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This study proposes a novel, to the best of our knowledge, transformer-based end-to-end network (TDNet) for
point cloud denoising based on encoder–decoder architecture. The encoder is based on the structure of a trans-
former in natural language processing (NLP). Even though points and sentences are different types of data, the
NLP transformer can be improved to be suitable for a point cloud because the point can be regarded as a word. The
improved model facilitates point cloud feature extraction and transformation of the input point cloud into the
underlying high-dimensional space, which can characterize the semantic relevance between points. Subsequently,
the decoder learns the latent manifold of each sampled point from the high-dimensional features obtained by
the encoder, finally achieving a clean point cloud. An adaptive sampling approach is introduced during denois-
ing to select points closer to the clean point cloud to reconstruct the surface. This is based on the view that a 3D
object is essentially a 2D manifold. Extensive experiments demonstrate that the proposed network is superior in
terms of quantitative and qualitative results for synthetic data sets and real-world terracotta warrior fragments. ©

2021 Optical Society of America

https://doi.org/10.1364/AO.438396

1. INTRODUCTION

Three-dimensional (3D) point clouds have been widely utilized
in the fields of reverse engineering, precision manufacturing,
and virtual reality because of their powerful model representa-
tion abilities and simplicity of form [1–4]. An initial point cloud
obtained by scanning often contains a large number of noise
points because it is affected by many factors, such as measuring
equipment, external environment, and surface characteristics
of the measured object. The greater the number of noise points,
the greater the impact on the quality of the point cloud, which
directly affects accuracy and efficiency of subsequent tasks,
such as feature extraction, registration, surface reconstruction,
and visualization [5–10]. Therefore, the initial data must be
denoised.

In recent years, scholars have conducted in-depth research
on point cloud denoising methods [11–13]. Traditional
approaches to achieve point cloud denoising are based on
first performing surface fitting to fit the surface on a 3D scan-
ning point cloud of the object, calculating the distance from
each point to the fitted surface, and finally removing gross
errors or outliers according to certain criteria. Although it is a
simple and effective estimation method, it cannot yield satisfac-
tory results. In particular, there are large calculation errors for

complex and noisy models. Mattei et al. [14] proposed a “mobile
robust principal component analysis” method based on sparse
representation theory. The estimated position of the point was
calculated using the local average value that the sharp feature
retained using the weighted minimization mode. Then, the
weight was used to update the point’s position to determine
the similarity between the normal vectors in the local neighbor-
hood. However, the performance tended to decline when the
noise level was high due to excessive smoothing or sharpening.

With the rapid development of deep learning, extensive
research has been conducted, and great success has been
achieved in the field of image denoising [15–23]. In contrast
with 2D images, point clouds are disordered and unstructured,
and traditional convolution operations cannot consume them
directly. Consequently, it is challenging to design a neural
network to address this problem. Inspired by the success of
convolutional neural networks (CNNs) in image processing,
depth-map-based point cloud denoising methods convert
3D point clouds into 2D images [24,25]. Subsequently, deep
learning is applied to 2D images to classify the point cloud into
feature and nonfeature points and employ different approaches
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to estimate and update the normal state of each point. End-to-
end automatic learning and updating can be achieved; however,
the complexities of time and space are high.

Many recent works have aggregated the local features of a
point cloud by defining 3D convolution operators and then
conducting denoising [26–29]. These methods either reorder
the disordered input point cloud or voxelize it to obtain a convo-
lutional canonical structure. However, this results in significant
limitations in terms of timeliness and leads to a waste of space
occupation. PointNet is a pioneering work proposed by Qi et al.
that exploits deep learning for direct feature learning on a point
cloud [30]. The model imposes a normalized rotation matrix
on the point cloud for the purpose of permutation invariance,
which results in excessive independence of the points. In addi-
tion, the network employs a global pooling operation to extract
global features from the point cloud, which leads to geometric
correlation among the points neglected and lost local feature
information. Follow-up works based on PointNet, such as
PointNet++ [31], neural projection [32], PointCleanNet [33],
and total denoising [34], consider the local characteristics of
points to improve the model performance. These methods can
infer the displacement of the noise points from the underlying
surface and reconstruct the points. However, these points are
not designed to explicitly reconstruct the surface, which may
lead to suboptimal denoising results.

Recently, characteristics (such as permutation invariance)
of a transformer [35] have been frequently studied and applied
to determine that it is suitable for point cloud learning. All
operations of a transformer can be performed in parallel inde-
pendently of the order. This potentially makes a transformer an
exciting option for point cloud feature extraction. Theoretically,
a transformer has better versatility and can replace the convolu-
tion operation in a CNN. However, downsampling is required
to more effectively capture the local context information of
the point cloud. Local features are obtained by combining the
sampled points with their neighborhoods. The farthest point
sampling (FPS) method is the most representative sampling
method and can generate relatively uniform sampling points.
The corresponding sampling points and their neighborhoods
are able to overlap the input point cloud as much as possible.
However, the FPS method has two main problems: (1) it is sen-
sitive to abnormal points, making it unstable when dealing with
point clouds in the real world; (2) the sampling points using the
FPS method must be a subset of the original point cloud. It is
difficult to infer the original geometric information if occlusion
or loss errors occur during the acquisition process. This will lead
to suboptimal feature extraction results and may affect accuracy
of subsequent missions.

Stimulated by the success of the transformer in natural
language processing (NLP) and computer vision, this study
proposes a transformer-based deep-learning network for point
cloud denoising. An adaptive sampling method is introduced to
adjust the initial sampling points, which is helpful for learning
the latent manifold of the point cloud to capture its inherent
structure without being affected by outliers. The surface was
reconstructed based on the adjusted points to sample and obtain
a clean point cloud.

The contributions of this paper are as follows:

(1) A deep neural network called TDNet is proposed with
an encoder–decoder architecture for point cloud denois-
ing. The proposed network can generate a clean point
cloud P̃ ∈ R N×3 when starting with an input point cloud
P ∈ R N×3 corrupted by noise.

(2) The structure of the transformer in NLP is improved to be
appropriate for a point cloud and acquire feature represen-
tations with abundant semantics.

(3) Adaptive downsampling is introduced to improve the
restrictions of the most widely used sampling method, FPS,
and make the sampled noise points as close as possible to the
clean points.

(4) The latent manifolds of the noise point cloud are trained to
capture the inherent structure and thereby perform surface
reconstruction. Finally, the same number of points as the
input are sampled.

The remainder of this paper is organized as follows. Section 2
introduces the proposed framework, including the strategy
and structure of the encoder and decoder in detail. Extensive
experiments are presented in Section 3. Finally, conclusions are
presented in Section 4.

2. METHODOLOGY

A point-cloud denoising network, motivated by transformer
and manifold reconstruction, is presented. First, the input noise
point cloud is consumed for feature learning, and the features
are mapped to hidden layers that contain mathematical expres-
sions with point contextual semantics. Second, the learned
features with rich semantics are reversely translated to the point
cloud using the reconstruction of the latent manifold for each
sampled point; then, the points are resampled as the predicted
results. The proposed network generates a clean point cloud
P̃ ∈ R N×3 from the input point cloud P ∈ R N×3, which is
corrupted by noise. The overall architecture is shown in Fig. 1.

A. Encoder-Feature Learning

All operations of the transformer in NLP can be executed in
parallel independently of the order to theoretically replace
the convolution operation. Additionally, its intrinsic permu-
tation invariance is suitable for point cloud feature learning.
Unfortunately, the point cloud and natural language are dif-
ferent types of data, so the transformer model in NLP must be
adjusted to view the point cloud as a sentence and the point as a
word. The encoder proposed in this paper transforms the input
points into a high-dimensional feature space that can charac-
terize the semantic relevance between points and serve as the
input of the decoder. The encoder learns semantically rich and
distinctive representations of each point before yielding output
features, as shown in Fig. 1(a). Compared with the naive trans-
former [35], this model discards position embedding because
the point coordinate itself already contains this information and
then adds a sampling operation.

1. Coordinate-Based Input EmbeddingModule

Similar to word embedding in NLP, point embedding moves
the points closer in the embedding space when the semantics
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Fig. 1. Components of the overall architecture of the denoising network: (a) encoder and (b) decoder.

are more similar. The position coding module in the naive
transformer is used to represent the order of words in natural
language, which is leveraged to distinguish the same word in dif-
ferent positions and reflect the positional relationship between
words. Each point has a unique position that can generate
distinguishable features because the point cloud itself has coor-
dinate information. Therefore, in the input embedding module,
original position coding and input embedding are merged into a
coordinate-based input-embedding module.

Three-dimensional coordinates of the point cloud are used as
the input in this study. Therefore, d = 3 features of N points in
the given input point cloud P ∈ R N×d are mapped to the high-
dimensional space through the input embedding module to
obtain the de-dimensional feature in F e ∈ R N×de . Considering
the calculation efficiency and based on experience, the value of
de was set to a relatively small value of 128.

2. Adaptive Local NeighborhoodSamplingModule

The transformer can effectively extract global features using
point embedding; however, it may ignore exceedingly impor-
tant local geometric information. Motivated by the view of
local neighborhood embedding in PointNet++ [31], a point
sampling method is employed to acquire local neighborhood
features with semantic information to further enhance the
feature learning capability of the model. An adaptive local
neighborhood downsampling (AS) module is exploited to over-
come the limitations of the most widely used sampling method,
FPS. The AS module is realized as follows. First, FPS is leveraged
to obtain relatively uniform points as the original sampling
points. Second, the AS sampling approach is introduced to
automatically learn the offset of each sampling point and update
the position. A schematic diagram of this process is shown in
Fig. 2.

For AS, P s represents a point set formed by sampling Ns
points from N input points. xi is the sampling point of P s , and
xi ∈ P s . fi is a feature of point xi , and fi ∈ F s . The neighbors
of the sampling points are divided into groups using the k-NN
query method, and the general self-attention mechanism is used
to update the group features [35].

Features fi,1, . . . , fi,k corresponding to the k nearest neigh-
bors xi,1, . . . , xi,k of the sampling point xi , can be expressed as

fi, j = A
(
R
(
xi, j , xi,k

)
γ
(
xi,k

))
, j ∈ [1, k] , ∀xi,k ∈ N (xi ) ,

(1)

Fig. 2. Illustration of (a) FPS and (b) AS, where each sampled point
is combined with its k nearest neighbors to update the position closer to
the clean point cloud.

where A denotes the aggregation of features, R describes the
high-level relationship between sampling point xi and its neigh-
bor xi, j , and γ tends to change the feature dimension of each
neighbor point. γ (xi, j )=Wγ fi, j to decrease the amount
of calculation, and Wγ is a learnable weight parameter. The
relational function R is expressed as

R
(
xi, j , xi,k

)
= Softmax

(
Conv

(
fi, j
)T

Conv
(

fi,k
)

√
D′

)
, (2)

where D′ is the output channel of Conv. Subsequently,
MLP+ Softmax is adopted to obtain the normalized weights,
Wp and W f , for the coordinate and characteristic channel of
each point in the group, respectively, expressed as

Wp = Softmax
(
mlp

(
xi, j

))
;

W f = softmax
(
mlp

(
fi, j
))
, j ∈ [1, k] . (3)

Finally, the adaptive update of sampling point xi and its
feature fi are exploited through the weighted sum operation. x ∗i
and f ∗i are the updated point information and are, respectively,
expressed as

x ∗i =WT
p X , X =

{
xi, j

}k

j=1
; f ∗i =WT

f F , F =
{

fi, j

}k

j=1
.

(4)
The adaptive downsampling operation obtains points closer

to the latent surface with less noise disturbance, which is favor-
able for narrowing the latent space for reconstruction during the
decoding stage.
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3. AttentionModule

In essence, the attention module strives to filter out and focus on
a small amount of important extracted information while ignor-
ing a large quantity of unimportant data. The greater the weight,
the more important the corresponding value. Self-attention
(SA) in naive transformers is a mechanism for paying attention
to other words in the input sentence when encoding each word.
The black dashed box in Fig. 3 shows the architecture of the
SA. Q, K , and V represent the query, key, and value matrices,
respectively, that were generated by the linear transformation of
input features when switching to the point data stream, based
on the terminology in [35]. The weight coefficient according
to the query and key was calculated, and a weighted sum of
values was performed according to the weight coefficient. The
most common methods for calculating the weight coefficient
include calculating the vector dot product of the two weight
coefficients, calculating the vector cosine similarity of the two
weight coefficients, or evaluating the value by introducing an
additional neural network. The vector dot product was lever-
aged for calculation in this study to prevent the calculation result
from becoming too large. Therefore, it was divided by the scale,
which is the dimension of a query and key vector. Subsequently,
Softmax was utilized to normalize the result to a probability
distribution and multiply it by the value matrix to obtain the
weighted summation. It can be expressed as

Fsa = Attention (Q, K , V )= softmax

(
QK T

√
dk

)
V , (5)

where (Q, K , V )= Fin.(Wq ,Wk,Wv), Wq , Wk , and Wv are
the weight matrices that can be shared.

SA is the permutation invariant during the calculation proc-
ess, which makes it suitable for the disorder and irregularity of
a point cloud. However, the absolute coordinates of the same
point cloud after a rigid transformation are quite different from
those before. To this end, the relative attention (RA) of the point
cloud is introduced to describe the inherent characteristics of the
point cloud.

The SA module in the original transformer is updated with
RA to enhance the feature representation of the point cloud,
which is inspired by the use of Laplacian matrix L = D− A
in the graph convolutional network to replace the adjacency
matrix A. Here, D is a diagonal matrix [36], and each diagonal
element Di i represents the degree of the i -th node. The RA
module calculates the RA feature between the SA and the input,
that is, Fra = Fin − Fsa, as shown in Fig. 3. Finally, the RA and
input features are further applied to acquire the final feature
Fout, expressed as

Fout = RA (Fin)= relu
(
bn
(
mlp (Fra)

))
+ Fin. (6)

There is an N-dimensional vector f , and f =
( f1, f2, . . . , fN) in graph G with N nodes in line with the
discrete Laplace operator, where fi is the value of the function
f at node i . When point i is perturbed, it may become any
adjacent node j because the Laplacian operator can calculate
the gain from a point to a slight perturbation of all its degrees of
freedom, which is represented by a graph. The gain attained by
any node j changes to node i based on

1 fi =
∑
j∈Ni

( fi − f j ). (7)

When edge E i j has weight Wi j , then

1 fi =
∑
j∈Ni

Wi j ( fi − f j ). (8)

When Wi j = 0, it indicates that nodes i and j are not
adjacent, so Eq. (8) can be simplified to

1 fi =
∑
j∈N

Wi j ( fi − f j ). (9)

Subsequently,

1 fi =

∑
j∈N

Wi j ( fi − f j )=
∑
j∈N

Wi j fi −

∑
j∈N

Wi j f j = di f i −wi : f ,

(10)
where di =

∑
j∈N wi j is the degree of vertex i . wi : =

(wi1, . . . , wi N) and f =

 f1
...
fN

 are N-dimensional row

and column vectors, respectively. wi : f represents the inner
product of two vectors for all N nodes:

1 f =

 1 f1
...

1 fN

=
 d1 f1 −w1: f

...
dN fN −wN: f



=

 d1 . . . 0
...

. . .
...

0 . . . dN

 f −

 w1:
...
wN:

 f ,

= diag (di ) f −W f = (D−W) f = L f (11)

where D−W is the Laplacian matrix L . The i -th row in the
Laplacian matrix reflects the accumulation of gain generated
by the i -th node when disturbing the other nodes. Intuitively,
the Laplacian graph reveals that the potential can flow smoothly
to other nodes in a specific direction when a potential on node
i is applied. To this end, RA increases the attention weight and
decreases the influence of noise, which is helpful for downstream
tasks.

B. Decoder–Manifold Reconstruction

After obtaining the high-dimensional feature representation of
the point cloud, it can be employed in the decoder to process dif-
ferent tasks, such as denoising. Previous denoising works mostly
relied on the idea of point displacement from the latent surface.
However, these points are not designated for surface reconstruc-
tion, which may lead to suboptimal denoising [32–34]. The
point cloud usually represents a latent surface or 2D manifold
of a set of sampling points. The latent manifold of the noise
point cloud is learned, and its inherent structure is captured for
reconstruction to ensure robust denoising, as shown in Fig. 4(b).

Specifically, the decoder converts the embedding features of
each sampling point and its neighborhood into a local surface
centered on that point to infer the latent manifold, defined
as a patch manifold. Additionally, the inferred patch man-
ifold is sampled multiple times to reconstruct a clean point
cloud P̃ ∈ R N×3. The entire process is illustrated in Fig. 4.
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Fig. 3. Structure of the RA module. The SA module is in the black dashed box.

Fig. 4. Illustration of patch manifold reconstruction and resampling.

There is no strict point-to-point correspondence between the
downsampling and upsampling point sets.

The 2D manifold M embedded in a 3D space parameterized
by the feature vector y is formally defined as

M(u, v; y ) : [−1, 1]× [−1, 1]→R3, (12)

where (u, v) is a point in the 2D rectangular area [−1, 1]2.
Equation (12) maps a 2D rectangle to an arbitrarily shaped
patch manifold parameterized by y . The parameterized patch
manifold Mi ([u, v; y i ]) is realized using MLP because it is a
general approximator whose expressive ability is sufficient to
approximate a manifold of any shape [37]. This is expressed as

Mi (u, v; y i )=MLPM ([u, v, y i ]) . (13)

With the definition of manifold M, the patch manifold Mi

corresponding to point Pi in the downsampling point set Ŝ is
defined as

Mi (u, v; y i )= pi +M (u, v; y i ) . (14)

Equation (14) reveals that the constructed manifold
M(u, v; y i ) moved to a local surface centered on pi , and the
patch manifold corresponding to all points in Ŝ can be expressed
as {Mi |pi ∈ Ŝ}Mi=1, which represents the latent surface of the
point cloud. In the previous adaptive downsampling period, the
number of input points were reduced by half, that is, M = N/2.
Likewise, the points on each patch manifold Mi ([u, v, y i ])

need to be resampled twice to obtain the predicted denoising
point cloud P̃ , expressed as

P̃ = {pi +MLPM ([ui1, vi1, y i ])}
M
i=1

+ {pi +MLPM ([ui2, vi2, y i ])}
M
i=1 . (15)

C. Loss

A total loss function is designed to measure the quality of a
denoising point cloud that is composed of two parts, L as and
Lus. L as quantifies the distance between the adaptive down-
sampling set Ŝ and ground truth point cloud Pgt. Lus quantifies
the distance between the final denoising point cloud P̃ and the
ground truth Pgt. Ŝ and Pgt contain different numbers of points,
|Ŝ|< |Pgt|, so the Chamfer distance (CD) was chosen as L as

to further optimize the adaptive sampling results [38]. L as is
expressed as

L as = LCD

(
Ŝ, Pgt

)
=

1∣∣∣Ŝ∣∣∣
∑
p∈Ŝ

min
q∈Pgt
| |p − q‖2

2 +
1∣∣Pgt

∣∣ ∑
q∈Pgt

min
p∈Ŝ
| |p − q‖2

2 .

(16)

The first part of Eq. (16) indicates that the CD algorithm
finds the nearest neighbor point in the ground truth point set
Pgt for each point in the sampled point set Ŝ, then sums the
squared distances. The second part shows the difference in data
distribution between the two sets.

The Earth mover’s distance was leveraged as Lus to measure
the distance between the denoising point cloud P̃ and ground
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truth point cloud Pgt [38]. It is expressed as

Lus = LEMD( P̃ , Pgt)= min
ϕ: P̃→Pgt

1

N

∑
p∈ P̃

||p − ϕ(p)||22, (17)

where | P̃ | = |Pgt| = N andϕ is a bijection.
End-to-end supervised training was conducted on the net-

work to minimize the total loss Ldenoise = λL as + (1− λ)Lus.
λ is an empirical value of 0.01, and an ADAM optimizer was
employed with an initial learning rate of 0.001, which decreased
during the training.

3. EXPERIMENT

In this section, the proposed framework is quantitatively and
qualitatively compared with the latest denoising networks.
The proposed network was run in parallel on a system with two
NVIDIA RTX 2080Ti graphics cards, Python 3.6, Pytorch 1.5,
and Cuda 10.0.

A. Experimental Setup

1. DataSet

Twenty categories of point clouds with eight different shapes
in each category were collected from ModelNet-40 for training
[39]. Poisson disk sampling (PDS) was utilized to sample point
clouds with a resolution from 20 to 100 K [40]. In addition,
20% intervals were used as the basic original point cloud. For
the denoising task, noise point clouds were generated by adding
Gaussian noise with standard deviations of 0.25%, 0.5%, 1%,
2%, and 3% of the original shape’s bounding box diagonal to
obtain a total of 4000 point clouds. Twenty types of point clouds
with four shapes in each category were collected as the test data
set. PDS with resolutions of 20 and 50 K were employed to
generate the point clouds, which were perturbed with Gaussian
noise. The standard deviations were the same as those of the
training data set to obtain a total of 800 shapes.

Furthermore, the terracotta warrior fragments unearthed
with a laser scanner in K9901 of the Qin Shihuang Mausoleum
Site Museum were used as experimental data to check the ver-
satility of the proposed network for point clouds in the real
world.

2. Metrics

Two metrics were utilized to illustrate the effectiveness of the
experiment. The first used the CD algorithm as an evaluation
metric to measure the distance between the denoising P̃ and
ground truth Pgt point clouds, expressed as

C
(

P̃ , Pgt

)
=

1∣∣∣ P̃ ∣∣∣
∑
p∈ P̃

min
q∈Pgt
| |p − q | |2

+
1∣∣Pgt

∣∣ ∑
q∈Pgt

min
p∈ P̃
| |q − p| |2. (18)

The first term measures the distance from each predicted
point to the target surface; the second term represents the
uniform distribution of the output point cloud on the target
surface. Equation (18) is different from the `2 square distance
used in Eq. (16), which is a term in the loss function. Calculating
the `2 distance involves a square root operation, which is not
suitable as a loss function for model training due to its numerical
instability.

A point-to-surface (P2S) distanceρ( P̃ , S)was also employed
because the proposed framework aimed to reconstruct the latent
surface, expressed as

ρ
(

P̃ , S
)
=

1∣∣∣ P̃ ∣∣∣
∑
p∈ P̃

min
q∈S
| |p − q | |2, (19)

where S is the latent surface of the ground truth point cloud Pgt.
For these two metrics, a smaller value indicates a better result.
For high noise point clouds, the best results can be obtained by
iterative denoising, i.e., feeding the output of the network as
input again.

B. Quantitative Results

The proposed network was quantitatively compared with
previous deep learning networks, including neural projection
(NPD), PointCleanNet (PCNet), and total denoising (TlDn).
The CD was calculated for each noise level and the P2S dis-
tance was based on 800 point clouds. The metric values of CD
and P2S for each method become progressively larger as the
noise ratio increased when compared horizontally, as shown in
Tables 1 and 2, respectively. When vertically compared with
the same noise ratio, the NPD and TlDn models demonstrated
similar results and poor metrics in CD and P2S.

The values of the PCNet model were better than those of
the previous two models but still inadequate. The proposed
TDNet-SA model demonstrated results similar to PCNet under
lower noise conditions. The proposed SA and RA methods
gradually displayed their advantages with an increase in noise
ratio. In particular, the larger the noise, the more obvious the
advantage of RA. The proposed framework was superior to pre-
vious works and more robust to high noise, as shown in Tables 1
and 2. The terracotta warrior fragment data set obtained by
laser scanning was also evaluated to determine the generaliz-
ability of the proposed architecture. The proposed architecture
demonstrated a good generalization performance, as shown in
Table 3.

Table 1. Comparison of CD among Different
Denoising Frameworks with Different Noise Ratios

10−2 0.25% 0.5% 1% 2% 3%

NPD 0.24 0.62 1.28 2.32 3.27
PCNet 0.18 0.46 0.97 1.42 2.91
TlDn 0.34 0.78 1.15 2.26 3.12
TDNet-SA
(proposed)

0.27 0.48 0.96 1.35 2.64

TDNet-RA
(proposed)

0.16 0.39 0.83 1.20 2.15
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Table 2. Comparison of P2S among Different
Denoising Frameworks with Different Noise Ratios

10−2 0.25% 0.5% 1% 2% 3%

NPD 0.27 0.54 1.24 2.69 4.68
PCNet 0.14 0.38 0.74 1.38 3.27
TlDn 0.33 0.65 1.05 2.78 4.41
TDNet-SA
(proposed)

0.26 0.41 0.75 1.36 3.19

TDNet-RA
(proposed)

0.13 0.29 0.52 1.03 2.68

Table 3. Comparison of CD and P2S among the
Different Denoising Frameworks on Terracotta Warrior
Fragments

10−2 NPD PCNet TlDn
TDNet-SA
(proposed)

TDNet-RA
(proposed)

CD 1.32 1.10 1.27 1.15 1.06
P2S 1.28 0.94 1.19 1.04 0.89

It can be concluded from the experimental results that the
performance of the proposed TDNet-RA was significantly
better than that of the other methods. The performance of the
TDNet-SA model was close to that of the latest PCNet at a lower
noise rate; the greater the noise rate, the better the perform-
ance. Notably, compared with the CD, which is essentially the
point-to-point distance, the proposed framework demonstrates
more advantages when measured using the P2S distance. The
proposed framework reconstructed the latent manifold of the
point cloud, and points were resampled from this to obtain
a final clean point cloud. Sampling on the manifold did not
guarantee that the newly sampled points were close to the points
in the original point cloud, which may have resulted in a rela-
tively large point-to-point distance. However, the P2S distance

provided better measurement because the point cloud was a
representation of a 3D surface.

Similarly, the literature indicates that the distance from the
point to the surface is more relevant to the subjective evalu-
ation of the denoising results [41]. The significant advantage
of the P2S distance in this work demonstrates that it is visually
preferable to previous methods.

C. Qualitative Results

The proposed network was qualitatively compared with previ-
ous deep learning networks, such as NPD, PCNet, and TlDn.
Comparison of the visual denoising results under Gaussian
noise with different noise levels is shown in Fig. 5.

The reconstruction error of each point was measured using
the distance from the point to the surface. Deep-learning based
models with smaller loss values are represented in dark blue;
otherwise, they are red, as shown in the color bar. Results for
the proposed method were much cleaner than those of other
methods, especially with higher noise ratios. Specifically, the
proposed method was more robust compared with the NPD
and TlDn methods and similar to the PCNet at lower noise
levels. The proposed method reconstructed the underlying
surface and produced more significant results. In summary, the
qualitative results in Fig. 5 are consistent with the quantitative
results shown in Tables 1 and 2.

Additionally, qualitative research was conducted on the data
set of terracotta warrior fragments in the real world. The number
of noise points (red) for the head and right hand of the terracotta
warrior decreased but remained under the NPD and TlDn net-
works, as shown in Fig. 6.

The PCNet network results were better but not adequate.
Additionally, the results for the proposed denoising method
demonstrated fewer noise points, and the details were well

Fig. 5. Visual comparison among the different denoising frameworks under different Gaussian noises: (a) 3%, (b) 2%, (c) 1%, and (d) 0.5%.
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Fig. 6. Qualitative results of different denoising frameworks on terracotta warrior fragments.

preserved. This verified that the proposed approach could be
effectively extended to real-world data sets.

In summary, the experimental results consistently demon-
strated the effectiveness of the proposed method when
quantitatively and qualitatively compared with other meth-
ods, especially when the noise was relatively high. Furthermore,
the robustness of the proposed method was demonstrated by the
superior performance for real-world data sets.

4. CONCLUSION

This study proposed a novel end-to-end denoising architec-
ture that improved the transformer model in NLP to acquire
richer high-dimensional feature representation. Additionally,
it learned the latent manifold of the noise point cloud from the
sampled points. The FPS method was updated with adaptive
downsampling operations to make points closer to the surface
where they were located. Accordingly, the patch manifold was
inferred by converting each sampling point and its embed-
ded neighborhood features to the local surface. A clean point
cloud that captured the internal structure was reconstructed by
sampling each patch manifold. Extensive experiments demon-
strated that the proposed network was superior to other existing
frameworks for synthetic noise point clouds and real terracotta
warrior fragments. In the future, this framework will be tested
and optimized for broader applications.
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