with feedback information 
generated at the last step. Subsequently, the refined Fti  is expanded r times and then the order is shuffled. Note the 
coarse point cloud generated by the Conditional Generation Network as U . The predicted displacement is added 
to U to obtain the refined point cloud V :v = u+ rf (u, c) where v, u, c are the concatenated 3D coordinates of the 
point clouds V ,U ,C , respectively. f  is the MSFR Network, and r is a small constant. In our experiment, we set 
it to 8. We use the CD loss between the refined point cloud V  and ground truth point cloud X to supervise the 
network ǫ . Throughout the training process of the MSFR network, the parameters of the conditional diffusion 
generation network are maintained at a constant value, after which we pre-generate and store the coarse point 
clouds in advance. Overall, our MSFR network effectively addresses the slow sampling speed issue of DDPM, 
enabling faster and more efficient generation while maintaining high-quality results.

Figure 5.  The attention-based partition sampling.

Figure 6.  The detailed structure of the Multi-scale feedback refine network.
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Data availability
The datasets analyzed during the current study are available from the corresponding author upon reasonable 
request.
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