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Abstract

Objective. Fluorescence molecular tomography (FMT) is an optical imaging modality that provides
high sensitivity and low cost, which can offer the three-dimensional distribution of biomarkers by
detecting the fluorescently labeled probe noninvasively. In the field of preclinical cancer diagnosis and
treatment, FMT has gained significant traction. Nonetheless, the current FMT reconstruction results
suffer from unsatisfactory morphology and location accuracy of the fluorescence distribution,
primarily due to the light scattering effect and the ill-posed nature of the inverse problem. Approach.
To address these challenges, a regularized reconstruction method based on joint smoothly clipped
absolute deviation regularization and graph manifold learning (SCAD-GML) for FMT is presented in
this paper. The SCAD-GML approach combines the sparsity of the fluorescent sources with the latent
manifold structure of fluorescent source distribution to achieve more accurate and sparse
reconstruction results. To obtain the reconstruction results efficiently, the non-convex gradient
descent iterative method is employed to solve the established objective function. To assess the
performance of the proposed SCAD-GML method, a comprehensive evaluation is conducted through
numerical simulation experiments as well as in vivo experiments. Main results. The results
demonstrate that the SCAD-GML method outperforms other methods in terms of both location and
shape recovery of fluorescence biomarkers distribution. Siginificance. These findings indicate that the
SCAD-GML method has the potential to advance the application of FMT in in vivo biological research.

1. Introduction

With the rapid development of medical imaging equipment and fluorescent probes, fluorescence molecular
imaging (FMI) has increasingly used in clinical applications and the study of protein function in recent years
(Ntziachristos et al 2003, Ntziachristos et al 2005, Ntziachristos 2010, Chi et al 2014, Hu et al 2020). By detecting
the distribution of targeted fluorescence probes in biological tissues, FMI enables noninvasive imaging of
biomarkers (Weissleder et al 1999, Weissleder 2002). However, FMI only provides qualitative planar photon
distribution information on the surface of an imaging object, thereby restricting its effectiveness in tumors
studies (Hu et al 2010, Mohajerani and Ntziachristos 2015, Zhang et al 2018). As a solution, fluorescence
molecular tomography (FMT) has been proposed based on FMI. FMT is an imaging modality designed to
achieve three-dimensional visualization of fluorescence regions within biological tissues in vivo by solving the
reconstruction problem (Willmann et al 2008, Ale et al 2012). Owing to its cost-effectiveness and high
sensitivity, this optical molecular modality has found wide-ranging applications in preclinical diagnostics (Ale
etal2012).
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However, despite the promising advantages of FMT, achieving excellent reconstruction performance
contionues to be a significant challenge due to the severe scattering effect of light in biological tissues and the ill-
posed nature of the inverse problem (Guo et al 2017, Meng et al 2019). To address these challenges, numerous
strategies have been proposed to enhance the quality of FMT reconstruction. One kind of the strategies is to
incorporate structural prior knowledge. For instance, incorporating spatial distribution information from
computed tomography (CT) and magnetic resonance imaging (MRI) can significantly improve the accuracy and
stability of FMT (Kircher eral 2012, Hu et al 2015). In the studies of orthotopic glioma morphological FMT
reconstruction, several reconstruction methods employing this strategy have been shown to effectively recover
the morphology of fluorescence distribution (Schulz et al 2009, Davis et al 2013, Holt et al 2015). Furthermore,
various optimization methods based on different regularization terms are also used to alleviate the ill-posed
problem in FMT reconstruction. And various methods based on sparse regularization terms, including Lo, L;
and L,(0 < p < 1)(Zhangetal 2011, Shietal 2015, Edjlali and Bérubé-Lauziére 2018), have been proposed in
recent years. However, the reconstruction algorithms based on these regularization methods have their
drawbacks. Ly-norm regularization involves a problem of combinatory optimization, rendering it unsuitable for
practical applications. L,-norm regularization results in over-smoothing, making it challenging to obtain sharp
boundaries (Cao et al 2007). L;-norm regularization results in over-sparseness in reconstruction. To overcome
these problems, some new methods based on joint regularization, such as sparse-graph manifold learning
(SGML) (Guo et al 2020) and L;— L, norm regulation via difference of convex algorithm (L, — L, via DCA)
algorithm (Zhang et al 2016) have been proposed.

In addition to traditional methods, deep learning strategies have been introduced to FMT reconstruction in
recent years (Gao etal 2018, Guo et al 2018, Guo etal 2019, Du et al 2022). For instance, Meng et al presented a
novel K-nearest neighbor based locally connected (KNN-LC) network for FMT reconstruction in 2020,
demonstrating promising performance in terms of stability and accuracy (Meng et al 2020). While deep learning
methods can overcome the inaccuracies associated with the photon propagation model and the ill-posed nature
of the inverse problem, they are often limited by poor model generalization and time-consuming computations,
which hinders their clinical applicability.

In this paper, a regularized reconstruction approach based on joint smoothly clipped absolute deviation
regularization and graph manifold learning (SCAD-GML) for FMT is proposed. The proposed approach
addresses the challenges of FMT reconstruction by leveraging the benefits of both SCAD regularization and
GML. The SCAD regularization exploits the sparsity property of fluorescent sources and mitigates the ill-
posedness of FMT reconstruction. And GML model can exploit the latent manifold structure and morphology
of fluorescent source distribution, thus improving the shape similarity of reconstruction results. The
combination of the SCAD regularization and GML model balances the sparseness, smoothness, and
morphology for FMT reconstruction, which improves the accuracy and robustness of reconstruction results.
The inverse problem of FMT reconstruction is converted into a non-convex minimization problem by using
SCAD-GML method. The non-convex gradient descent iterative method (NGDIM) is used for solving the
proposing optimization problem.

To assess the effectiveness of the proposed SCAD-GML method in FMT reconstruction, simulation
experiments and in vivo experiments were conducted. L,-based Incomplete variables truncated conjugate
gradient (IVTCG) method (He et al 2010) and L;-based iterative shrinkage (IS- L;) (Han et al 2010) were used for
comparisons. The experimental results indicated that the SCAD-GML method outperformed the other two
methods in terms of both the location accuracy and shape recovery of the fluorescence biomarkers distribution.
This demonstrates the significant improvement achieved by the proposed SCAD-GML method in the
performance of FMT reconstruction.

The paper is organized as follows. In section 2, we introduce the FMT forward model, FMT inverse problem
and the SCAD-GML method. In section 3, we introduce the process and results for both numerical simulation
and in vivo experiments. In section 4, we make some summary and discussion of this paper.

2. Methods

Photon propagation in the near-infrared spectral band has a strongly scattering characteristic in the biological
tissues. For steady-state FMT reconstruction with a point excitation source, the diffusion equation (DE) with the
Robin-type boundary condition can be used to describe the propagation process of photons in the biological
tissues (Lee et al 2007, Liu et al 2018). This can be expressed as follows:
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where 7 is the location vector inside the imaging domain €2, and r; is the position vector of the point excitation
sources with theamplitude ©. D ,, = 1/3(tt,y 4, + (1 — &) 1y ,,) denotes the diffusion coefficientand g is
the anisotropy parameter (Jacques 2013). y,, and p,,, represents the absorption coefficients of excited light and
emitted light, respectively. ®,(r) and $,,(r) denotes the photon flux density at position r of excited light and
emitted light, respectively. 4, is the fluorescent source to be reconstructed, 7 is quantum efficiency and q
denotes the optical reflective index of the biological tissues.

AX =@ )

where A denotes the system weight matrix. ® denotes the photon segment on the surface of the measured object
detected by the highly sensitive detector, and X is the spatial distribution of fluorescent sources within the
biological tissues. The detail description can be found in (Wang et al 2009). Thus, the goal of solving the FMT
inverse problem is the recovery of the fluorescent distribution X from the above linear matrix equation.

2.1.Inverse problem

FMT reconstruction is aimed at solving the inverse problem described by equation (2). However, since only the
photon distribution on the surface is measurable, the dimension of the measured data is significantly lower than
that of the internal fluorescence distribution. This leads to the ill-posed nature of the FMT problem, making the
reconstruction process challenging. In order to ensure the stability of FMT reconstruction and preserve the
details of fluorescent regions, this paper adopts SCAD regularization. By combining the SCAD regularization
with the objective function of FMT reconstruction, the optimization function can be formulated as follows:

S IAX = @ + 3 f6x) @
i=1

where ||. |5 denotes the L, norm, thatis, || 3| = Z?:l 33 And f, (x) is the SCAD regularization function, which
can be formulated as:

Alx|, 0< x| <A
2 2
X 2a\|x| + X A< Jx] < a
INCIES 2(a — 1) 4)
2
@ otherwise

where A is the nonnegative regularization parameter, 4 is a constant greater than 2. Fan and liused a = 3.7 for
moderate sample size (Fan and Li 2001). We adopt it in the experiments.

To improve the morphological recovery of FMT reconstruction, the GML model is used in this paper. The
complete FMT reconstruction process using SCAD-GML method can be defined as follows:

1 n
S llax - DI + S A6 + p |LX |3 (5)
i=1

where (1 is the regularization parameter, which determines the balance between the regularity term and fidelity
term in the optimization process. L is the Laplacian graph matrix, which is defined as follows:

1 i=j
Lij= —exp[—ﬂ]/ps LjESHi=] (6)
4R% ) %
0 otherwise

where R denotes the radius of the Gaussian kernel function which is used to modify the probability density
function of the nearby vertexes within the same organ. d;; denotes the Euclidean distance between the ith and
jthvertex. S is the vertex set in the kth organ. p, denotes the region mollifier that prevents the influence of
vertex distribution variation and ensures the total edge weight in the same organ is 1. The definition is as follows:

d‘él
P, = z exp| ——= | 7)

2
Vg, l€s,g=1 4R
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Algorithm 1. SCAD-GML method for FMT Reconstruction.

Input: The detected surface photon ® and the system matrix A.

Initialization: The initial optimal approximation solution X, = A*®, the Maximum iteration number maxIter = 600, the regularization
parameter A = 1 x 1073, x4 = 1 x 1072, theadjustment coefficienty = 1 x 1072, iterationindex k = 1.

Step1: Find the nearby vertexes in the same organ and construct the organ vertex set Sx. Calculate the region mollifier p,, by the vertex
set Sg.

Step2: Calculate the graph Laplacian matrix L, via the equation (6).

Repeat

Step3: Referencing equation (8), calculate the gradient vector of the current function.

Step4: Update solution x; ; according to the gradient vector, via equation (10). And the point less than 0 is set to 0 in xy ;.

Step5: Increase the iterationindex k = k + 1.

Until k > maxIter

Output: x;.

2.2.FMT reconstruction based on the SCAD-GML method

Generally, solving equation (5) is a challenging task due to its non-convex nature and the absence of efficient
optimization methods. In this paper, the NGDIM is selected to address this challenge, leveraging the principles
of non-convex optimization theory. The details of the NGDIM will be explained in this section.

The NGDIM method is an optimization algorithm that shares similarities with the Newton iteration
method. Its central objective is to minimize the objective function by performing gradient descent, leveraging
the gradient information of the objective function to efficiently converge to the optimal solution. The gradient of
equation (5) is obtained as follows:

AT(AX — @) + 2uL"LX + (f{ (x1), £ (%5 -+ of | (X)) )

where f (x;) is the gradient of the SCAD regularization function. The expression of it is as follows:

Asign(x;) ifo < x| <A
Asi D) =X
f(xi) = { 9MSIBND T X0 ey < oan ©)
a—
0 otherwise

The iterative update formula can be derived from equation (8), as follows:

xks1= Xk — V(AT (Axg — @) + 2uL Ly
+ (f;\(xl)? f;\(xZ):"' )f;\('xn)))y k == 0) 1’ 2 (10)

where 7 is the adjustment coefficient with a value ranging from 0 to 1. Its purpose is to ensure that the solution
gradually approaches the optimal solution. In the experiments, we adopt a fixed value of 0.01 for ease of
calculation and implementation. By continuously iterating according to equation (10), the FMT inverse problem
can be solved. Thus, Algorithm 1 outlines the main steps of the SCAD-GML method. It should be noted that the
selection of parameter values in the SCAD-GML method is based on experience.

3. Experiments and results

In order to confirm and thoroughly assess the effectiveness of the SCAD-GML method in FMT reconstruction,
this section offers three separate sets of numerical simulation experiments and one set of in vivo experiments.
Specifically, the location accuracy, robustness, morphological recovery ability and practicality of SCAD-GML
method were evaluated. Two other algorithms were used to compare with our proposed method, namely,
IVTCG and IS- L;. All experiments and programs were executed on a personal computer with an Intel(R) Core
(TM)i5-8265 CPU (1.8 GHz) and 8GB RAM. The computational environment allowed for efficient and reliable
evaluation of the proposed SCAD-GML method, as well as the comparison with the other algorithms.

3.1. Experimental process

3.1.1. Numerical simulations

The heterogeneous phantom model was used for numerical simulation experiments, and its 3D view is shown in
figure 1(A). The model was a cylinder with a radius of 10 mm and a height of 30 mm, which contains five organs:
heart, bone, lung, muscle, and liver. The optical parameters of these tissues and organs at 650 nm in the model
are shown in table 1 (Hou et al 2017). In the inverse reconstruction, the model was discretized into a finite
element mesh of 4626 nodes and 25840 tetrahedral elements by using Comsol Multiphysics software as shown in
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Figure 1. (A) The 3D view of the heterogeneous phantom model. (B) The finite element mesh diagram obtained by model
discretization. (C) The forward simulation result of the single-source.

Table 1. The optical parameters in numerical simulation.

Tissues o (Mm ™) H (mm™?) H (mm 1) L (Mm ™) g

Muscle 0.0052 10.80 0.0068 10.30 0.90
Heart 0.0083 6.73 0.0104 6.60 0.85
Bone 0.0060 60.09 0.0030 30.74 0.90
Liver 0.0329 7.00 0.0176 6.60 0.90
Lungs 0.0133 19.70 0.0203 19.50 0.90

figure 1(B). (Parvitte et al 2013). Figure 1(C) is the forward simulation result, which was generated by the
molecular optical simulation environment (MOSE) based on the Monte Carlo method (Ren et al 2010). This
model was used to simulate the realistic optical properties and geometry of biological tissues, allowing for
accurate assessment of the performance of the SCAD-GML algorithm in a controlled and reproducible
environment.

Three groups of simulation experiments were completed in the heterogeneous phantom model. In the
single-source simulation experiment, a uniform sphere light source with a radius of 1 mm and a center at (6 mm,
6 mm, 22 mm) was used to simulate the actual fluorescent source. In the dual-source simulation experiment,
two uniform sphere lights with a radius of 1 mm at (—6 mm, 5 mm, 13 mm) and (—6 mm, 5 mm, 18 mm) centers
were used to simulate two actual fluorescent sources. These simulation experiments were designed to evaluate
the performance of the SCAD-GML method in terms of shape recovery accuracy and spatial positioning
accuracy in the model. Moreover, a series of anti-noise simulation experiments were conducted to evaluate the
robustness of the SCAD-GML method. Specifically, 5%, 10%, 15%, 20%, 25% Gaussian noise was added to the
single-source simulation experiment.

3.1.2. In vivo experiment

To further assess the practical performance of the SCAD-GML method, in vivo experiment was conducted
following the approved protocols of the Animal Ethics Committee of the Northwest University of China and Use
Committee. The experiment utilized an adult BALB/c mouse, and a dual-modality FMT/CT imaging system
was employed to acquire CT images and fluorescence images. The transmissive FMT was used in the dual-
modality imaging system. The transmissive FMT has the advantage of being more suitable for tomographic
imaging of targets located deep within the tissue and is less susceptible to excitation light leakage compare to
reflective FMT (Darne et al 2013). The system diagram is shown in figure 2, and the detailed experimental
procedure was as follows.

In the initial step, a spherical fluorescent bead with a radius of 1 mm, containing Cy5.5 solution was
implanted into the abdominal cavity of the mouse, serving as the fluorescence target. The fluorescent bead was
encased in a plastic material, facilitating its detection using CT for precise localization of the actual fluorescent
region. After that, the mouse was fixed vertically on the rotation platform and remained stationary during the
imaging process by administering anesthesia through inhalation of isoflurane gas. After a six-hour interval, a 680
nm continuous wave semiconductor laser was employed to provide the excitation illumination. Subsequently, a
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Figure 2. The prototype FMT imaging system.

thermoelectric-cooled electron multiplying charge-coupled device (EM-CCD) camera (—80, i XonEM+888)
with a 120° field of view captured the surface fluorescence image, with an exposure time set at 1 s. To filter out
noise, an appropriate 750 4= 10 nm bandpass filter was used to capture and confine the emission light. During the
process of optical signal acquisition, the CCD camera captures an optical image after every 90 degrees of rotation
of the rotating platform. The optical images collected are used for subsequent 3D reconstruction processes. After
the acquirement of fluorescence image, CT imaging was performed on each mouse using a CT system. This step
aimed to obtain structural data of the mouse, which provides detailed information about the anatomical features
and tissues. After completing the data collection stage, data processing was carried out. A landmarks-based rigid-
body registration method was employed to align the CT data with the fluorescence imaging. Following the
registration, the absolute irradiance distribution in the two-dimensional fluorescence images was projected onto
the three-dimensional surface of the mouse model. The major organs, including the muscle, skull, and brain
were segmented using the Amria 5.2 software. Following segmentation, the mouse model was discretized into
6325 nodes and 29479 tetrahedral elements for FMT reconstruction. To evaluate the practicality of the SCAD-
GML method in vivo, two other algorithms mentioned earlier were employed for comparative analysis.

3.1.3. Evaluation metrics

To rigorously quantify and analyze the location accuracy and shape recovery ability of the FMT reconstruction,
this study utilized two commonly used evaluation metrics, namely the location error (LE) and the Dice
coefficient (DICE).

The LE is defined as the Euclidean distance between the reconstructed fluorescent source center (x, y, z)
and the actual fluorescent source center (xo, ), Zo). Itis a quantitative measure used to evaluate the positioning
accuracy of the reconstruction results. The LE values are always greater than 0, and a smaller LE value signifies a
higher level of accuracy in localizing the fluorescence biomarker.

LE = |(x — x0)? + (¥ — 3)* + (z — 20)’ (11)

To verify the morphological recovery ability of the algorithm, the Dice coefficient (DICE) is used as an indicator.
It measures the degree of overlap between the reconstructed fluorescent source region X and the actual source
region Y. The DICE values range from 0 to 1, and the larger the value is, the greater the similarity between the
reconstructed and the actual fluorescent regions, indicating a higher level of morphological recovery ability of
the algorithm.

_2XnY|

Dice =
X1+ Y]

(12)
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Figure 3. The 3D view of reconstruction results of single-source reconstructed by different methods. The reconstruction result is
sliced along the z-axis of the source to obtain the axial view, and the actual source’s location and size are indicated by a black circle on
the plan.

Table 2. Quantitative analysis of single-source simulation reconstruction

results.

Method Actual source center (mm) LE (mm) DICE
IVTCG 0.741 0.399
IS-1, (6,6,22) 0.401 0.466
SCAD-GML 0.280 0.565

3.2.Results

3.2.1. Single-source simulation reconstruction

To validate the shape recovery capability of the SCAD-GML algorithm, we conducted a comparison of its
performance with the IVTCG and IS- L; algorithms in the single-source experiment. The reconstruction results
are shown in figure 3. The reconstructed fluorescent source is visualized as a green area in the three-dimensional
view, and as a cyan area in the axial view. While the actual fluorescent source is represented by a black circle. It
can be observed from the figure that the source reconstructed by our method overlaps most with the actual
source. The quantitative analysis of the three methods is shown in table 2. According to the results in table 2, the
SCAD-GML method achieved a smaller LE compared to the other methods, indicating that the reconstructed
fluorescent source center was closer to the actual value. Additionally, the DICE score of the SCAD-GML method
was higher, indicating a better overlap between the reconstructed and actual source regions. This is consistent
with our observation.

3.2.2. Dual-source simulation reconstruction

To further assess the positioning accuracy, we contrasted the SCAD-GML algorithm’s performance with the
above two algorithms on the dual-source experiment. The reconstruction results of the three methods for the
dual-source experiment are shown in figure 4. It is evident that the SCAD-GML method provides the most
accurate reconstruction results, with better representation of the actual fluorescent source regions and more
accurate center position. The quantitative analysis of the reconstruction results using the three methods is
presented in table 3. The experimental results demonstrate that the SCAD-GML method outperforms the
IVTCG and IS- L; method, achieving the lowest location error and the highest source shape recovery ability as
measured by the dice coefficient. These experiment results further support the superior performance of the
SCAD-GML method in terms of positioning accuracy and shape recovery in FMT reconstruction.

7
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Figure 4. The reconstruction results of dual-source simulation experiment. Three different methods to reconstruct the fluorescent
source are displayed in 3D view and axial view. In 3D view, the green region is the double fluorescent source of reconstruction, and in
the axial view, the location and size of the real source are depicted by black circles.
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Figure 5. The results of quantitative analysis of anti-noise experiment.

Table 3. Quantitative analysis of dual-source simulation reconstruction

results.
Actual source Total
Method center (mm) LE (mm) LE (mm) DICE
IVTICG (—6,5,13) 1.038 1.990 0.432
(—6,5,18) 0.952 0.475
IS-1, (—6,5,13) 0.646 1.301 0.539
(—6,5,18) 0.655 0.556
SCAD-GML (—6,5,13) 0.576 1.155 0.622
(—6,5,18) 0.579 0.615

3.2.3. Anti-noise performance
To assess the robustness of the SCAD-GML method, we conducted an anti-noise experiment. Specifically, we
used the single-source simulation experiment to investigate the impact of adding 5%, 10%, 15%, 20% and 25%
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Figure 6. Results of three different reconstruction algorithms used in in vivo imaging experiments. The purple area in the 3D viewing
angle represents the cutting surface, and the axial viewing plane below is obtained after the cutting plane is expanded, and the actual
source’s location and size are indicated by a black circle in the axial view.

Table 4. Quantitative analysis of in vivo imaging reconstruction results.

Actual source center (mm) Method LE (mm) DICE
(11.5,9.5,22.6) IVICG 0.696 0.397
IS-1, 0.312 0.503

SCAD-GML 0.121 0.571

Gaussian noise on the reconstruction results. As illustrated in figure 5, the fluctuation of the LE, and DICE values
is negligible, indicating the method has good robustness.

3.2.4. Invivo imaging experiment

To assess the feasibility of the SCAD-GML method in vivo, we conducted an in vivo imaging experiment using an
adult BALB/c nude mouse. The reconstruction results obtained by three methods are shown in figure 6. The
quantitative analysis of the in vivo imaging experiment is presented in table 4. The experiments demonstrate that
the SCAD-GML method has smallest LE and the largest DICE value, indicating that the SACD-GML method
have superior performance in FMT reconstruction in vivo.

4, Discussion and conclusion

FMT is a promising imaging technology that can achieve 3D visualization of fluorescence regions in biological
tissues in vivo at alow cost. In clinical applications, FMT can be combined with other imaging modalities to

9
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enhance its spatial resolution. Integrating FMT with structural imaging techniques such as MRI or x-ray CT
enables the fusion of molecular information with high-definition anatomical reference, leveraging prior
knowledge on tissue’s optical properties to improve resolution and sensitivity simultaneously (An et al 2015,
Baikejiang et al 2017). In recent years, FMT has been used in tumor imaging and drug development, for example,
Torres et al used FMT for lymph node assessment to make treatment decisions for tumors such as breast cancer
and melanoma (Torres et al 2019). Kossodo et al applied FMT to drug development for cancer detection and
treatment monitoring (Kossodo et al 2010). These preclinical studies will promote the clinical application

of FMT.

However, due to the severe scattering effect of light in biological tissue and the ill-posed inverse problem, the
accuracy of FMT has been limited in many biomedical applications. To improve the quality of 3D
reconstruction, an effective FMT reconstruction method based on SCAD-GML method is proposed in this
paper. The SCAD norm is specifically designed to strike a balance between not excessively penalizing large-
valued coefficients, unlike the L1 norm, while approaching the desirable sparsity achieved by the LO norm
(Mehranian et al 2013). Therefore, employing SCAD regularization in FMT reconstruction yields sparser and
more accurate solutions compared to using LO or L1 regularization alone, resulting in improved FMT
reconstruction accuracy. However, it is important to note that increasing sparsity in reconstruction results may
lead to potential loss of morphological details (Guo et al 2020). Inspired by graph-based manifold learning and
sparse representation theory, we propose a novel approach called SCAD-GML for regularized FMT
reconstruction. The SCAD-GML method incorporates the Laplace graph model into a non-convex sparse
constraint based on the SCAD norm, leveraging the latent manifold structure and morphology of the fluorescent
source distribution to achieve accurate morphological recovery capability. The SCAD-GML method combines
the SCAD regularization and GML to balance the sparsity, smoothness, and morphology of fluorescent region.
And a non-convex objective function is constructed by SCAD-GML method, which is then solved using the
NGDIM. With these approaches, the proposed SCAD-GML method can reconstruct the characteristics of the
fluorescent regions accurately and effectively.

To verify the effectiveness of the proposed SCAD-GML method, a series of numerical experiments and
in vivo experiments were conducted, and the results were compared with two commonly used reconstruction
methods (IVT'CG and IS- ;). The experimental results show that: (1) dual-source simulation experiments
demonstrate that the SCAD-GML method ensures a high level of accuracy in reconstruction localization. (2) In
vivo experiments demonstrate the feasibility of the SCAD-GML method in biomedical research. (3) The anti-
noise experimental results demonstrate that the SCAD-GML method is robust to noise. (4) All experiments
demonstrate that the SCAD-GML method could obtain more accurate reconstruction results than the other two
methods.

While the SCAD-GML method shows good performance in FMT reconstruction, it still has some
limitations. Firstly, the parameters used in the proposed method were selected based on experience. It is
necessary to propose an adaptive parameter selection algorithm to choose these parameters. Furthermore,
additional research is necessary to explore the clinical application of FMT using the SCAD-GML method, which
will also be a focus of our future research. By addressing these limitations, the proposed SCAD-GML method
could be further improved and more widely applicable in biomedical imaging research.

In summary, the proposed SCAD-GML method is an effective solution to the FMT inverse problem. It
achieved better reconstruction performance in terms of both location accuracy and morphological recovery
compared with the traditional methods mentioned above. In addition, it exhibits strong robustness in the FMT
reconstruction. The method has great potential to enhance reconstruction performance and promote the
application of FMT in in vivo biological studies.
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