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Abstract
Objective. Fluorescencemolecular tomography (FMT) is an optical imagingmodality that provides
high sensitivity and low cost, which can offer the three-dimensional distribution of biomarkers by
detecting the fluorescently labeled probe noninvasively. In the field of preclinical cancer diagnosis and
treatment, FMThas gained significant traction.Nonetheless, the current FMT reconstruction results
suffer fromunsatisfactorymorphology and location accuracy of thefluorescence distribution,
primarily due to the light scattering effect and the ill-posed nature of the inverse problem.Approach.
To address these challenges, a regularized reconstructionmethod based on joint smoothly clipped
absolute deviation regularization and graphmanifold learning (SCAD-GML) for FMT is presented in
this paper. The SCAD-GML approach combines the sparsity of the fluorescent sources with the latent
manifold structure offluorescent source distribution to achievemore accurate and sparse
reconstruction results. To obtain the reconstruction results efficiently, the non-convex gradient
descent iterativemethod is employed to solve the established objective function. To assess the
performance of the proposed SCAD-GMLmethod, a comprehensive evaluation is conducted through
numerical simulation experiments as well as in vivo experiments.Main results.The results
demonstrate that the SCAD-GMLmethod outperforms othermethods in terms of both location and
shape recovery offluorescence biomarkers distribution. Siginificance.Thesefindings indicate that the
SCAD-GMLmethod has the potential to advance the application of FMT in in vivo biological research.

1. Introduction

With the rapid development ofmedical imaging equipment and fluorescent probes, fluorescencemolecular
imaging (FMI) has increasingly used in clinical applications and the study of protein function in recent years
(Ntziachristos et al 2003,Ntziachristos et al 2005,Ntziachristos 2010, Chi et al 2014,Hu et al 2020). By detecting
the distribution of targeted fluorescence probes in biological tissues, FMI enables noninvasive imaging of
biomarkers (Weissleder et al 1999,Weissleder 2002). However, FMI only provides qualitative planar photon
distribution information on the surface of an imaging object, thereby restricting its effectiveness in tumors
studies (Hu et al 2010,Mohajerani andNtziachristos 2015, Zhang et al 2018). As a solution,fluorescence
molecular tomography (FMT) has been proposed based on FMI. FMT is an imagingmodality designed to
achieve three-dimensional visualization offluorescence regionswithin biological tissues in vivo by solving the
reconstruction problem (Willmann et al 2008, Ale et al 2012). Owing to its cost-effectiveness and high
sensitivity, this opticalmolecularmodality has foundwide-ranging applications in preclinical diagnostics (Ale
et al 2012).
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However, despite the promising advantages of FMT, achieving excellent reconstruction performance
contionues to be a significant challenge due to the severe scattering effect of light in biological tissues and the ill-
posed nature of the inverse problem (Guo et al 2017,Meng et al 2019). To address these challenges, numerous
strategies have been proposed to enhance the quality of FMT reconstruction. One kind of the strategies is to
incorporate structural prior knowledge. For instance, incorporating spatial distribution information from
computed tomography (CT) andmagnetic resonance imaging (MRI) can significantly improve the accuracy and
stability of FMT (Kircher et al 2012,Hu et al 2015). In the studies of orthotopic gliomamorphological FMT
reconstruction, several reconstructionmethods employing this strategy have been shown to effectively recover
themorphology offluorescence distribution (Schulz et al 2009, Davis et al 2013,Holt et al 2015). Furthermore,
various optimizationmethods based on different regularization terms are also used to alleviate the ill-posed
problem in FMT reconstruction. And variousmethods based on sparse regularization terms, including L ,0 L1

and < <( )L p0 1p (Zhang et al 2011, Shi et al 2015, Edjlali and Bérubé-Lauzière 2018), have been proposed in
recent years. However, the reconstruction algorithms based on these regularizationmethods have their
drawbacks. L0-norm regularization involves a problemof combinatory optimization, rendering it unsuitable for
practical applications. L2-norm regularization results in over-smoothing,making it challenging to obtain sharp
boundaries (Cao et al 2007). L1-norm regularization results in over-sparseness in reconstruction. To overcome
these problems, some newmethods based on joint regularization, such as sparse-graphmanifold learning
(SGML) (Guo et al 2020) and L1−L2 norm regulation via difference of convex algorithm (L1−L2 viaDCA)
algorithm (Zhang et al 2016) have been proposed.

In addition to traditionalmethods, deep learning strategies have been introduced to FMT reconstruction in
recent years (Gao et al 2018, Guo et al 2018, Guo et al 2019,Du et al 2022). For instance,Meng et al presented a
novel K-nearest neighbor based locally connected (KNN-LC)network for FMT reconstruction in 2020,
demonstrating promising performance in terms of stability and accuracy (Meng et al 2020).While deep learning
methods can overcome the inaccuracies associatedwith the photon propagationmodel and the ill-posed nature
of the inverse problem, they are often limited by poormodel generalization and time-consuming computations,
which hinders their clinical applicability.

In this paper, a regularized reconstruction approach based on joint smoothly clipped absolute deviation
regularization and graphmanifold learning (SCAD-GML) for FMT is proposed. The proposed approach
addresses the challenges of FMT reconstruction by leveraging the benefits of both SCAD regularization and
GML. The SCAD regularization exploits the sparsity property offluorescent sources andmitigates the ill-
posedness of FMT reconstruction. AndGMLmodel can exploit the latentmanifold structure andmorphology
offluorescent source distribution, thus improving the shape similarity of reconstruction results. The
combination of the SCAD regularization andGMLmodel balances the sparseness, smoothness, and
morphology for FMT reconstruction, which improves the accuracy and robustness of reconstruction results.
The inverse problemof FMT reconstruction is converted into a non-convexminimization problemby using
SCAD-GMLmethod. The non-convex gradient descent iterativemethod (NGDIM) is used for solving the
proposing optimization problem.

To assess the effectiveness of the proposed SCAD-GMLmethod in FMT reconstruction, simulation
experiments and in vivo experiments were conducted. L2-based Incomplete variables truncated conjugate
gradient (IVTCG)method (He et al 2010) and L1-based iterative shrinkage (IS-L1) (Han et al 2010)were used for
comparisons. The experimental results indicated that the SCAD-GMLmethod outperformed the other two
methods in terms of both the location accuracy and shape recovery of the fluorescence biomarkers distribution.
This demonstrates the significant improvement achieved by the proposed SCAD-GMLmethod in the
performance of FMT reconstruction.

The paper is organized as follows. In section 2, we introduce the FMT forwardmodel, FMT inverse problem
and the SCAD-GMLmethod. In section 3, we introduce the process and results for both numerical simulation
and in vivo experiments. In section 4, wemake some summary and discussion of this paper.

2.Methods

Photon propagation in the near-infrared spectral band has a strongly scattering characteristic in the biological
tissues. For steady-state FMT reconstructionwith a point excitation source, the diffusion equation (DE)with the
Robin-type boundary condition can be used to describe the propagation process of photons in the biological
tissues (Lee et al 2007, Liu et al 2018). This can be expressed as follows:
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where r is the location vector inside the imaging domain W, rand s is the position vector of the point excitation
sources with the amplitudeQ. m m= + -( ( ) )/D g1 3 1x m ax am sx sm, , , denotes the diffusion coefficient and g is
the anisotropy parameter (Jacques 2013). max and mam represents the absorption coefficients of excited light and
emitted light, respectively. F ( )rx and F ( )rm denotes the photonflux density at position r of excited light and
emitted light, respectively. maf is thefluorescent source to be reconstructed, h is quantum efficiency and q
denotes the optical reflective index of the biological tissues.

= F ( )AX 2

where A denotes the systemweightmatrix. F denotes the photon segment on the surface of themeasured object
detected by the highly sensitive detector, and X is the spatial distribution offluorescent sources within the
biological tissues. The detail description can be found in (Wang et al 2009). Thus, the goal of solving the FMT
inverse problem is the recovery of thefluorescent distribution X from the above linearmatrix equation.

2.1. Inverse problem
FMT reconstruction is aimed at solving the inverse problemdescribed by equation (2). However, since only the
photon distribution on the surface ismeasurable, the dimension of themeasured data is significantly lower than
that of the internal fluorescence distribution. This leads to the ill-posed nature of the FMTproblem,making the
reconstruction process challenging. In order to ensure the stability of FMT reconstruction and preserve the
details offluorescent regions, this paper adopts SCAD regularization. By combining the SCAD regularization
with the objective function of FMT reconstruction, the optimization function can be formulated as follows:
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where l is the nonnegative regularization parameter, a is a constant greater than 2. Fan and li used =a 3.7 for
moderate sample size (Fan and Li 2001).We adopt it in the experiments.

To improve themorphological recovery of FMT reconstruction, theGMLmodel is used in this paper. The
complete FMT reconstruction process using SCAD-GMLmethod can be defined as follows:
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where m is the regularization parameter, which determines the balance between the regularity term and fidelity
term in the optimization process. L is the Laplacian graphmatrix, which is defined as follows:
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where R denotes the radius of theGaussian kernel functionwhich is used tomodify the probability density
function of the nearby vertexes within the same organ. dij denotes the Euclidean distance between the ith and
jth vertex. Sk is the vertex set in the kth organ. psk denotes the regionmollifier that prevents the influence of
vertex distribution variation and ensures the total edgeweight in the same organ is 1. The definition is as follows:
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2.2. FMT reconstruction based on the SCAD-GMLmethod
Generally, solving equation (5) is a challenging task due to its non-convex nature and the absence of efficient
optimizationmethods. In this paper, theNGDIM is selected to address this challenge, leveraging the principles
of non-convex optimization theory. The details of theNGDIMwill be explained in this section.

TheNGDIMmethod is an optimization algorithm that shares similarities with theNewton iteration
method. Its central objective is tominimize the objective function by performing gradient descent, leveraging
the gradient information of the objective function to efficiently converge to the optimal solution. The gradient of
equation (5) is obtained as follows:

m- F + + ¢ ¢ ¢
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where ¢
l ( )f xi is the gradient of the SCAD regularization function. The expression of it is as follows:
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The iterative update formula can be derived from equation (8), as follows:
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where g is the adjustment coefficient with a value ranging from0 to 1. Its purpose is to ensure that the solution
gradually approaches the optimal solution. In the experiments, we adopt afixed value of 0.01 for ease of
calculation and implementation. By continuously iterating according to equation (10), the FMT inverse problem
can be solved. Thus, Algorithm1 outlines themain steps of the SCAD-GMLmethod. It should be noted that the
selection of parameter values in the SCAD-GMLmethod is based on experience.

3. Experiments and results

In order to confirm and thoroughly assess the effectiveness of the SCAD-GMLmethod in FMT reconstruction,
this section offers three separate sets of numerical simulation experiments and one set of in vivo experiments.
Specifically, the location accuracy, robustness,morphological recovery ability and practicality of SCAD-GML
methodwere evaluated. Two other algorithmswere used to compare with our proposedmethod, namely,
IVTCG and IS-L .1 All experiments and programswere executed on a personal computer with an Intel(R)Core
(TM) i5-8265CPU (1.8GHz) and 8GBRAM. The computational environment allowed for efficient and reliable
evaluation of the proposed SCAD-GMLmethod, aswell as the comparisonwith the other algorithms.

3.1. Experimental process
3.1.1. Numerical simulations
The heterogeneous phantommodel was used for numerical simulation experiments, and its 3D view is shown in
figure 1(A). Themodel was a cylinder with a radius of 10mmand a height of 30mm,which contains five organs:
heart, bone, lung,muscle, and liver. The optical parameters of these tissues and organs at 650 nm in themodel
are shown in table 1 (Hou et al 2017). In the inverse reconstruction, themodel was discretized into afinite
elementmesh of 4626 nodes and 25840 tetrahedral elements by using ComsolMultiphysics software as shown in

Algorithm1. SCAD-GMLmethod for FMTReconstruction.

Input:The detected surface photon F and the systemmatrix A.

Initialization:The initial optimal approximation solution = F+x A ,0 theMaximum iteration number =maxIter 600, the regularization

parameter l m= ´ = ´- -1 10 , 1 10 ,3 2 the adjustment coefficientg = ´ -1 10 ,2 iteration index =k 1.

Step1: Find the nearby vertexes in the same organ and construct the organ vertex set S .k Calculate the regionmollifier rsk
by the vertex

set S .k

Step2:Calculate the graph Laplacianmatrix L, via the equation (6).
Repeat

Step3:Referencing equation (8), calculate the gradient vector of the current function.
Step4:Update solution +xk 1 according to the gradient vector, via equation (10). And the point less than 0 is set to 0 in +x .k 1

Step5: Increase the iteration index = +k k 1.

Until >k maxIter

Output: x .k
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figure 1(B). (Parvitte et al 2013). Figure 1(C) is the forward simulation result, whichwas generated by the
molecular optical simulation environment (MOSE) based on theMonte Carlomethod (Ren et al 2010). This
model was used to simulate the realistic optical properties and geometry of biological tissues, allowing for
accurate assessment of the performance of the SCAD-GML algorithm in a controlled and reproducible
environment.

Three groups of simulation experiments were completed in the heterogeneous phantommodel. In the
single-source simulation experiment, a uniform sphere light sourcewith a radius of 1mmand a center at (6mm,
6mm, 22mm)was used to simulate the actual fluorescent source. In the dual-source simulation experiment,
two uniform sphere lights with a radius of 1mmat (−6mm, 5mm, 13mm) and (−6mm, 5mm, 18mm) centers
were used to simulate two actualfluorescent sources. These simulation experiments were designed to evaluate
the performance of the SCAD-GMLmethod in terms of shape recovery accuracy and spatial positioning
accuracy in themodel.Moreover, a series of anti-noise simulation experiments were conducted to evaluate the
robustness of the SCAD-GMLmethod. Specifically, 5%, 10%, 15%, 20%, 25%Gaussian noise was added to the
single-source simulation experiment.

3.1.2. In vivo experiment
To further assess the practical performance of the SCAD-GMLmethod, in vivo experiment was conducted
following the approved protocols of theAnimal Ethics Committee of theNorthwest University of China andUse
Committee. The experiment utilized an adult BALB/cmouse, and a dual-modality FMT/CT imaging system
was employed to acquire CT images andfluorescence images. The transmissive FMTwas used in the dual-
modality imaging system. The transmissive FMThas the advantage of beingmore suitable for tomographic
imaging of targets located deepwithin the tissue and is less susceptible to excitation light leakage compare to
reflective FMT (Darne et al 2013). The systemdiagram is shown infigure 2, and the detailed experimental
procedure was as follows.

In the initial step, a spherical fluorescent beadwith a radius of 1mm, containingCy5.5 solutionwas
implanted into the abdominal cavity of themouse, serving as the fluorescence target. Thefluorescent beadwas
encased in a plasticmaterial, facilitating its detection usingCT for precise localization of the actual fluorescent
region. After that, themousewasfixed vertically on the rotation platform and remained stationary during the
imaging process by administering anesthesia through inhalation of isoflurane gas. After a six-hour interval, a 680
nm continuouswave semiconductor laserwas employed to provide the excitation illumination. Subsequently, a

Figure 1. (A)The 3D viewof the heterogeneous phantommodel. (B)Thefinite elementmesh diagramobtained bymodel
discretization. (C)The forward simulation result of the single-source.

Table 1.The optical parameters in numerical simulation.

Tissues m -( )mmax
1 m -( )mmsx

1 m -( )mmam
1 m -( )mmsm

1 g

Muscle 0.0052 10.80 0.0068 10.30 0.90

Heart 0.0083 6.73 0.0104 6.60 0.85

Bone 0.0060 60.09 0.0030 30.74 0.90

Liver 0.0329 7.00 0.0176 6.60 0.90

Lungs 0.0133 19.70 0.0203 19.50 0.90
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thermoelectric-cooled electronmultiplying charge-coupled device (EM-CCD) camera (−80, iXonEM+888)
with a 120°field of view captured the surface fluorescence image, with an exposure time set at 1 s. Tofilter out
noise, an appropriate 750± 10 nmbandpassfilter was used to capture and confine the emission light. During the
process of optical signal acquisition, theCCDcamera captures an optical image after every 90 degrees of rotation
of the rotating platform. The optical images collected are used for subsequent 3D reconstruction processes. After
the acquirement offluorescence image, CT imagingwas performed on eachmouse using a CT system. This step
aimed to obtain structural data of themouse, which provides detailed information about the anatomical features
and tissues. After completing the data collection stage, data processingwas carried out. A landmarks-based rigid-
body registrationmethodwas employed to align theCTdatawith thefluorescence imaging. Following the
registration, the absolute irradiance distribution in the two-dimensional fluorescence images was projected onto
the three-dimensional surface of themousemodel. Themajor organs, including themuscle, skull, and brain
were segmented using the Amria 5.2 software. Following segmentation, themousemodel was discretized into
6325 nodes and 29479 tetrahedral elements for FMT reconstruction. To evaluate the practicality of the SCAD-
GMLmethod in vivo, two other algorithmsmentioned earlier were employed for comparative analysis.

3.1.3. Evaluationmetrics
To rigorously quantify and analyze the location accuracy and shape recovery ability of the FMT reconstruction,
this study utilized two commonly used evaluationmetrics, namely the location error (LE) and theDice
coefficient (DICE).

The LE is defined as the Euclidean distance between the reconstructed fluorescent source center ( )x y z, ,
and the actualfluorescent source center ( )x y z, , .0 0 0 It is a quantitativemeasure used to evaluate the positioning
accuracy of the reconstruction results. The LE values are always greater than 0, and a smaller LE value signifies a
higher level of accuracy in localizing thefluorescence biomarker.

= - + - + -( ) ( ) ( ) ( )x x y y z zLE 110
2

0
2

0
2

To verify themorphological recovery ability of the algorithm, theDice coefficient (DICE) is used as an indicator.
Itmeasures the degree of overlap between the reconstructed fluorescent source region X and the actual source
region Y .TheDICE values range from0 to 1, and the larger the value is, the greater the similarity between the
reconstructed and the actualfluorescent regions, indicating a higher level ofmorphological recovery ability of
the algorithm.

=
Ç
+

∣ ∣
∣ ∣ ∣ ∣

( )X Y

X Y
Dice

2
12

Figure 2.The prototype FMT imaging system.
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3.2. Results
3.2.1. Single-source simulation reconstruction
To validate the shape recovery capability of the SCAD-GML algorithm, we conducted a comparison of its
performancewith the IVTCG and IS-L1 algorithms in the single-source experiment. The reconstruction results
are shown infigure 3. The reconstructed fluorescent source is visualized as a green area in the three-dimensional
view, and as a cyan area in the axial view.While the actual fluorescent source is represented by a black circle. It
can be observed from thefigure that the source reconstructed by ourmethod overlapsmost with the actual
source. The quantitative analysis of the threemethods is shown in table 2. According to the results in table 2, the
SCAD-GMLmethod achieved a smaller LE compared to the othermethods, indicating that the reconstructed
fluorescent source center was closer to the actual value. Additionally, theDICE score of the SCAD-GMLmethod
was higher, indicating a better overlap between the reconstructed and actual source regions. This is consistent
with our observation.

3.2.2. Dual-source simulation reconstruction
To further assess the positioning accuracy, we contrasted the SCAD-GML algorithm’s performance with the
above two algorithms on the dual-source experiment. The reconstruction results of the threemethods for the
dual-source experiment are shown infigure 4. It is evident that the SCAD-GMLmethod provides themost
accurate reconstruction results, with better representation of the actual fluorescent source regions andmore
accurate center position. The quantitative analysis of the reconstruction results using the threemethods is
presented in table 3. The experimental results demonstrate that the SCAD-GMLmethod outperforms the
IVTCG and IS-L1method, achieving the lowest location error and the highest source shape recovery ability as
measured by the dice coefficient. These experiment results further support the superior performance of the
SCAD-GMLmethod in terms of positioning accuracy and shape recovery in FMT reconstruction.

Figure 3.The 3D view of reconstruction results of single-source reconstructed by differentmethods. The reconstruction result is
sliced along the z-axis of the source to obtain the axial view, and the actual source’s location and size are indicated by a black circle on
the plan.

Table 2.Quantitative analysis of single-source simulation reconstruction
results.

Method Actual source center (mm) LE (mm) DICE

IVTCG 0.741 0.399

IS-L1 (6, 6, 22) 0.401 0.466

SCAD-GML 0.280 0.565

7
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3.2.3. Anti-noise performance
To assess the robustness of the SCAD-GMLmethod, we conducted an anti-noise experiment. Specifically, we
used the single-source simulation experiment to investigate the impact of adding 5%, 10%, 15%, 20%and 25%

Figure 4.The reconstruction results of dual-source simulation experiment. Three differentmethods to reconstruct the fluorescent
source are displayed in 3D view and axial view. In 3D view, the green region is the double fluorescent source of reconstruction, and in
the axial view, the location and size of the real source are depicted by black circles.

Figure 5.The results of quantitative analysis of anti-noise experiment.

Table 3.Quantitative analysis of dual-source simulation reconstruction
results.

Method

Actual source

center (mm) LE (mm)
Total

LE (mm) DICE

IVTCG (−6, 5, 13) 1.038 1.990 0.432

(−6, 5, 18) 0.952 0.475

IS-L1 (−6, 5, 13) 0.646 1.301 0.539

(−6, 5, 18) 0.655 0.556

SCAD-GML (−6, 5, 13) 0.576 1.155 0.622

(−6, 5, 18) 0.579 0.615
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Gaussian noise on the reconstruction results. As illustrated infigure 5, thefluctuation of the LE, andDICE values
is negligible, indicating themethod has good robustness.

3.2.4. In vivo imaging experiment
To assess the feasibility of the SCAD-GMLmethod in vivo, we conducted an in vivo imaging experiment using an
adult BALB/c nudemouse. The reconstruction results obtained by threemethods are shown infigure 6. The
quantitative analysis of the in vivo imaging experiment is presented in table 4. The experiments demonstrate that
the SCAD-GMLmethod has smallest LE and the largest DICE value, indicating that the SACD-GMLmethod
have superior performance in FMT reconstruction in vivo.

4.Discussion and conclusion

FMT is a promising imaging technology that can achieve 3D visualization offluorescence regions in biological
tissues in vivo at a low cost. In clinical applications, FMT can be combinedwith other imagingmodalities to

Table 4.Quantitative analysis of in vivo imaging reconstruction results.

Actual source center (mm) Method LE (mm) DICE

(11.5, 9.5, 22.6) IVTCG 0.696 0.397

IS-L1 0.312 0.503

SCAD-GML 0.121 0.571

Figure 6.Results of three different reconstruction algorithms used in in vivo imaging experiments. The purple area in the 3D viewing
angle represents the cutting surface, and the axial viewing plane below is obtained after the cutting plane is expanded, and the actual
source’s location and size are indicated by a black circle in the axial view.

9
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enhance its spatial resolution. Integrating FMTwith structural imaging techniques such asMRI or x-ray CT
enables the fusion ofmolecular informationwith high-definition anatomical reference, leveraging prior
knowledge on tissue’s optical properties to improve resolution and sensitivity simultaneously (An et al 2015,
Baikejiang et al 2017). In recent years, FMThas been used in tumor imaging and drug development, for example,
Torres et alused FMT for lymph node assessment tomake treatment decisions for tumors such as breast cancer
andmelanoma (Torres et al 2019). Kossodo et al applied FMT to drug development for cancer detection and
treatmentmonitoring (Kossodo et al 2010). These preclinical studies will promote the clinical application
of FMT.

However, due to the severe scattering effect of light in biological tissue and the ill-posed inverse problem, the
accuracy of FMThas been limited inmany biomedical applications. To improve the quality of 3D
reconstruction, an effective FMT reconstructionmethod based on SCAD-GMLmethod is proposed in this
paper. The SCADnorm is specifically designed to strike a balance between not excessively penalizing large-
valued coefficients, unlike the L1 norm,while approaching the desirable sparsity achieved by the L0 norm
(Mehranian et al 2013). Therefore, employing SCAD regularization in FMT reconstruction yields sparser and
more accurate solutions compared to using L0 or L1 regularization alone, resulting in improved FMT
reconstruction accuracy.However, it is important to note that increasing sparsity in reconstruction resultsmay
lead to potential loss ofmorphological details (Guo et al 2020). Inspired by graph-basedmanifold learning and
sparse representation theory, we propose a novel approach called SCAD-GML for regularized FMT
reconstruction. The SCAD-GMLmethod incorporates the Laplace graphmodel into a non-convex sparse
constraint based on the SCADnorm, leveraging the latentmanifold structure andmorphology of the fluorescent
source distribution to achieve accuratemorphological recovery capability. The SCAD-GMLmethod combines
the SCAD regularization andGML to balance the sparsity, smoothness, andmorphology offluorescent region.
And a non-convex objective function is constructed by SCAD-GMLmethod, which is then solved using the
NGDIM.With these approaches, the proposed SCAD-GMLmethod can reconstruct the characteristics of the
fluorescent regions accurately and effectively.

To verify the effectiveness of the proposed SCAD-GMLmethod, a series of numerical experiments and
in vivo experiments were conducted, and the results were comparedwith two commonly used reconstruction
methods (IVTCG and IS-L1). The experimental results show that: (1) dual-source simulation experiments
demonstrate that the SCAD-GMLmethod ensures a high level of accuracy in reconstruction localization. (2) In
vivo experiments demonstrate the feasibility of the SCAD-GMLmethod in biomedical research. (3)The anti-
noise experimental results demonstrate that the SCAD-GMLmethod is robust to noise. (4)All experiments
demonstrate that the SCAD-GMLmethod could obtainmore accurate reconstruction results than the other two
methods.

While the SCAD-GMLmethod shows good performance in FMT reconstruction, it still has some
limitations. Firstly, the parameters used in the proposedmethodwere selected based on experience. It is
necessary to propose an adaptive parameter selection algorithm to choose these parameters. Furthermore,
additional research is necessary to explore the clinical application of FMTusing the SCAD-GMLmethod, which
will also be a focus of our future research. By addressing these limitations, the proposed SCAD-GMLmethod
could be further improved andmorewidely applicable in biomedical imaging research.

In summary, the proposed SCAD-GMLmethod is an effective solution to the FMT inverse problem. It
achieved better reconstruction performance in terms of both location accuracy andmorphological recovery
comparedwith the traditionalmethodsmentioned above. In addition, it exhibits strong robustness in the FMT
reconstruction. Themethod has great potential to enhance reconstruction performance and promote the
application of FMT in in vivo biological studies.
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