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A B S T R A C T

The estimation of blur kernel is the first and principal steps in the deconvolution of single
blurred image. The quality of image restoration highly depends on its estimation accuracy. We
then propose a new modified-Radon-transform approach along with a low-high-pass filtering
method to estimate the motion blur parameters by a self-adaptive learning strategy, which
greatly improved the deblurring quality of the blurred image. The Gaussian low-pass and high-
pass filters are adopted to reduce the noise level in blurred image, and the batch normalization
and self-adaptive method are considered to eliminate the interference from the noise stripes.
It is noted that the estimation of blur angle plays an important cue for the exploration of blur
kernel. The experimental evaluation is conducted on both synthetic VOC2012 database as well
as the natural-real motion blurred single image with or without noise. The experimental results
show that our proposed method can obtain more accurate and more reliable blur parameters
than other approaches.

. Introduction

Image blur caused by camera shake during exposure time is an inevitable problem in consumer photography, it has a great
nfluence on various computer vision related areas, such as remote sensing, traffic monitor, medical imaging and public security [1–
]. In a general single image deblurring, a motion blurred image 𝑏(𝑥, 𝑦) with an additive noise 𝑛(𝑥, 𝑦) is usually modeled by the
onvolution between the latent image 𝓁(𝑥, 𝑦) and the point spread function (PSF) 𝑘(𝑥, 𝑦) [1]:

𝑏(𝑥, 𝑦) = 𝓁(𝑥, 𝑦) ∗ 𝑘(𝑥, 𝑦) + 𝑛(𝑥, 𝑦) (1)

here ∗ is the convolution operator. If the blur kernel function 𝑘(𝑥, 𝑦) is known a priori, it is easily-feasible to recover the latent
mage 𝓁(𝑥, 𝑦) from the blurred one 𝑏(𝑥, 𝑦). However, in the problem of blurred image’s deconvolution, both 𝑘(𝑥, 𝑦) and 𝓁(𝑥, 𝑦) are
nknown, and both the unknowns needs to be estimated from a single 𝑏(𝑥, 𝑦). So, recovering 𝓁(𝑥, 𝑦) and 𝑘(𝑥, 𝑦) from the input 𝑏(𝑥, 𝑦)
s a severely ill-posed problem, and the additive noise 𝑛(𝑥, 𝑦) makes it more challenging solving.

In recent years, there are mainly two kinds of the latest methods adopt neural network to deblur the degraded images [5–12].
he first types use the multi-frame images to construct a complex neural network, and mostly they are time-consuming [3,11–14].
nother ones are based on single images, and are compact in neural network structures [15–17], but they still own some weakness:
izenberg et al. have developed a multi-layer neural network (MLMVN) to identify the blur kernel [6], but MLMVN almost focuses

∗ Corresponding authors.
E-mail addresses: mczhouwei12@gmail.com (W. Zhou), ystar1991@126.com (X. Hao), xin_cao@163.com (X. Cao).
vailable online 9 October 2021
030-4026/© 2021 Elsevier GmbH. All rights reserved.

ttps://doi.org/10.1016/j.ijleo.2021.168023
eceived 2 April 2021; Received in revised form 2 September 2021; Accepted 18 September 2021

http://www.elsevier.com/locate/ijleo
http://www.elsevier.com/locate/ijleo
mailto:mczhouwei12@gmail.com
mailto:ystar1991@126.com
mailto:xin_cao@163.com
https://doi.org/10.1016/j.ijleo.2021.168023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijleo.2021.168023&domain=pdf
https://doi.org/10.1016/j.ijleo.2021.168023


Optik 248 (2021) 168023W. Zhou et al.
Fig. 1. (a)(b) The interference stripes in 𝐵(𝑢, 𝑣); (c)(d) The interference stripes in the binarization of the adaptive-filtered 𝐵(𝑢, 𝑣). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

on horizontal blur, and cannot solve the degraded images with the blur of other orientations [7]. Dash et al. developed radial basis
function neural network (RBFNN) and Gabor filter to conduct the estimation of PSF’s blur parameters [7], but they need to have
enough Gabor filter masks in different directions to guarantee the accuracy of blur parameters [18]. Both of these two kinds of
neural network methods are not applicable in the deblurring of single image. An appropriate way for deblurring the single image
with motion blur is to conduct blind deconvolution with PSF on it.

The primary steps of blind image deconvolution is to estimate the PSF either separately or jointly with the restoration of degraded
image [19,20], and the kernel issues for PSF are to detect the unknown motion parameters. Most of the PSF-based methods firstly
adopt the spectrum response of blurred image to estimate the blur angle, and then rotate the blurred image inversely to detect the
blur length [6,21–26]. So, the accurate estimation of the blur angle is of great significance for the deblurring of image. Amongst
the existing techniques, many researches have been focused on estimating the blur parameters for deblurring. A method based on
spectrum is proposed to estimate the blur parameters of linear-uniform and out-of-focus motion blurs with two modifications from
the Radon transform, and this method performs well on the natural-real images [27]. A modified cepstrum based method adopts
bit-plane slicing to estimate the blur parameters under uniform motion blur [28]. Cho et al. combines the Radon transform with the
maximum a posteriori estimation to estimate the blur kernel, and the performance of this method is verified on a broader variety of
circumstances [23]. To improve the robustness under noisy cases, a method based on Radon transform and bispectrum is proposed
to estimate the blur parameters [29]. The Hough-transform-based methods for PSF estimation using the log spectrum of the blurred
images are also presented in [30–32], these methods are flawed on the threshold selection of binarization, and the error estimation of
blur angle will result in the error of blur length estimation [18]. Wang et al. combine bilateral-piecewise estimation and the sub-pixel
level image to estimate the blur parameters under various noisy circumstances [18], but it is laborious for this method to explore
effective solutions under non-linear and non-uniform motion blurs. Our recent work in [1] introduced a modification to the Radon
transform for the estimation of blur kernel with the preprocessing of median filter, binarization and Soble edge detection, it also
faces the challenges from the nonlinear and nonuniform motion blur problems. Most of the methods mentioned above still suffer
low precision for blur parameters estimation under noisy cases especially when the spectrum image affected by the interference
stripes (see also the color dotted line marking in Fig. 1).

Based on our recent work in [1], and inspired by the stripes in frequency response of single blurred image, a new modified-
Radon-transform approach (Section 3) along with a low-high-pass filtering method (Section 2) is proposed to estimate the motion
blur angle accurately from the single degraded image. Comparing with the recent work in blur kernel estimation [1], the following
techniques adopted in this paper got more different and is more advanced.

• Firstly, we propose a low-pass filter with Gaussian function to filter the blurred image, which could reduce the noise level in
image and weaken the impact from the interference stripes.

• Secondly, a new-defined high-pass filter is adopted to filter the frequency response of blurred image, thus could also weaken
the influences from the noise and interference stripes.

• Thirdly, the batch normalization is implemented on the Radon transform of the frequency response to further eliminate the
interference from the noisy stripes.

• Fourthly, the calculation of difference scores has been further optimized by a new equation (Eq. (10)).
• Fifthly, the finale selection process of blur angle is also optimized, and it is more robust and more reasonable.

2. The pipeline model of PSF and Radon transform

Assuming that the motion of the scene object is consistent with that of the camera, and the image is not affected by the additive
noise, we can infer that the gray value of any point in the blurred image 𝑏(𝑥, 𝑦) is related to the gray value of the corresponding
adjacent point in image 𝓁(𝑥, 𝑦). The general motion blurring kernel is expressed as in [18]:

𝑘(𝑥, 𝑦) =

{

1
𝑙 , if

√

𝑥2 + 𝑦2 ⩽ 𝑙
2 and 𝑥

𝑦 = − tan(𝜃) (2)
2

0, otherwise
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The blur angle can be estimated by measuring the direction of the parallel dark stripes that appear in the frequency response of
lurred images. Radon transform can detect lines in an image with no need to specify candidate points [29], which is defined as
ollows:

𝑅
(

𝑥′, 𝜃
)

= ∫

+∞

−∞
𝑏
(

𝑥′ cos 𝜃 − 𝑦′ sin 𝜃, 𝑥′ sin 𝜃 − 𝑦′ cos 𝜃
)

𝑑𝑦′ (3)

here 𝑅
(

𝑥′, 𝜃
)

indicates the projection value of Radon transform, 𝜃 is the angle of Radon transform. (𝑥, 𝑦) and (𝑥′, 𝑦′) represent the
oordinates on image 𝑏 and its Radon transformed image respectively. The relationship between (𝑥, 𝑦) and (𝑥′, 𝑦′) can be expressed
s:

(

𝑥′

𝑦′

)

=
(

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

)(

𝑥
𝑦

)

(4)

As we mentioned previously, in the frequency response of motion blurred image, there are several parallel dark stripes slanting
ith a certain direction, which are also symmetrical. We can search the peak projection value of Radon transform for these parallel
ark stripes in the frequency spectrum of blurred image, then the blur direction can be obtained. Most of the existing Radon transform
ethods do not preprocess the blurred image and its frequency response before adopting Radon transform to detect the blur
irection, and they can handle most of the routines. However, the edge of the dark stripes in frequency response of blurred image are
sually ambiguous when the degraded image are affected by the noise, and this will result in the error estimation of blur angle. This
ituation will affect the follow-up algorithm and even the quality of the whole image restoration. To avoid and solve this problem,
e consider the application of low-pass and high-pass filters to our algorithms, and combine with a new Radon-transform-based
ethod to detect the blur direction accurately.

. The preprocessing of blurred image and its frequency

Before introducing our approach, we firstly analyze the negative impact from noise, camera and other image capturing facilities.
irstly, we try to transfer the blurred image 𝑏 with Fourier transformation to obtain the frequency response 𝐵(𝑢, 𝑣), and we find that
here are many interference stripes in 𝐵(𝑢, 𝑣) (see red, yellow, blue, green and dark-blue dash lines in Fig. 1(a)(b). To eliminate the
nterference from these irrelevant stripes, we attempt to filter and binarize 𝐵(𝑢, 𝑣) with adaptive median filter, and we can observe
hat the interference stripes are still remained in the binarization of the adaptive-filtered 𝐵(𝑢, 𝑣), but the number of the interference
tripes is reduced to 3 in Fig. 1(c)(d). Although the above special measures has been applied to refine the results, the remained
nterference stripes still have the negative impacts on the estimation of blur direction.

We now show that our proposed low-pass and high-pass filters can be applied to a noise-blurred image, and improve the accuracy
f blur direction estimation. Firstly, we consider the low-pass filter 𝑓𝑙 to the blurred image 𝑏(𝑥, 𝑦):

𝑏𝑙(𝐩) = 𝑏(𝐩) ∗ 𝑓𝑙 =
1
𝑐 ∫

∞

−∞
𝑤(𝑡)𝑏 (𝐩 + 𝑡) 𝑑𝑡 (5)

where 𝑏 and 𝑏𝑙 represent a blurred image and its filtered image respectively, 𝐩 is a pixel location, 𝑡 is the distance from one pixel
to 𝐩, and 𝑐 indicates the normalization factor which is defined as following:

𝑐 = ∫

∞

−∞
𝑤(𝑡)𝑑𝑡 (6)

𝑤(𝑡) in Eqs. (5) and (6) is used to determine the profile of the filter, here we adopt a Gaussian function to achieve this function:

𝑤(𝑡) = 𝑒𝑥𝑝(−𝑡2∕2𝜎2𝑓 ) (7)

where 𝜎𝑓 is used to control the intensity of our low-pass filter. According to the Eq. (5), the smaller the value of 𝜎𝑓 , the greater
the influence of noise, so increasing the value of 𝜎𝑓 can eliminate the influences of noise for blurred image, but too large value of
𝜎𝑓 will increase the blur level of the blurred image and introduce new interference. And in Eq. (8), the smaller the value of 𝜎𝑓 ,
the smaller the influence of adjacent interference stripes on the center stripe, and the greater the influence of faraway interference
stripes on the center stripe. On balance, we set the value of 𝜎𝑓 to 0.5 Similar to the two-dimensional Gaussian filtering, 𝑓𝑙 could
average the pixels of blurred image 𝑏, and thus could reduce the noise level in image and affect the estimation of blur direction.

After we obtain the filtered blurred image 𝑏𝑙(𝑥, 𝑦) by our proposed low-pass filter, firstly we need to generate the frequency
response 𝐵𝑙(𝑢, 𝑣) of 𝑏𝑙(𝑥, 𝑦) through Fourier transformation. Similar to what we did in the low-pass filter, we adopt the high-pass
filter 𝑓ℎ to any point 𝐪 in the frequency response 𝐵𝑙(𝑢, 𝑣) to obtain the filtered frequency spectrum 𝐵ℎ:

𝐵ℎ(𝐪) = 𝐵𝑙(𝐪) ∗ 𝑓ℎ = 𝑐 ∫

∞

−∞

1
𝑤(𝑡)

𝐵𝑙(𝐪 + 𝑡)𝑑𝑡 (8)

Following the steps in the previous analysis, we then adopt the adaptive median filter and adaptive-threshold binarization on
𝐵ℎ to obtain the binary spectrum 𝐵ℎ2. Then our self-adaptive Radon approach is conducted on the binary spectrum image 𝐵ℎ2 to
detect the direction of blur.
3
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Fig. 2. Our self-adaptive Radon approach. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

4. Self-adaptive Radon approach

In this subsection we extend the Radon transformation to the application in the image deblurring and propose a self-adaptive
Radon method to detect the blur direction. Before our self-adaptive Radon approach starts, the prepossessing of blurred image and
its frequency is done, and we then obtain the preprocessed spectrum image 𝐵ℎ2. The outline of our self-adaptive Radon approach
is presented in Fig. 2, the blue flow charts represent the first estimation of blur angle, the orange flow charts refer to the second
estimation of blur angle, the gray flow charts are the third estimation of blur angle, and the red dotted lines are our self-adaptive
accuracy improvement method.

During the first estimation of blur angle, we firstly set step width of 𝜃1𝑝 as 1◦ to generate 2D Radon projection color map by
varying 𝜃1𝑝 from 0◦ to 180◦. We can obtain the first rough angle 𝜃1 by searching the maximum and minimum of 𝑅𝜃(𝑥′) in the 2D
Radon projection color map of 𝐵ℎ2, since there are many maxima and minima for the Radon transform projection with blur angle
in the color map. And we temporarily set the blur angle 𝜃𝑃 as 𝜃1 (see also in the blur flowcharts blocks in Fig. 2).

As the red flowcharts shown in Fig. 2, to eliminate the interference from the noisy stripes, we firstly apply batch normalization
transform on 𝑅𝜃(𝑥′) = {𝑅𝜃1 (𝑥

′)...𝑅𝜃𝑚 (𝑥
′)} to obtain 𝑅𝜃(𝑥′) as following:

𝜇𝑅 = 1
𝑚

𝑚
∑

𝑖=1
𝑅𝜃𝑖 (𝑥

′)

𝜎2𝑅 = 1
𝑚

𝑚
∑

𝑖=1
(𝑅𝜃𝑖 (𝑥

′) − 𝜇𝑅)2

𝑅𝜃𝑖 (𝑥
′) =

𝑅𝜃𝑖 (𝑥
′) − 𝜇𝑅

√

𝜎2𝑅 + 𝜖𝑟

(9)

where 𝜇𝑅, 𝜎2𝑅 are the mean value and variance of 𝑅𝜃(𝑥′) respectively, 𝑚 represent the amount of 𝑅𝜃(𝑥′), and 𝜖𝑟 is a constant to avoid
formula division by 0. Then we count the local maximum and minimum of 𝑅𝜃(𝑥′). After the local maximum and minimum groups
of 𝑅𝜃(𝑥′) are obtained, we then calculate the difference score 𝑉𝜃 between the local maximum and minimum groups:

𝑉𝜃 =
𝜇2
𝑚𝑎𝑥 + 𝜇2

𝑚𝑖𝑛 + 𝜖𝑣
2𝜇𝑚𝑎𝑥𝜇𝑚𝑖𝑛 + 𝜖𝑣

(10)

where 𝜇𝑚𝑎𝑥, 𝜇𝑚𝑖𝑛 are the mean value of the local maximum and minimum groups of 𝑅𝜃(𝑥′) respectively, and 𝜖𝑣 is a constant to avoid
the formula division by 0 in Eq. (10). Then we calculate all angles’ 𝑉 by varying 𝜃 from 0◦ to 180◦ with step width of 1◦. We
4
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Table 1
Estimation accuracy comparison between five methods for blur angle with or without our self-adaptive strategy.

Method Moghaddam [29] Tra-Radon [23] RBFNN [7] Wang [18] Zhou [1] Our method

Preprocessed or not No Yes No Yes No Yes No Yes No Yes No Yes

Min.absolute error 0 0 0 / 0 / 0 0 0 0 0 0
Max.absolute error 2.013 1.924 0.986 / 0.885 / 0.262 0.231 0.222 0.209 0.201 0.192
Mean.absolute error 0.631 0.583 0.602 / 0.579 / 0.124 0.109 0.114 0.103 0.110 0.099

can obtain the angle set 𝛩2 = {𝜃21, 𝜃22,… , 𝜃2𝑖} by searching the corresponding angle of the local maximum of 𝑉𝜃 :

{𝜃2𝑖|∀‖𝜃 − 𝜃2𝑖‖ ≤ 10,∃𝑉𝜃2𝑖 > 𝑉𝜃} ⇒ 𝜃2𝑖 ∈ 𝛩2 (11)

2 will contain the false positive (FP) elements, since the spectrum images contain the interference stripes. To reduce the influence
f clutter stripes, we delete the FP elements in 𝛩2 with following constraints:

update 𝛩2

⎧

⎪

⎨

⎪

⎩

(1)∃𝜃𝑖 ∈ [𝜃2𝑖 − 5, 𝜃2𝑖 + 5],∀‖𝜃𝑗 − 𝜃𝑖‖ ≤ 5,∃𝑉𝜃𝑖 < 𝑉𝜃𝑗 , 𝐝𝐞𝐥𝐞𝐭𝐞 𝜃2𝑖
(2) ‖𝜃2𝑖 − 𝜃1‖ > 3, 𝐝𝐞𝐥𝐞𝐭𝐞 𝜃2𝑖
(3) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝐫𝐞𝐦𝐚𝐢𝐧 𝜃2𝑖

(12)

n Eq. (12), the larger these constrain integer values are, the easier it is to remain the FP. On the other hand, the smaller these
onstrain integer values are, the easier it is to remove the TP. On balance, we choose 5 and 3 for these constrain values respectively.
hen we set every element in 𝛩2 as the candidates 𝜃𝑐𝑖 of blur angle. Besides, in order to avoid the process disruption of blur angle
stimation, we temporarily set 𝜃1 as the candidate 𝜃𝑐𝑖 of blur angle if 𝛩2 is an empty set.

As the gray flowcharts shown in Fig. 2, based on the candidates 𝜃𝑐𝑖 of blur angle from 𝛩2 or 𝜃1, we firstly obtain the Radon
ransformations 𝑅𝜃𝑐𝑖 (𝑥

′) for the spectrum image with the angles from 𝜃𝑐𝑖 − 3◦ to 𝜃𝑐𝑖 + 3◦, and the step width is set to 0.2◦. Similar to
he initial operation in the orange flowcharts, we also conduct the batch normalization transform on 𝑅𝜃𝑐𝑖 (𝑥

′) = {𝑅𝜃1 (𝑥
′)...𝑅𝜃𝑛 (𝑥

′)} to
btain 𝑅𝜃𝑐𝑖 (𝑥

′) by Eq. (9), and use Eq. (10) to calculate all angles’ difference score 𝑉𝜃 . Through searching the corresponding angle
f the local maximum of 𝑉𝜃 , we can obtain the angle set 𝛩3𝑖 = {𝜃3𝑖1, 𝜃3𝑖2,… , 𝜃3𝑖𝑗}:

{𝜃3𝑖𝑗 |∀‖𝜃 − 𝜃3𝑖𝑗‖ ≤ 10,∃𝑉𝜃3𝑖𝑗 > 𝑉𝜃} ⇒ 𝜃3𝑖𝑗 ∈ 𝛩3𝑖 (13)

o eliminate the FP results in 𝛩3𝑖, we set the following constraints:

update 𝛩3𝑖

⎧

⎪

⎨

⎪

⎩

(1)∃𝜃𝑖 ∈ [𝜃3𝑖𝑗 − 1, 𝜃3𝑖𝑗 + 1],∀𝜃𝑗 ∈ [𝜃𝑖 − 1, 𝜃𝑖 + 1],∃𝑉𝜃𝑖 < 𝑉𝜃𝑗 , 𝐝𝐞𝐥𝐞𝐭𝐞 𝜃3𝑖𝑗
(2) ‖𝜃3𝑖𝑗 − 𝜃𝑐𝑖‖ > 2, 𝐝𝐞𝐥𝐞𝐭𝐞 𝜃3𝑖𝑗
(3) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝐫𝐞𝐦𝐚𝐢𝐧 𝜃3𝑖𝑗

(14)

ollowing the criteria in Eq. (12), we set the constrain values in Eq. (14) to 1 and 2 respectively. After we have updated 𝛩31, 𝛩32...𝛩3𝑖
or each candidate 𝜃𝑐𝑖, the empty sets among 𝛩31, 𝛩32...𝛩3𝑖 will be abandoned. For all the remaining angle set 𝛩31, 𝛩32...𝛩3𝑖, we choose
he set with the least variance 𝜎𝛩3𝑖

as the candidate angle set 𝛩𝑐3𝑖 = {𝜃𝑐3𝑖1, 𝜃𝑐3𝑖2....𝜃𝑐3𝑖𝑗}:

𝜎𝛩3𝑖
=
√

1
𝑛
𝛴𝑛
𝑗=1(𝜃3𝑖𝑗 − 𝜃𝑐𝑖)2 (15)

For all elements in the angle set 𝛩𝑐3𝑖, we choose the angle 𝜃𝑐3𝑖𝑗 with the smallest difference between 𝜃𝑐3𝑖𝑗 and its corresponding
interval center 𝜃𝑐𝑖 as the most suitable candidate angle.

In addition, we conduct a self-adaptive accuracy improvement method to increase the precision of the estimated blur angle, as
the red dotted lines shown in Fig. 2. We set a constraint to determine whether the self-adaptive accuracy improvement method is
necessary to be run. If the absolute value of the difference between 𝜃𝑐3𝑖𝑗 and its corresponding interval center 𝜃𝑐𝑖 is greater than
1 (‖𝜃𝑐3𝑖𝑗 − 𝜃𝑐𝑖‖ ≥ 1), the self-adaptive accuracy improvement method will be implemented, otherwise skip this method and set the
blur angle 𝜃𝑃 = 𝜃𝑐3𝑖𝑗 . When ‖𝜃𝑐3𝑖𝑗 − 𝜃𝑐𝑖‖ ≥ 1, the algorithm will loop from the beginning of the gray flowchart with the angles from
𝜃𝑐3𝑖𝑗 −1.5◦ to 𝜃𝑐3𝑖𝑗 +1.5◦, and the step width is set to 0.1◦. Only when 𝜃𝑐3𝑖𝑗 satisfies the constraint condition can the algorithm output
the blur angle.

5. Experiments and discussions

A set of comparisons between our proposed algorithm and the state-of-the-art approaches (Moghaddam [29], traditional Radon-
transform-based method [23], artificial neural network approach (ANN) RBFNN [7], Wang [18], Zhou [1](our previous work)) are
5

implemented on a total of 18625 images consisting of VOC2012 dataset [33] and real-life pictures.
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Fig. 3. (a) Absolute error comparison of blur angle between Moghaddam [29], traditional Radon-transform-based method [23], RBFNN [7], Wang [18], Zhou [1]
nd our proposed new method. (b) The local enlarged version of (a).

Fig. 4. (a) The effect of our self-adaptive strategy on Moghaddam [29], traditional Radon-transform-based method [23], RBFNN [7], Wang [18] and Zhou [1]
(the legend One’ is the experimental results of our self-adaptive learning strategy combined with the blur length estimation of it, e.g. Moghaddam’). (b) The
local enlarged version of (a).

5.1. Blur angle estimation

In this part, our proposed blur angle estimation methods are evaluated through the degraded images which are created by varying
he blur angle from 0◦ to 180◦ and the blur length from 0 to 100 pixels respectively.

Firstly, we conduct the blur angle experiments for each method. In this experiment, to be fair and in order to highlight our
elf-adaptive learning strategy, the frequency-based methods Moghaddam, Wang and Zhou’s algorithms are also integrated with our
roposed self-adaptive learning strategy, traditional Radon-transform-based method and RBFNN are implemented without our self-
daptive learning strategy, since they are not based on frequency response of image. Moreover, the Gaussian noise with standard
eviation of 0.0001 is also added into the blurred images to evaluate and validate the superiority of our proposed method. The
bsolute error comparison of blur angle estimation between the five methods are presented in Table 1 and Fig. 3. In order to see
he difference between the several methods more clearly, we enlarge Fig. 3(a) and place it in Fig. 3(b). From the results, we can
btain several observations:

1. In this experiment, all methods can achieve zero error for minimum absolute errors of blur angle.
2. In sharp contrast, after using our self-adaptive learning strategy, the absolute errors of Moghaddam, Wang, Zhou and our

method are all reduced, especially Moghaddam.
3. No matter in which situations, our approach achieves the best results for blur angle estimation with the least mean absolute

errors of 0.099 under the assistance of the self-adaptive learning strategy. In addition, the maximum absolute errors of blur
angle produced by our approach are less than 0.192, and this is significantly smaller than those generated by the other
comparison methods.

Moreover, we replace the blur angle estimation algorithms in Moghaddam [29], traditional Radon-transform-based method [23],
BFNN [7], Wang [18], Zhou [1] with our self-adaptive learning strategy proposed in this paper to further verify the superiority
f our proposed strategy. This experiment is conducted by varying blur length from 0 to 100 pixels with a step of 5 pixels at a
andom blur angle respectively. Firstly, we adopt our self-adaptive learning methods and the ones in the other four methods to
stimate the blur angle of the degraded image. Then we combine our self-adaptive learning methods with these four methods’ blur
ength estimation algorithms to prove the effect of our self-adaptive learning strategy. Under this circumstance, the absolute errors
ith respect to the blur length are observed, the experimental results for the evaluation of our self-adaptive learning methods are
resented in Fig. 4. In Fig. 4, the legend One (e.g. Moghaddam) is the results of Moghaddam [29], traditional Radon-transform-based
ethod [23], RBFNN [7] and Wang [18] without using our self-adaptive learning methods, and the legend One’(e.g. Moghaddam’)
6

s the experimental results of our self-adaptive learning strategy combined with the blur length estimation of Moghaddam [29],
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Fig. 5. Samples of deblurring results with different methods on noise-free VOC2012 dataset. (a) degraded image, (b) traditional Radon-transform-based method’s
result, (c) RBFNN’s results, (d) Wang’s results, (e) Zhou’s results, (f) our results.

traditional Radon-transform-based method [23], RBFNN [7] and Wang [18], e.g. Moghaddam’, Tra-Radon’, RBFNN’ and Wang’.
Similar to Fig. 3, to see the difference between each method more clearly, we also enlarge Fig. 4(a) and place it in Fig. 4(b). From
the results, we can see that the improvements performances of all methods with our self-adaptive learning methods are not obvious
when the blur lengths are below 30. But when the blur lengths varies in the range of 30–100, compared with their own approaches,
it is obvious that all methods’ absolute error decreases significantly after adopting our self-adaptive learning strategy. All these
observations confirm the high performances of our proposed methods.

5.2. Deblurring of noise-free images

In this section, we combine our own method with the blur length detection approach of Wang [18] to construct the PSF
function, and then use the regularized filter to restore the deblurred image, thus validate that our algorithm could yield more
superior performances of deblurring than the state-of-the-art methods. In order to reach this purpose, we will compare our method
against traditional Radon-transform-based method [23], RBFNN [7], Wang [18] and Zhou [1] on VOC2012 dataset [33] and real-life
degraded images.

In the VOC2012 dataset experiment, we employ peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and the
time efficiency as the quantitative evaluation criteria for all methods’ demonstration. PSNR is defined as:

MSE = 1
𝑀𝑁

𝑀
∑

𝑥=1

𝑁
∑

𝑦=1
(𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦))2 (16)

PSNR = 10 log10

(

2552
)

(17)
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Table 2
PSNR (dB), SSIM and the running time (in seconds) of each method on noise-free VOC2012 database.

Method Tra-Radon [23] RBFNN [7] Wang [18] Zhou [1] Our method

Image PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time
(dB) (%) (s) (dB) (%) (s) (dB) (%) (s) (dB) (%) (s) (dB) (%) (s)

2007_002852 74.71 82.25 62.34 74.84 82.52 56.48 75.61 83.86 11.45 75.61 83.85 10.71 76.81 85.88 10.20
2007_003194 73.77 89.14 65.48 73.89 89.36 59.88 74.69 90.61 11.97 74.67 90.60 10.44 75.84 91.89 9.78
2007_006232 69.43 70.31 61.82 69.57 70.88 61.37 70.46 74.35 12.25 70.47 74.36 10.87 71.54 76.28 10.42
2008_000748 75.62 92.58 59.94 75.80 92.78 58.45 76.99 93.96 12.08 77.00 93.96 10.31 78.31 96.76 9.52
2008_000868 69.42 73.41 57.38 69.54 73.86 61.05 70.24 76.30 12.45 70.25 76.30 10.56 71.45 78.41 10.38
2008_001389 71.75 91.88 62.79 71.88 92.05 58.69 72.74 93.01 14.02 72.74 93.00 12.11 73.98 94.52 11.08
2008_001625 70.25 73.63 62.35 70.40 74.17 59.75 71.29 77.30 12.35 71.30 77.30 10.91 73.51 79.98 10.45
2009_000634 70.50 68.64 59.54 70.65 69.28 57.02 71.60 73.14 12.23 71.60 73.16 11.21 72.85 75.31 11.05
2009_000692 77.16 97.39 60.84 77.36 97.47 60.28 78.60 97.85 11.87 78.61 97.87 11.52 79.82 98.54 10.92
2009_001443 70.52 73.36 59.49 70.65 73.86 58.36 71.46 76.88 12.55 71.46 76.89 11.04 74.61 78.67 9.99
2009_001517 74.06 81.99 56.57 74.21 82.38 58.65 75.17 84.95 12.37 75.18 84.98 10.83 76.27 87.48 10.52
2010_000069 73.37 86.32 54.32 73.55 86.68 61.36 74.85 89.06 12.59 74.87 89.10 10.64 75.95 90.56 10.75
2010_000805 78.43 96.47 53.58 78.61 96.57 59.85 79.85 97.10 12.52 79.85 97.09 10.76 80.31 99.21 10.82
2010_005277 70.42 82.07 54.35 70.53 82.44 61.89 71.19 84.47 12.90 71.18 84.46 10.99 73.08 86.32 9.97
2010_006181 73.60 76.90 53.89 73.73 77.33 57.25 74.55 79.83 13.35 74.54 79.82 11.44 76.78 81.27 11.24
2011_002341 74.31 90.12 56.73 74.42 90.35 56.69 75.05 91.61 12.51 75.05 91.60 10.92 77.56 94.56 10.50
2011_003177 73.60 77.65 53.79 73.73 78.03 59.42 74.54 80.48 11.30 74.53 80.46 10.31 76.62 82.31 10.24
2012_000778 71.20 77.08 55.91 71.32 77.56 57.36 72.07 80.31 12.49 72.06 80.24 10.61 74.89 84.52 9.98
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 72.90 82.29 58.40 73.04 82.64 59.10 73.94 84.73 12.40 73.94 84.72 10.90 75.57 86.80 10.43

where 𝑓 (𝑥, 𝑦) and 𝑓 (𝑥, 𝑦) are the original clear image and the recovered image respectively, MSE is the mean square error, 𝑀 and
are the size of image. SSIM is calculated as:

SSIM(𝑓, 𝑓 ) =

(

2𝜇𝑓𝜇𝑓 + 𝐶1

)(

2𝜎𝑓𝑓 + 𝐶2

)

(

𝜇2
𝑓 + 𝜇2

𝑓
+ 𝐶1

)(

𝜎2𝑓 + 𝜎2
𝑓
+ 𝐶2

) (18)

where 𝜇𝑓 and 𝜇𝑓 are the means of images 𝑓 and 𝑓 respectively, 𝜎𝑓 , 𝜎𝑓 and 𝜎𝑓𝑓 stand for the standard deviations and cross-covariance
for images 𝑓 and 𝑓 , and 𝐶1 and 𝐶2 are two constants to avoid division of formula by 0. Normally, the larger PSNR and SSIM, the
higher deblurring quality. That means, an ideal result of PSNR is infinity, and an optimal SSIM owns the value of 1.

The PSNR, SSIM and the calculated time of each method over the sample pictures of VOC2012 are shown in Table 2. It is
clear that our algorithms has a great advantage in acquiring better results of PSNR and SSIM on all sample images than Wang’s
approach and our previous work (Zhou), the performance of traditional Radon-transform-based algorithm and RBNFF followed
Wang in turn. In time efficiency, although additional-optimized operations have been added in our proposed methods in this paper
(e.g., Gaussian low-pass and high-pass filters), our methods still achieve the fastest speed on the sampled pictures. Compared with our
proposed methods, our previous work and Wang’s methods, traditional Radon-transform-based algorithm and RBNFF are extremely
time-consuming. Furthermore, in order to demonstrate the experimental results more intuitively, the blurred images and deblurring
results generated by these five methods in noise-free VOC2012 database are illustrated in Fig. 5. From the results, we can also
observe that our proposed algorithms gained satisfactory deblurring results over different images, and traditional Radon-transform-
based algorithm and RBNFF fail to fully eliminate the blurring effects in the degraded pictures, this is roughly consistent with the
performances in Table 2.

In order to further verify the superiority of our proposed method, the experiments of deblurring for all algorithms on the real-
captured-degraded images are implemented. These degraded pictures are acquired by hand-held camera with random shaking.
Among them, the car image is captured in a moving car on the road, and the picture of Eiffel Tower is obtained from a moving
cruise ship. In this experiment, the blind deconvolution is utilized to deblur the blurred image with the detected PSF function. The
experimental results are shown in Fig. 6. Through the visualized results in Fig. 6, we can find the similar advantage of our proposed
method presented in the previous experiments in this section.

5.3. Deblurring of noise images

After the noise-free experiments, we implement a series of tests on noise-blurred images to further prove the superior performance
of our proposed algorithms by measuring the PSNR and SSIM of the noise-blurred images’ restoration results. The pictures of
VOC2012 are firstly blurred by the filtering of random PSF function, and then the Gaussian noise of standard deviation 𝜎 = 0.0001
s attached to generate the noise-blurred images. In fairness, all methods in this experiment adopt blind deconvolution to filter the
egraded pictures with their own estimated PSF. Parts of the experimental results with the deblurred images and the evaluation
ndexes are presented in Fig. 7 and Table 3. According to the visualized experimental results, we can observe that the images
ecovered by Wang, Zhou and our algorithm demonstrate more superior performances than other methods. Moreover, through the
mage evaluation indexes (PSNR and SSIM) of the deblurred images recovered by each method in Table 3, we can observe that our
lgorithm yields the highest evaluation indexes on VOC2012 with Gaussian noise except 2010_000069.jpg, and we reach the highest
8

ndexes values in the database as a whole. These results show that our method is better than the other four methods in noise cases.
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Fig. 6. Restoration with different methods on the real natural blurred images. (a) degraded image, (b) Traditional Radon-transform-based method’s results, (c)
RBFNN’s results, (d) Wang’s results, (e) Zhou’s results, (f) our results.

Table 3
PSNR (dB) and SSIM of each method on noise VOC2012 database.

Method Tra-Radon [23] RBFNN [7] Wang [18] Zhou [1] Our method

Image PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
(dB) (%) (dB) (%) (dB) (%) (dB) (%) (dB) (%)

2007_002852 69.28 55.01 69.46 55.76 70.17 58.72 70.21 59.55 70.46 60.06
2007_003194 69.18 68.20 69.37 69.02 70.09 71.90 70.17 72.45 70.36 73.13
2007_006232 66.80 50.21 67.09 51.51 68.15 55.84 68.25 56.41 68.34 56.87
2008_000748 69.44 61.99 69.61 62.55 70.34 65.07 70.31 64.90 70.64 66.40
2008_000868 67.00 54.73 67.23 55.69 68.12 59.36 68.10 59.02 68.31 60.37
2008_001389 68.41 75.93 68.62 76.46 69.51 78.71 69.49 78.19 69.75 79.67
2008_001625 67.45 53.94 67.73 55.22 68.73 59.45 68.81 59.91 68.94 60.50
2009_000634 67.52 47.88 67.81 49.28 68.86 53.85 68.81 53.58 69.08 54.96
2009_000692 69.32 83.58 69.49 84.03 64.95 84.54 68.76 88.29 72.79 91.76
2009_001443 67.63 47.24 67.90 48.26 68.88 52.10 68.74 51.88 69.08 53.29
2009_001517 69.26 47.49 69.47 48.28 70.30 51.48 70.44 51.90 70.59 52.95
2010_000069 68.81 61.51 69.06 62.38 69.98 71.59 65.55 62.16 71.05 73.47
2010_000805 70.03 79.13 70.16 79.50 70.76 81.08 70.94 81.59 71.06 81.93
2010_005277 67.68 63.51 67.90 64.54 68.73 68.15 68.83 68.74 68.91 69.17
2010_006181 69.22 42.88 69.42 43.78 70.19 46.95 70.25 47.75 70.46 48.30
2011_002341 69.63 71.36 69.78 71.99 70.42 74.72 70.59 75.10 70.68 75.82
2011_003177 69.05 43.52 69.26 44.46 70.05 48.11 70.24 49.05 70.31 49.53
2012_000778 67.90 50.77 68.13 51.77 68.95 55.44 68.99 56.01 69.15 56.60
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 68.53 58.82 68.74 59.69 69.28 63.17 69.30 63.14 70.05 64.71

6. Conclusions

We considered a blur kernel estimation method for blind deconvolution of single image which is affected by motion blur, additive
noise and interfered stripes. To address this problem and based on our previous work [1], a new modified-Radon-transform approach
along within a Gaussian low-high-pass filtering method is proposed, which is inspired by the parallel and symmetric stripes in the
9
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Fig. 7. Samples of deblurring results with different methods on noise VOC2012 dataset. (a) degraded image, (b) Traditional Radon-transform-based method’s
results, (c) RBFNN’s results, (d) Wang’s results, (e) Zhou’s results, (f) our results.

frequency response of blurred image. Firstly, the Gaussian low-pass and high-pass filters are adopted upon the blurred image and
the frequency response respectively, so as to reduce the negative impact from noise. Then we construct a self-adaptive Radon
approach with batch normalization to estimate the blur parameters. We performed a series of experiments on both the synthetic
VOC2012 dataset and the natural-real motion blurred image to compare our method against the existing methods by qualitative and
quantitative evaluations. The experimental results show that our proposed blur kernel estimation method can obtain up to 99.21%
SSIM on the deblurring task of noise-free blurred images, and 91.76% SSIM on the noisy blurred images. Overall, our method
performs well with respect to a variety of blur parameters and can obtain the satisfying deblurring quality.

Although the proposed method can achieve high enough accuracy for blur angle estimation, the fact that we would like to solve
in future will be the estimation of blur length. Moreover, it is worth exploring an effective solution to the problem of nonlinear and
non-uniform motion blur.
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