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Background: Ocular adnexal lymphoma (OAL) and idiopathic orbital inflammation (IOI) are malignant and benign lesions
for which radiotherapy and corticosteroids are indicated, but similar clinical manifestations make their differentiation
difficult.
Purpose: To develop and validate an MRI-based radiomics nomogram for individual diagnosis of OAL vs. IOI.
Study Type: Retrospective.
Population: A total of 103 patients (46.6% female) with mean age of 56.4 � 16.3 years having OAL (n = 58) or IOI (n = 45)
were divided into an independent training (n = 82) and a testing dataset (n = 21).
Field Strength/Sequence: A 3-T, precontrast T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and postcontrast
T1WI (T1 + C).
Assessment: Radiomics features were extracted and selected from segmented tumors and peritumoral regions in MRI
before-and-after filtering. These features, alone or combined with clinical characteristics, were used to construct a radi-
omics or joint signature to differentiate OAL from IOI, respectively. A joint nomogram was built to show the impact of the
radiomics signature and clinical characteristics on individual risk of developing OAL.
Statistical Tests: Area under the curve (AUC) and accuracy (ACC) were used for performance evaluation. Mann–Whitney U
and Chi-square tests were used to analyze continuous and categorical variables. Decision curve analysis, kappa statistics,
DeLong and Hosmer–Lemeshow tests were also conducted. P < 0.05 was considered statistically significant.
Results: The joint signature achieved an AUC of 0.833 (95% confidence interval [CI]: 0.806–0.870), slightly better than the
radiomics signature with an AUC of 0.806 (95% CI: 0.767–0.838) (P = 0.778). The joint and radiomics signatures were com-
parable to experienced radiologists referencing to clinical characteristics (ACC = 0.810 vs. 0.796–0.806, P > 0.05) or not
(AUC = 0.806 vs. 0.753–0.791, P > 0.05), respectively. The joint nomogram gained more net benefits than the radiomics
nomogram, despite both showing good calibration and discriminatory efficiency (P > 0.05).
Data Conclusion: The developed radiomics-based analysis might help to improve the diagnostic performance and reveal
the association between radiomics features and individual risk of developing OAL.
Evidence Level: 3
Technical Efficacy: 3
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Orbital lymphoproliferative disorders (OLPDs) are the
most common primary orbital tumors, representing a

wide spectrum of lesions ranging from benign to malignant
entities.1 Ocular adnexal lymphoma (OAL) is a malignant
OLPD that often involves the conjunctiva, lacrimal gland,
eyelid, or orbit,2–4 with mucosa-associated lymphoid tissue
(MALT) lymphoma as the most common subtype.5,6 OAL
generally manifests as a low-grade B-cell non-Hodgkin lym-
phoma that occurs mainly in adults.7,8 It accounts for �34%
of orbital malignancies.9 Idiopathic orbital inflammation
(IOI) belongs to a benign OLPD, representing a non-
granulomatous inflammatory process in the orbit,9,10 mainly
involving the extraocular muscles and the lacrimal gland.11,12

It is crucial to distinguish between different OLPDs because
they relate to different treatment options: OAL is amenable
to low-dose radiation therapy,13,14 whereas IOI usually
exhibits a positive response to oral corticosteroids.15–17

MRI plays an indispensable role for noninvasive charac-
terization of different OLPDs and for assessing their
severity.18–20 To date, MRI including T1-weighted imaging
(T1WI), T2-weighted imaging (T2WI), diffusion-weighted
imaging (DWI), and dynamic contrast-enhanced MRI
(DCE-MRI) has been used for orbital lesion diagnosis.21–25

Specifically, OAL was more likely to be homogenous and iso-
intense on T1WI,21,22 isointense or hyperintense on
T2WI,18,22–24 and mostly located unilateral21,22 with mold-
ing around normal structures without deforming them.22

OAL showed homogeneous contrast enhancement,22 high
DWI signal, low apparent diffusion coefficient (ADC)
values,1,22,25 and a low DCE-MRI-derived area under the
curve (AUC).25 In contrast, IOI was isointense or
hypointense on T2WI,19,22–24 smaller in size,20 round or oval
in shape20 and associated with hyperostosis.20 Also, it has a
“flow void sign” in T2WI,1,25 intermediate DWI and ADC
values.22 However, due to similar appearance of OAL and
IOI on MRI, including the laterality, shape, location, and sig-
nal intensity between these two diseases,25 some findings were
not consistent and even contradictory. For example,
Haradome et al and Valvassori et al reported that the well-
defined margin and infiltration (or thickening of ocular mus-
cles) favored the diagnosis of IOI lesions,1,5 but Khan et al
suggested the well-defined or infiltrative appearance supported
OAL lesions.22 In addition, qualitative assessment of MRI
features was a subjective process with limited reproducibility
between raters.26,27

Radiomics is a synergistic approach between machine
learning and medical imaging, which performs high-
throughput extraction of quantitative features from medical
images to assist radiologists in making clinical decisions.28–30

Unlike qualitative assessments by humans, these quantitative
features could provide robust alternatives for automated diag-
nosis, prognosis, and prediction of tumors.29,31,32 Several
studies investigated the effectiveness of radiomics for

diagnosing different orbital lesions. Guo et al extracted first-
order gray-level statistics, gray-level run length matrix
(GLRLM), and grey-level co-occurrence matrix (GLCM) fea-
tures from contrast-enhanced T1WI (T1 + C) and T2WI,
and then selected five representative features to build a radi-
omics model to discriminate OAL from IOI.33 Hou et al
developed bag-of-features radiomics encoding texture features
(GLRLM, GLCM, laws and statistical features) extracted
from T1 + C, with diagnostic performance comparable to a
radiologist with 13 years of experience.34 Duron et al further
improved the diagnostic performance using the radiomics fea-
tures selected from shape, intensity histogram, and texture ana-
lyses (GLRLM, GLCM, gray-level size zone matrix [GLSZM],
gray-level differential matrix [GLDM] and neighborhood gray-
tone difference matrix [NGTDM] features) that were extracted
from six MRI sequences including T1WI, T2WI, DWI, and
T1 + C.35

Despite promising diagnostic performance, these radiomics
analyses seldomly considered MRI features in the transformed
domain (such as Wavelet and Laplacian of Gaussian [LoG]) and
performed the diagnosis without considering clinical
information.33–35 Moreover, they ignored some features used by
human experts in the clinical diagnosis, such as tumor bound-
aries. On the other hand, previous studies only assessed the over-
all performance through statistical analyses, without assessing
individual risk of malignancy.21,33–35 Recently, radiomics nomo-
grams with radiomics features for risk analysis have been used to
assess lymph node metastasis,36,37 microvascular invasion,38 sur-
vival of patients,39 and response to induction chemotherapy.40

However, radiomics nomograms have not yet been investigated
for the differential diagnosis of OLPDs.

Therefore, the aim of this study was to develop a rad-
iomics nomogram that integrates the radiomics features
extracted from both raw and filtered MRI data as well as
clinical information and to assess whether this nomogram
allows for an individual preoperative diagnosis of OAL
vs. IOI.

Materials and Methods
This retrospective study was approved by the institutional review
board and the requirement for written informed consent was waived
due to retrospective design.

Population
Between July 2014 and June 2021, 103 consecutive patients (46.6%
female) with OLPDs (58 IOIs and 45 OALs) were enrolled in the
study, with mean ages of 50.8 � 16.7 and 63.6 � 12.7 years,
respectively (Table 1). The inclusion criteria were as follows: 1) pri-
mary IOI or OAL diagnosis as confirmed by histopathological exam-
ination, or primary IOI that was sensitive to oral corticosteroid
therapy; 2) MRI examination performed within 7 days prior to
biopsy or surgery; 3) complete clinical characteristics including prop-
tosis, eyelid swelling, eye pain, vision loss and eye movement disor-
der. The exclusion criteria were as follows: 1) patients with a history
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of orbital tumor surgery before MR imaging; 2) incomplete MRI
acquisition (i.e. missing T1WI, T2WI, or T1 + C); 3) lack of clini-
cal or histopathological data; and 4) poor image quality caused by
motion or susceptibility artifacts. Details of the included and
excluded patients are shown in Fig. S1.

All patients were divided into a training dataset with
82 patients (46 IOIs and 36 OALs) and testing dataset with
21 patients (12 IOIs and 9 OALs), according to the ratio of 8:2.
The analysis workflow is shown in Fig. 1.

MR Imaging
All patients underwent an MRI examination using a 3.0 T scanner
(Signa HDxt, GE Healthcare, Milwaukee, WI, USA) with an eight-
channel high-resolution head coil. Standard MRI protocols were per-
formed including precontrast axial fast spin-echo (FSE) T1WI with
repetition time (TR)/echo time (TE) of 400/10 msec; axial fast spin-
echo fat-saturated T2WI with TR/TE of 2800/70 msec; and axial
fast spin-echo fat-saturated T1 + C with TR/TE of 500/10 msec.
For all sequences, the slice gap and thickness were 3 and 2 mm and
the matrix and field of view were 320 � 192 and 180 � 180 mm2,
respectively. The T1 + C sequence was acquired after intravenous
injection of 0.2 mL/kg (0.1 mmol/kg) gadolinium die-
thylenetriamine pentaacetic acid hydrate (DTPA) (Magnevist, Bayer
AG, Mullerstrasse, Berlin-Wedding, Germany).

Manual Segmentation
Two radiologists with no prior knowledge of the histopathological
diagnosis were involved in the segmentation of three-dimensional
(3D) orbital lesions to obtain regions of interest (ROIs). Specifically,
the first radiologist with 9 years of experience in head-and-neck radi-
ology loaded the T1 + C sequence into the Medical Imaging Inter-
action Toolkit (MITK) Workbench (version 2015.5.0; http://www.
mitk.org) and manually delineated the orbital lesion slice by slice
and obtained the volume of the entire lesion. The segmentation on
precontrast T1WI and T2WI followed the same approach and used
the segmented ROI on T1 + C sequence as a reference. The second
radiologist with 15 years of experience in head-and-neck radiology
reviewed and modified the segmentation result if there was over- or
under-segmentation. Segmenting the ROI from three MRI
sequences took approximately 5–8 minutes per patient. In addition,
the peritumoral region was automatically obtained by expanding the
boundary of the segmented ROI by three pixels using Python (ver-
sion 3.6.2; https://www.python.org).

TABLE 1. Demographic and Clinical Characteristics of
Patients With Different OLPDs

Characteristics
IOI

(n = 58)
OAL

(n = 45)
P

value

Male 25 30 0.017*

Female 33 15

Age
(mean � SD)

50.8 � 16.7 63.6 � 12.7 0.001*

Proptosis 16 15 0.679

Eyelid swelling 42 22 0.025*

Eye pain 16 4 0.033*

Vision loss 10 6 0.592

Eye movement
disorder

4 4 0.911

IOI = idiopathic orbital inflammation; OAL = ocular adnexal
lymphoma; SD = standard deviation.
*P < 0.05.

FIGURE 1: Framework of building the radiomics signature and individual nomogram.
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Radiomics Feature Extraction
Radiomics features were extracted from MRI before and after filter-
ing using the Pyradiomics software (version 2.2.0; https://
pyradiomics.readthedocs.io). First, we extracted 105 features from
the segmented ROI of each raw (original) MRI including 14 shape
features, 18 first-order histogram features, and 73 texture features
(22 GLCM, 16 GLRLM, 16 GLSZM, 14 GLDM, and 5 NGTDM
features). Second, from the peritumoral region we extracted 18 first-
order features to represent the boundary information. Third, we per-
formed Square, Square Root, Logarithm, Exponential, Wavelet or
LoG filtering on the raw MRI to generate the transformed (filtered )
MRI from which 109 features were extracted, including first-order
features (n = 18), texture features (n = 73), and peritumoral first-
order features (n = 18). The Wavelet filter yielded eight decomposi-
tions per level, representing all possible combinations of applying
either a high- or a low-pass filter in each of the three dimensions,
and the LoG filter used two parameters, a low sigma emphasizing
fine textures and a high sigma emphasizing coarse textures. Finally,
1649 features were extracted from each MRI, and a total of 4947
features were acquired for the three sequences. The radiomics fea-
tures from each sequence are detailed in Table S1. It took approxi-
mately 2 minutes to extract features from each sequence and
�6 minutes for all three sequences per patient.

Feature Selection and Radiomics Signature Building
To alleviate overfitting caused by small sample sizes and large vari-
able (feature) dimensions, we used the least absolute shrinkage and
selection operator (LASSO) logistic regression algorithm to reduce
the feature dimensions. Specifically, we determined the tuning
parameter λ that minimized the binomial deviances by means of
5-fold cross-validation on the training samples, which could select
the optimal number of features that contributed more to OLPD
diagnoses. These selected features were weighted by their respective
LASSO coefficients to generate a radiomics signature for differentiat-
ing OAL from IOI with different rad scores. In addition, a joint sig-
nature combining selected radiomics features and clinical
characteristics including age, eyelid swelling, and eye pain was also
created by fitting another multivariate logistic regression model. The
LASSO model was implement using the “glmnet” package in R soft-
ware (version 3.5.1; https://www.R-project.org).

Individual Risk Nomogram Building
An individual risk model called joint nomogram was built in the
training dataset to graphically show the impact of the radiomics sig-
nature and different clinical characteristics on the individual risk of
malignancy (OAL). Taking a patient as an example (Fig. 6), the
value of each risk factor was converted into corresponding points,
and the sum of these points can ultimately determine the probability
of occurrence of OAL. Calibration curves were plotted to evaluate
the diagnostic performance of the joint nomogram in both training
and validation datasets using Hosmer–Lemeshow test. Decision
curve analysis was performed to quantify the net benefits at different
thresholds in order to assess the clinical usefulness of the nomogram,
compared to treat-all-patients and treat-none schemes.36,37

Imaging Analysis by Radiologists
To compare the radiomics analysis to human diagnosis, five indepen-
dent radiologists (radiologists A–C, D: H.Z., and E: S.J.) with 2, 5,
7, 10, 13 years of experience separately performed visual assessment
of all MRI data. They had no prior knowledge of the histopathologi-
cal results and clinical findings. Specifically, they rated the lesions’
laterality, location, shape, boundary, involvement of the orbital area,
signal intensity on T1WI and T2WI sequences, and degree and
model of enhancement in T1 + C. Independent assessment was
scored in a 5-point scale by each radiologist, with the range from
1 to 5 points representing the likelihood of each lesion going from
IOI to OAL. In other words, points 1–5 indicate a lesion identified
as IOI, tending to be IOI, unidentifiable, tending to be OAL, and
identified as OAL, respectively. The score of each radiologist was
normalized to the interval [0, 1] by the formula (score-1)/4 as the
probability of assessing the malignancy of each lesion. Furthermore,
we also compared the joint signature with the five radiologists who
performed the diagnosis as benign or malignant using both imaging
and clinical features including age, eyelid swelling, and eye pain.

Statistical Analysis
All statistical analyses were performed using SPSS (version 22.0;
IBM, Armonk, NY, USA), R software (version 4.1.2; https://www.
R-project.org), and Python (version 3.6.2; https://www.python.org).
The AUC from receiver operating characteristic (ROC) analysis was
used to evaluate the diagnostic result of each model (radiomics signa-
ture and joint signature) and radiologist (A–E). Furthermore, accu-
racy (ACC), sensitivity (SEN), specificity (SPE), positive predictive
value (PPV), negative predictive value (NPV), and net reclassification
improvement (NRI) were also calculated based on the threshold
determined by the maximum Youden index. Mann–Whitney U and
Chi-square tests were used to analyze continuous (age, rad score) or
categorical variables (gender, clinical characteristics, and diagnostic
performances of models and radiologists), respectively. DeLong test
was used to compare the ROC curves between the radiomics signa-
ture and joint signature. Kappa statistics was used to evaluate the
consistencies between models and radiologists and between different
radiologists. The calibration curve under Hosmer–Lemeshow test
was used to assess the goodness of fit on each nomogram, with the
net benefit evaluated by decision curve analysis (DCA). In all statisti-
cal analyses, a P value < 0.05 was considered statistically significant.

Results
Demographic and Clinical Characteristics
Demographic and clinical characteristics of patients were
summarized in Table 1. Of the 58 IOI patients, 42 and
16 patients suffered from eyelid swelling and eye pain, com-
pared to 22 and 4 of the 45 OAL patients, respectively. OAL
more often occurred in elderly and male patients who were
less likely to experience eyelid swelling and eye pain. There
was no significant difference between OAL and IOI regarding
occurrence of proptosis (P = 0.679), visual loss (P = 0.592),
or eye movement disorders (P = 0.911).
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Feature Selection and Radiomics Signature Building
Binomial deviances and coefficients with different tuning param-
eters (λ) are shown in Fig. 2a,b, respectively. At the optimal λ
value of 0.138 (log(λ) = �1.981), four radiomics features with
non-zero coefficients were selected from 4947 features, including
two from T1WI, one from T2WI, and one from T1 + C
(Fig. 2c). Each selected radiomics feature was significantly differ-
ent between OAL and IOI patients (Fig. 3). The radiomics sig-
nature (rad score) was built with these four features and
corresponding coefficients. Figure 2d shows the rad score of each
patient from both the training and testing datasets. There was a
significant difference between the rad scores [median (inter-
quartile range)] for the OAL and IOI patients in the training
dataset [0.601 (�0.276 to 2.405) vs. �1.348 (�3.043 to
�0.192)], which was confirmed in the testing dataset [0.112
(�0.409 to 0.329) vs. �0.911 (�2.401 to �3.087)].

Performance of Radiomics Signature With/Without
Clinical Characteristics
The diagnostic performances of the radiomics signature and
joint signature are given in Table 2 and Fig. 4. The radiomics

signature achieved AUC values of 0.865 (95% confidence
interval [CI]: 0.827–0.890) and 0.806 (95% CI: 0.767–
0.838) in the training and testing datasets, respectively. Inte-
grating clinical characteristics, the joint signature performed
slightly better than the radiomics signature, with AUC values
for the training and testing datasets of 0.928 (95% CI:
0.908–0.948) and 0.833 (95% CI: 0.806–0.870), respec-
tively. However, the ROC curves in Fig. 4 did not show sig-
nificant differences between the joint and radiomics
signatures, with P = 0.058 and P = 0.778 in the training
and testing datasets, respectively. Similar results were
observed for the NRI in the testing dataset (0.222,
P = 0.367), where the NRI values for event (OAL) and non-
event (IOI) groups were 0.222 and 0, respectively.

Comparison Between Radiomics Analysis and
Human Diagnosis
The comparison between the radiomics model and human
diagnoses is given in Table 3. Using only imaging features,
the radiomics signature was superior to radiologists A–C with
an AUC of 0.806 vs. [0.574, 0.618, 0.626], and comparable

FIGURE 2: Results of feature selection and radiomics signature building. (a) The binomial deviance of the least absolute shrinkage
and selection operator (LASSO) with respect to λ. (b) The coefficients of each feature in LASSO with respect to λ. (c) Selected
radiomics features, corresponding coefficients, and the building of the radiomics signature quantified by the rad score. (d) The rad
score value of each patient in the training and testing datasets.
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to radiologists D and E (H.Z. and S.J.) with an AUC of
0.806 vs. [0.751, 791], P = [0.521, 0.870]. In the clinical
characteristics taken into account, the joint signature was bet-
ter than three radiologists A–C with an ACC of 0.810
vs. [0.621, 0.641, 0.709], although not significantly different
from other two radiologists (D: H.Z. and E: S.J.) with an
ACC of 0.810 vs. [0.796, 0.806], P = [0.271, 0.354].

MR images of four patients with OLPDs are shown in
Fig. 5, from which we note that the diagnostic performance
of either the radiomics model or human diagnosis or both is
improved by combination with clinical characteristics. In
addition, the kappa values between the model and radiologists
and between different radiologists increased from 0.059–
0.516 to 0.206–0.618 (Tables S2 and S3). The detailed

FIGURE 3: Comparison of the four selected radiomics features in patients with idiopathic orbital inflammation (IOI) and ocular
adnexal lymphoma (OAL).

TABLE 2. Performance of Different Models in Training and Testing Datasets

AUC (95% CI) ACC SEN SPE PPV NPV

Training dataset

Radiomics signature 0.865 (0.827–0.890) 0.768 0.917 0.652 0.673 0.909

Joints signature 0.928 (0.908–0.948) 0.866 0.917 0.826 0.805 0.927

Testing dataset

Radiomics signature 0.806 (0.767–0.838) 0.762 0.778 0.750 0.700 0.818

Joint signature 0.833 (0.806–0.869) 0.810 0.889 0.750 0.727 0.900

AUC = area under curve; CI = confidence interval; ACC = accuracy; SEN = sensitivity; SPE = specificity; PPV = positive predictive
value; NPV = negative predictive value.
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comparison between the model and human diagnosis on all
patients in the testing dataset was given in Table S4.

Validation of Individual Risk Nomogram
With the rad score and clinical characteristics including
age, eyelid swelling, and eye pain as independent risk fac-
tors, the joint nomogram built with logistic regression
analysis is given in Fig. 6a. The calibration curves

indicated good agreement between the assessed and actual
risk of malignancy (Fig. 6b; training dataset, P = 0.230;
testing dataset, P = 0.358). In addition, the nomogram
with the rad score as a single risk factor (named radiomics
nomogram) also passed the Hosmer–Lemeshow test (train-
ing dataset, P = 0.521; testing dataset, P = 0.067), but
the calibration did not perform as well as the joint
nomogram.

FIGURE 4: Diagnostic ROC curves of two models in the training and testing datasets.

TABLE 3. Comparison Between Radiomics Analysis and Human Diagnosis

Experience AUC ACC SEN SPE PPV NPV

Diagnosis with only imaging information

Radiologist A 2 years 0.574 0.544 0.578 0.517 0.481 0.612

Radiologist B 5 years 0.618 0.602 0.600 0.603 0.540 0.660

Radiologist C 7 years 0.626 0.631 0.622 0.638 0.571 0.685

Radiologist D 10 years 0.753 0.728 0.822 0.655 0.649 0.826

Radiologist E 13 years 0.791 0.757 0.600 0.879 0.794 0.739

Radiomics signature -- 0.806 0.762 0.778 0.750 0.700 0.818

Diagnosis with imaging and clinical information

Radiologist A 2 years -- 0.621 0.644 0.603 0.558 0.686

Radiologist B 5 years -- 0.641 0.667 0.621 0.577 0.706

Radiologist C 7 years -- 0.709 0.733 0.690 0.647 0.769

Radiologist D 10 years -- 0.796 0.889 0.724 0.714 0.894

Radiologist E 13 years -- 0.806 0.689 0.897 0.838 0.788

Joint signature -- 0.833 0.810 0.889 0.750 0.727 0.900

AUC = area under curve; ACC = accuracy; SEN = sensitivity; SPE = specificity; PPV = positive predictive value; NPV = negative
predictive value.
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Discriminatory Efficiency of Different Nomograms
Decision curve analyses of the joint and radiomics nomo-
grams are shown in Fig. 7. On the combined training–testing
dataset, both the joint and radiomics nomograms added more
benefits for identifying OAL than treat-all-patients and treat-
none schemes when the threshold probability of a patient or
physician is less than 0.9 or above 0.95. Within this interval,
the net benefit of the joint nomogram was superior or compa-
rable to that of the radiomics nomogram. In the interval from
0.9 to 0.95, the radiomics signature performed slightly better
than the joint nomogram as well as treat-all-patients and
treat-none schemes.

Discussion
We assessed a radiomics-based diagnostic signature and indi-
vidual nomogram for preoperatively distinguishing between

OAL and IOI based on routine MRI data. The joint signa-
ture was built with four radiomics features and three clinical
characteristics, and it achieved better performance than the
radiomics signature that was built with only the radiomics
features. The results suggest that this radiomics analysis might
help to improve diagnostic performance and reveal the associ-
ation between radiomics features and individual risk of
developing OAL.

Different from previous orbital lesion diagnoses that
extracted features only from the lesion area in raw MRI
data,21,33–35 this study extracted features from both the
tumoral and peritumoral areas in the raw as well as filtered
MRI data. Owing to this process, the testing AUC value
achieved by the radiomics signature was superior or similar to
the radiomics analyses reported by Guo et al and Hou et al,
with AUC values of 0.73 (95% CI: 0.65–0.88) and 0.803

FIGURE 5: MR images of four typical patients. (a) A 72-year-old man with OAL, misclassified as IOI by the radiomics signature and
four radiologists (B–E with scores of 2, 1, 1, 1 points, respectively), was correctly identified by the joint signature and all five
radiologists after combining clinical characteristics. (b) A 47-year-old man with IOI, misclassified as OAL by radiomics signature and
one radiologist (A with the score of 4 points), both of which were corrected by integrating clinical characteristics. (c) A 68-year-old
woman with OAL, correctly identified by the radiomics signature and four radiologists (A, B, D, E with scores of 4, 3, 4, 5 points,
respectively), and the misclassification of radiologist C (with the score of 2 points) was corrected by combining clinical characteristics.
(d) A 60-year-old woman with IOI, correctly identified by four radiologists (B-E with scores of 2, 3, 2 and 3 points, respectively), while
the misclassification of radiomics signature was corrected by the joint signature incorporating clinical characteristics.
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(95% CI: 0.725–0.880), respectively.33,34 Nevertheless, the
performance of the radiomics signature was not as good as
the one shown by the study of Duron et al, who obtained
an AUC of 0.869 (95% CI: 0.834–0.898).35 This might
be caused by consideration of more sequences including
T1WI, T2WI, T1 + C, and DWI. Yet, by incorporating
three clinical characteristics, the joint signature in this
study improved the diagnostic AUC to 0.833 (95% CI,
0.806–0.870), which was comparable to the previous study
of Duron et al,35 but we only utilized routine sequences
excluding DWI.

Of the four selected radiomics features, two were extracted
from T1WI (T1_original_glcm_JointEnery, T1_original_glcm_
SumEntropy), one from T2WI (T2_wavelet-HLH_bordor_Mini-
mum), and one from T1 + C (T1 + C_wavelet-HHL_border_
Skewness), suggesting that multiparametric MRI could provide
complementary information. Similar observations were made in
previous work to distinguish OAL from benign lesions such as
IOI35 or IgG4-related ophthalmic diseases.21 Specifically, T1_
original_glcm_JointEnery was a measure of homogeneous pat-
terns, while T1_original_glcm_SumEntropy represented a sum of
neighborhood intensity-value differences, both belonging to the

FIGURE 6: (a) Individual risk model (joint nomogram) that can assess the risk of developing ocular adnexal lymphoma (OAL) for each
patient with the rad score and clinical characteristics including age, eyelid swelling, and eye pain as independent risk factors.
(b) Calibration curves of the joint nomogram and radiomics nomogram in the training and testing phases.
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texture feature (GLCM). OAL had higher joint-energy value and
low sum-entropy value compared to IOI, indicating a more
homogeneous pattern of OAL in T1WI, which was consistent
with the clinical imaging diagnosis reported earlier.25,26 T1 +
C_wavelet-HHL_border_Skewness and T2_wavelet-HLH_
bordor_Minimum were the first-order statistical histogram fea-
tures acquired from the peritumoral areas of T1 + C and T2WI,
respectively, which demonstrated the usefulness of boundary
information in the Wavelet transformed domain.

It is worth noting that both the radiomics signature and
five radiologists can correctly diagnose the patients of OAL
with high confidence. For the patients with high confidence
of IOI and low confidence of OAL, the radiomics signature
still performed well, which was not the case for all radiolo-
gists. For the patients with moderate confidence of OAL or
IOI, the radiomics signature performed slightly better than or
comparable to that of radiologists. Nevertheless, it was these
patients who gained more benefit after integrating clinical
characteristics (age, eyelid swelling, and eye pain), as demon-
strated by improved assessments by both the joint model and
radiologists who referenced the clinical information.

Limitations
First, the sample size of this retrospective study was limited
because of the lower prevalence of OLPDs compared to lung
and breast tumors and the lack of histopathological examina-
tion of some patients. The inclusion of large number of sam-
ples from multiple centers is warranted to further evaluate the
radiomics nomogram in a subsequent study. Second, ROIs
were manually delineated by radiologists, which not only
increases the tediousness of the analysis process but could also
introduce subjective bias. Automatic segmentation techniques
based on machine learning and especially deep learning might

be used in the future to improve the efficiency and reproduc-
ibility of segmented results. Third, although our findings may
show the promise of the radiomics analysis with routine MR
images (T1WI, T2WI, and T1 + C), previous studies have
demonstrated the effectiveness of further sequences including
DCE-MRI and DWI in identifying different OLPDs.25,35

Nevertheless, the quality and quantity of these images are cur-
rently not sufficient to identify different OLPDs since only a
fraction of patients have undergone these further examina-
tions. The performance of radiomics analyses may be further
improved if further sequences such as DCE-MRI and DWI
are collected and integrated in the models.

Conclusion
We assessed MRI-based radiomics signatures with and with-
out the clinical information for preoperatively differentiating
OAL from IOI. The joint signature performed slightly better
than the radiomics signature, and both signatures were com-
parable to superior compared to evaluations by radiologists.
With the rad score and clinical characteristics as independent
risk factors, the joint nomogram could gain more net benefits
than the radiomics nomogram. Thus, combining the radi-
omics signature and clinical characteristics including age, eye-
lid swelling, and eye pain as independent factors to create an
easy-to-use nomogram facilitates uncovering the association
between radiomics features and individual risk of OAL.
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