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Abstract
Detection of different classes of atherosclerotic plaques is important for early intervention of coronary artery diseases. However,
previousmethods focused either on the detection of a specific class of coronary plaques or on the distinction between plaques and
normal arteries, neglecting the classification of different classes of plaques. Therefore, we proposed an automatic multi-class
coronary atherosclerosis plaque detection and classification framework. Firstly, we retrieved the transverse cross sections along
centerlines from the computed tomography angiography. Secondly, we extracted the region of interests based on coarse seg-
mentation. Thirdly, we extracted a random radius symmetry (RRS) feature vector, which incorporates multiple descriptions into a
random strategy and greatly augments the training data. Finally, we fed the RRS feature vector into the multi-class coronary
plaque classifier. In experiments, we compared our proposed framework with other methods on the cross sections of Rotterdam
Coronary Datasets, including 729 non-calcified plaques, 511 calcified plaques, and 546 mixed plaques. Our RRS with support
vector machine outperforms the intensity feature vector and the random forest classifier, with the average precision of 92.6 ±
1.9% and average recall of 94.3 ± 2.1%. The proposed framework provides a computer-aided diagnostic method for multi-class
plaque detection and classification.
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1 Introduction

Coronary artery disease (CAD) is the leading cause of death
worldwide, including myocardial infarction and ischemic car-
diomyopathy [8, 21]. CAD is closely related to coronary ste-
nosis due to the burden of atherosclerotic plaques [9, 15].
Specifically, mixed atherosclerotic plaques take more respon-
sibility for major cardiac adverse events compared with calci-
fied and non-calcified plaques [1, 10]. Thus, detection and
analysis of multi-class atherosclerotic plaques are of great im-
portance for early prevention and intervention of CAD.

Conventionally, invasive coronary angiography (ICA) is the
gold standard imaging technique for the diagnosis of coronary
plaques [4, 11]. However, the coronary arteries locating at
different depths are visually overlapped with each other in
two dimensional (2D) image, which increases the requirement
of surgeons’ experience. Computed tomography angiography
(CTA) has gained popularity due to the advantages of non-
invasive, three-dimensional (3D), and high-resolution imag-
ing [22]. Nevertheless, the intensities of different classes of
plaques (such as calcified plaques, non-calcified plaques, and
mixed plaques) in CTA images vary widely. Moreover, mo-
tion artifacts caused by heartbeats and respiration deteriorate
the quality of CTA images. Therefore, it remains a challenging
task to accurately detect all classes of coronary atherosclerosis
plaques.

1.1 State-of-the-art methods

Most of the previous automatic coronary plaque detection
methods are intuitively devised with handcrafted rules.
Toumoulin et al. picked out the area with higher intensity
confined between the inner and outer coronary artery
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boundaries as calcified plaques [26]. Wesarg et al. detected
calcified plaques by combining the lumen radius with lumen
intensity feature, based on the observation that the lumen of
plaque artery was narrower compared with that of normal
artery [29]. Similarly, Wang and Liatsis localized the calcified
stenosis by assuming that normal arteries had circle-like cross
sections, while cross sections of calcified stenosis deviated
from being circular [28]. On the other hand, it has been dem-
onstrated that high-resolution CTA imaging enables character-
izing different components of coronary atherosclerosis
plaques including necrotic cores, dense calcium, fibrotic,
and fibro-fatty tissues [6]. Therefore, Rinck et al. proposed
to detect non-calcified plaques by analyzing the discrepant
areas between coronary artery lumens and walls based on
CTA imaging [20]. Renard et al. decomposed the detection
of non-calcified coronary plaques into three components: cor-
onary artery centerline extraction, vessel lumen and wall seg-
mentation, and plaque detection based on cross-section areas
of lumen and wall [19]. Moreover, dual-energy CT imaging
with effective machine learning methods (i.e., SVM, artificial
neural networks, and random forests) could further differenti-
ate non-calcified coronary plaques into fibrous and lipid
plaques. All the above automatic plaque detection methods
greatly improved the detection efficiency compared with the
laborious manual delineation, but these methods are only ef-
fective for a specific class of coronary plaques.

Subsequently, Valencia indicated that all the coronary
plaque lesions generally had certain discrepancy compared
with normal arteries, although there were conspicuous mor-
phological differences among various plaques [27]. Hereafter,
Kang et al. separated coronary lesions caused by any classes
of plaques from the normal arteries based on a priori knowl-
edge that the diameter of normal artery was supposed to be
gradually tapering as away from the ostium [12]. Zuluaga et
al. utilized an intensity metric within a machine learning
scheme to distinguish normal and abnormal cross sections
[34]. They assumed that both lesions and calcifications could
be considered as local outliers compared to a normal cross
section. However, this method cannot distinguish the classes
of different plaques, which cripple its ability of guiding risk
assessment of CAD.

To handle this problem, Dey et al. proposed to quantify
both calcified and non-calcified plaques using threshold seg-
mentation, in which the scan-specific attenuation threshold for
each class of plaques was automatically determined from lu-
minal attenuation [7]. Tessmann et al. extended the detection
approach for soft and calcified plaques by describing the cyl-
inder coronary artery in cardiac CPR vessel image [25]. They
integrated the multi-resolution approach into the feature ex-
traction strategy, making it possible to increase its overall de-
tection rate and robustness. Furthermore, Kelm et al. proposed
to detect coronary stenosis in CTA caused by all classes of
plaques based on radius regression with random forests [13].

However, they just mentioned adapting probability scores by
two classifiers to the detection of calcified and non-calcified
plaques, neglecting the detection of mixed plaques.

1.2 Problems and contribution

Although the previous methods have been widely used in
detecting of coronary plaques, there are some limitations hin-
dering their accurate clinical applications, which are summa-
rized as follows.

(1) Most of the previous methods focus either on the detec-
tion of a specific class of coronary plaques or on the
distinction between plaques and normal arteries,
neglecting the classification among different classes of
plaques. It is known that different classes of plaques are
generally related to different severity levels of CAD. For
example, non-calcified plaques take more responsibility
than calcified plaques for unstable angina pectoris or
non-ST-elevation myocardial infarction [5].

(2) With only intensity- or lumen diameter-based features,
studies in [7, 13, 25] tried to detect and classify coronary
plaques into calcified and non-calcified plaques.
However, they cannot detect mixed plaques that are be-
tween calcified and non-calcified plaques in composition
andmorphology. Clinical trials have shown that presence
of non-calcified plaques and especially mixed plaques
with co-existing vulnerable plaque characteristics (low
attenuation, positive remodeling, or spotty calcification)
are higher risk predictors of major cardiac events on CT
[23, 24], which demonstrated the importance of mixed
plaques for clinical prediction of CAD.

(3) Both the feature extraction methods in [22, 31] take con-
textual information into account and depress the influence
of image noise to some extent. However, these features
only depend on the intensity differences between different
objects, limiting the distinguishability of lesions (or
plaques) and normal arteries. In addition, manually
assigned radius used for sampling may be under- or over-
estimated; thus, the features would either underestimate the
lesion or bring in the interference of surrounding organs.

In this paper, we proposed an automatic multi-class coro-
nary atherosclerosis plaque detection and classification frame-
work, which can simultaneously detect three classes of
plaques, including calcified, non-calcified, and mixed
plaques. Due to the introduction of randomness in the extrac-
tion of multiple features (statistical intensity, second-order
gradient, local curvature, and texture), our framework effec-
tively increases the accuracy and robustness of multi-class
plaques detection. In detail, we firstly transformed the original
CTA image (in three orthographic views) into a series of trans-
verse cross sections along the coronary centerline. Secondly,
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we designed and extracted a random radial symmetry (RRS)
feature vector on each cross section, which incorporated mul-
tiple contextual features of plaques and substantially augment-
ed the training data. Finally, we fed the original feature vectors
together with the augmented feature vectors into a classifier
(SVM or random forests) to conduct multi-class plaque detec-
tion. The proposed framework provides a computer-aided di-
agnosis method for multi-class plaque detection and
classification.

2 Method

As shown in Fig. 1, the proposed automatic multi-class coro-
nary atherosclerosis plaque detection and classification frame-
work mainly consist of three components. Firstly, we retrieved
2D transverse cross-sectional images along the given centerline
from the original 3D CTA image in three orthographic views
(Section 2.1). Secondly, we segmented the coronary lumen on
each cross section and estimate the lumen radius by averaging
over a segment of coronary artery, which is used to extract the
region of interest (ROI) on the cross section (Section 2.2).
Thirdly, we designed and extracted a random radius symmetry
(RRS) feature vector, including the statistical intensity, second-
order gradient, local curvature, and texture features. The RRS
feature vector incorporated multiple descriptions within the
ROI into the random strategy, greatly augmenting the training
data of coronary plaques (Section 2.3). We fed the RRS feature
vectors of both plaque and normal cross sections into the multi-
class coronary plaque classifier, so as to recognize the non-
calcified, calcified, and mixed plaques.

2.1 Transforming CTA image into cross sections

The assumption that a normal coronary has a circle-like lumen
is often invalid on CTA image in three orthographic views (i.e.,
the coronal, sagittal, and transverse views, as shown in Fig. 2a),
because this visualization does not take vessel-specific

observation into account. To solve this problem, we trans-
formed the original CTA image into a series of transverse cross
sections along the given centerline. Centerlines are defined as
the medial axes along the coronary arteries, commonly used to
handle the topology of corresponding arteries (e.g., the top left
inset of Fig. 1). In the retrieved cross sections (Fig. 2b), the
normal artery generally has circle-like lumen, while the plaque
artery does not, which differentiate normal and plaque arteries
effectively [28]. The transformation consists of coordinate cor-
respondence, image registration, and linear interpolation.

Given a point on the centerline is located at c = (cx, cy, cz) in
the original coordinate system before transformation, the cor-
responding transverse cross section is sliced along the center-
line tangent direction. We denote the centerline tangent direc-
tion as the normal vector m = (mx,my,mz) of the transverse
plane, which is acquired by forward difference between two
consecutive centerline points. We establish a coordinate sys-
tem, selecting the retrieved cross section as xOy plane and the
centerline crosses the origin. Thus, the new normal vector is
n = (0, 0, 1). Therefore, the registration of two cross sections
before and after transformation reduces to the registration of
two normal vectors m and n (Fig. 3).

The transformation for registration of m and n can be
decomposed into translation and rotation. We first translate the
centerline point c to the origin of coordinates, which is identical
for two systems before and after transformation (Fig. 3a). Then,
we rotate m about x-axis to its projection mxz on the xOz plane.
The rotation angle from m to mxz is denoted as φ (Fig. 3b).
Subsequently, we rotate the vector m from mxz about y-axis to
n. The rotation angle from mxz to n is denoted as θ. Thus, the
rotation from m to n can be formulated as

0; 0; 1; 1½ �T ¼ RxRy mx;my;mz; 1
� �t ð1Þ

where Rx ¼
1 0 0 0
0 cos φð Þ−sin φð Þ 0
0 sin φð Þ cos φð Þ 0
0 0 0 1

2
664

3
775 and Ry ¼

cos θð Þ 0 −sin θð Þ 0
0 1 0 0

sin θð Þ 0 cos θð Þ 0
0 0 0 1

2
664

3
775,

denoting the rotation parameter matrices about x-axis and y-

Fig. 1 Workflow of the proposed
automatic multi-class coronary
atherosclerosis plaque detection
and classification framework
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axis, respectively. Given each pair of normal vectors m and
n, we can readily obtain the two angles φ and θ, then
compute the rotation parameter matrices Rx and Ry. With
these two matrices, we can retrieve the cross section from
the original CTA image and align it with xOy plane. We
assume the coordinate of a point on the retrieved cross sec-
tion is (x′, y′, 0) and that of the corresponding point on the
original transverse image is (x, y, z). The transformation for-
mula is given as

x; y; z; 1½ �T ¼ cx; cy; cz; 0
� �T þ R−1

y R−1
x x

0
; y

0
; 0; 1

h iT
ð2Þ

Lastly, linear interpolation is used to calculate the intensity
of pixels in the cross section. For each centerline point, a
transverse cross-sectional image is calculated along the given
coronary centerline.

2.2 Selecting ROIs on cross sections

Figures 1 and 3 show that the coronary lumen is located in the
center and covers only a part of the cross-section image.
Besides coronary artery, there is strong interfering information
from myocardium and other organs, which make it inappro-
priate to detect coronary plaques from the entire cross-section
image. Therefore, it is necessary to select the ROIs (i.e., the
coronary lumen) before plaque detection and classification.
We roughly segmented the coronary lumen by modified level
sets method in the first place. Then, we estimated the radius of
each cross section by averaging over a segment of coronary
artery. Finally, the estimated radius was used to extract the
ROI on each cross section (Fig. 4).

Coronary lumen varies widely in normal and plaque arter-
ies, and among different classes of plaques. For example,

Fig. 2 Two types of 2D images
with the same ROI areas and radii
(5 pixels). a The axial images
normal to z-axis. b The transverse
cross sections normal to the
centerline

Fig. 3 Coordinate transformation
and registration. a The original
two systems before translation.
b The two systems after translat-
ing the centerline point c to the
origin of coordinates
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coronary lumen of calcified atherosclerosis plaque is larger
than the normal one, while that of non-calcified plaque seems
disconnected due to the low intensity in the CTA image.
Because of these distortions of the coronary lumen, most seg-
mentation methods failed to select accurate ROIs on cross-
section images. Recently, Li et al. proposed the distance reg-
ularized level set evolution (DRLSE) method, in which they
modified the conventional level set formulation by maintain-
ing the regularity of the level set function during evolution
[16]. Since DRLSE turned out to be effective on medical
images, we applied it to the coarse segmentation of coronary
lumen on cross-section images. With proper initialization,
most of the coronary lumens could be segmented in the
cross-section image. However, there were still some coronary
lumens under-segmented or over-segmented as shown in Fig.
4 (left inset). Thus, the result of lumen segmentation by
DRLSE can only act as an initial estimation of coronary lumen
region, which supplied a coarse contour for the subsequent
radius estimation.

On each cross-section image, the initial radius is computed
by considering the farthest and nearest points on the surround-
ing contour to the centerline point. Considering the under-
segmented and over-segmented issues in the distorted cross
sections, it is practical to further average the initial radii along
a segment of coronary artery, in which the partition of each
segment referred to the modified 17 segments of the AHA
reporting system [2]. Thus, the lumen radii of a series of cross
sections may be identical if they lie in the same segment of
coronary artery. This is rational because the size of each seg-
ment of coronary artery changes slightly. Moreover, this strat-
egy greatly depresses the instability of initial radius estimation
caused by the inaccurate coarse lumen segmentation. Based
on the estimated radius, we select a disk on each cross section
as the ROI for subsequent plaque detection and classification.

2.3 Designing and extracting RRS feature vector

Feature extraction is crucial for coronary plaque detection via
machine learning-based methods. Spatial context features are
specially designed for the lesion segmentation in human ab-
domen and retina, which have become a group of effective

features due to the integration of multiple information [17,
18]. Motivated by the idea of spatial context features, we
designed a random radius symmetry (RRS) feature vector in
our framework. We firstly standardized the cross sections
within the ROIs, such that we could establish the anatomical
correspondence between feature vectors and different coro-
nary plaques. Then, we extracted the RRS feature vector on
the standardized cross sections, which has the ability to aug-
ment the original data by introducing little perturbation on the
initial sampling angles.

2.3.1 Image standardization

Image standardization within ROIs of cross sections consisted
of two phases. In the first phase, adaptive radii were selected on
cross sections with different resolutions or on different seg-
ments of coronary artery, which was accomplished by the radi-
us estimation during the ROI selection (in Section 2.2). In the
second phase, target angles for different plaques were set based
on the intensity variationwithin the corresponding ROI (Fig. 5).

We partitioned each ROI into eight sectors with identical
angle intervals (π/4) and then calculated the mean intensity in
each sector (Fig. 5a). We obtained the target angle ψ0 of each
ROI via finding the sector with the maximum mean intensity.
The confidence value ζ for the target angle ψ0 was given by
the difference between the maximum and minimum mean
intensities among the eight sectors. To avoid accidentally
partitioning a region with high intensity into two sectors, we
shifted the polar grid consisting of the eight sectors by an
interval of π/12. As shown in Fig. 5a, the final ζ was the
maximum confidence value at different shifting angles. The
optimalψ0 was obtained bymaximizing the confidence values
at different shifting angles as follows:

ψ0 ¼ argmaxi∈ 0;π=12;π=6f g ζi ð3Þ

Because of the rotation invariance, we just shifted the initial
polar grid (i = 0) by π/12 and π/6. If the final value of ζwas less
than an empirical threshold, we directly assigned the target
angle ψ0 as zero, which generally corresponds to the cross
sections of normal arteries. To clarify the anatomical corre-
spondence between feature vectors and different coronary

Fig. 4 Extraction of ROIs on cross sections. The left inset shows the
coarse segmentation of coronary lumens (delineated with red lines) by
modified level sets method. The middle inset shows the estimation of the

mean radii of different segments of coronary artery (1-17). The right inset
shows the selected ROIs (delineated with red lines) with the estimated
radii (color figure online)
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plaques, we provided examples of random selected cross sec-
tions of calcified, non-calcified, and mixed plaques in Fig. 5b.

2.3.2 RRS feature vector

Unlike the previous spatial context features, the proposed ran-
dom radius symmetry (RRS) feature vector incorporated im-
age gradient, curvature, and textural features into the statistical
intensity features, increasing the description ability of plaques
and normal coronaries. Moreover, in order to augment the
training data, randomness was also introduced into the selec-
tion of the initial sampling angle. We sampled multiple 3 × 3
patches within the ROI on each cross section. The distribution
of the patch centers is shown in Fig. 6, determined by the

different radii from the center and the side corresponding to
the target angle ψ0.

Specifically, as shown in Fig. 6a, we partitioned the ROI into
N concentric circles with radii of 1

N r;
1
N r;⋯; r, respectively, where

r is the estimated radius from ROI selection. On the ith circle
with radius Ri ¼ i

N r ( i = 1, 2, …, N), we sampled Mi patches
with identical angular intervalsΔψi = 2π/Mi (Fig. 6b). We ran-
domized the angle ψi, 1 between the radius corresponding
to the first sample point on the ith circle and the target
angle side. The radian measure of ψi, 1 lies in the in-
terval [0,Δψi) rather than [0, 2π), due to the consider-
ation of anatomical correspondence. Thus, the positions
of sample patches in polar coordinates on the ith circle
can be formulated as

Ri;ψið Þ ¼ i
N
r;ψ0 þ ψi;1

� �
;

i
N
r;ψ0 þ ψi;1 þΔψi

� �
;⋯;

i
N
r;ψ0 þ ψi;1 þ Mi−1ð ÞΔψi

� �� �
ð4Þ

where Δψi = 2π/Mi is the interval between two adjacent
patches on the ith circle.

The proposed sampling strategy can fully exploit the image
information from different patches with the randomness of
initial angle ψi, 1 ( i = 1, 2,…, N) on each circle, which effec-
tively augments the feature data for subsequent plaque detec-
tion and classification. This strategy is necessary when coro-
nary CTA images, especially the plaque lesion images, are not
sufficient. It should be noted that the hyper-parameters N and
Mi are empirically assigned, which depend on the area of ROIs
as well as computational capacity. Once the positions of all the

patches were acquired in an ROI, we could compute the sta-
tistical intensity, second-order gradient, local curvature, and
textural features on each patch. Then, all the features in this
ROI were combined one by one to construct a RRS feature
vector covering all the ∑N

i¼1Mi patches. In each patch, the four
types of features were calculated as follows:

Statistical intensity The mean μ and variance σ2 were
readily obtained from the intensities of the nine pixels
in each 3 × 3 patch. Based on these two low-order mo-
ment features, we could compute the high-order

Fig. 5 Image standardization
within ROIs of cross sections. a
ROI was partitioned into eight
sectors at three different polar
grids. b Examples of image
standardization for different
classes of coronary plaques (with
adaptive ROI radius r and target
angle ψ0)
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statistical features including the skewness ϑ and kurtosis
κ, which are given as

ϑ ¼ E
I x

0
; y

0� 	
−μ

σ

 !3
2
4

3
5

κ ¼ E
I x

0
; y

0� 	
−μ

σ

 !4
2
4

3
5

8>>>>>><
>>>>>>:

ð5Þ

where I(x′, y′) is the intensity of the pixel (x′, y′) in the
retrieved cross-section image.

Second-order gradient The second-order gradient features for
each pixel are formulated by the Hessian matrix:

H x
0
; y

0

 �

¼
∂2

∂x02 I x
0
; y

0

 � ∂2

∂x0∂y0 I x
0
; y

0

 �

∂2

∂y0∂x0 I x
0
; y

0

 � ∂2

∂y02 I x
0
; y

0

 �

2
6664

3
7775 ð6Þ

where each element of the Hessian matrix in Eq. (6) is a

second-order gradient. Considering the equivalence of ∂2
∂x0∂y0 I

x
0
; y

0� 	
and ∂2

∂y0∂x0 I x
0
; y

0� 	
, we picked ∂2

∂x0 2
I x

0
; y

0� 	
,

∂2
∂x0∂y0 I x

0
; y

0� 	
, and ∂2

∂y0 2
I x

0
; y

0� 	
as the three second-order gra-

dient features. In each patch, the values of the three second-
order gradient features were averaged.

Local curvature The curvature is formulated by the hybrid of
first- and second-order gradients of image intensity as follows
[31]:

C x
0
; y

0

 �

¼
1þ ∂

∂x0 I

 �2� 

∂2

∂y0 2
I−2

∂
∂x0 I

∂
∂y0

I
∂2

∂x0∂y0
I þ 1þ ∂

∂y0 I
� �2

" #
∂2

∂x02 I

2 1þ ∂
∂x0 I

 �2

þ ∂
∂y0 I

 �2� 

ð7Þ
where I is short for I(x′, y′) . In each patch, the local curvature
feature was the average of the curvature values of the nine pixels.

Local texture Local texture feature was obtained based on
texture maps filtered by 2D Gabor banks at 90° orientation,
which was calculated as follows [17]:

G x
0
; y

0

 �

¼ ζg ζ x
0
cosαþ y

0
sinα


 �
; ζ −x

0
sinαþ y

0
cosα


 �
 �
ð8Þ

where g u; vð Þ ¼ 1
2πσuσv

exp − 1
2

u2
σ2u
þ v2

σ2v


 �
þ 2πj Wuþ Vvð Þ

h i
is the Gaussian function with the shifting parameters W and
V in the frequency domain; α ¼ π

2 is the orientation of Gabor

banks; and ζ ¼ Fh
Fl


 �1=3
is the scaling factor with Fh and Fl as

the frequency range parameters of filter back. Similarly, the
local texture feature was averaged in the patch.

There were nine features in each patch, including four sta-
tistical intensity features, three second-order gradient features,
one local curvature, and one local texture feature. After tra-
versing all the patches in the ROI in each cross-section image,

the RRS feature vector was assembled with 9⋅∑N
i¼1Mi fea-

tures. Subsequently, we fed the RRS feature vectors of both
the plaque and normal cross sections into the multi-class cor-
onary plaque classifier to detect the calcified, non-calcified,
and mixed plaques.

3 Results

3.1 Dataset and evaluation methodology

The datasets adopted in this paper were from Rotterdam
Coronary Artery Evaluation Dataset, which were designed
for coronary stenosis detection and plaque analysis [14].
This dataset contains 18 CTA images with manually extracted
centerlines by three experts. Each coronary centerline point in
CTA image had been labeled as having atherosclerotic plaque
(including calcified, non-calcified, and mixed plaques) or not.
After cross-section retrieval along the centerline and ROI se-
lection, there were totally 1786 cross sections having

Fig. 6 The sampling strategy of
the random radius symmetry
(RRS) feature vector. a The par-
tition of ROI into N concentric
circles. b The samping with iden-
tical angular intervals on
each concentric circle
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atherosclerotic plaques (729 non-calcified plaques, 511 calci-
fied plaques, and 546mixed plaques) and 14,628 normal cross
sections. The size of the cross section was 51 × 51 in pixel.
During the RRS feature vector extraction, we tried many com-
binations of N and Mi (i = 1, 2,…,N) and concluded that the
optimal trade-off between computation and accuracy was N =
3, M1 = 8, M2 = 12, and M3 = 18. Thus, in each cross section,
there were 38 patches in total, and each RRS feature vector
was assembled with 9 × 38 = 342 features. According to
Section 2.3, the radian measure of the initial angle ψi,1 on each
concentric circle lay in the interval [0,Δψi) (i = 1, 2, 3) with
Δψ1 = π/4,Δψ2 = π/6, and Δψ3 = π/9. The angular randomi-
zation step was π/36 for all the three initial angles, so that we
could acquire as much as 9 × 6 × 4 = 216 different RRS fea-
ture vectors in each cross section.

The proposed framework has two goals: plaque detection
and classification. After plaque detection, we need to further
classify all the coronary plaques into calcified, non-calcified,
and mixed plaques. Thus, four quantitative evaluation indices
including precision, recall, F1 score, and accuracy were
employed to evaluate the performance of our framework.
The classifier we used for coronary plaque detection and clas-
sification was support vector machine (SVM) with Gaussian
kernel due to its superiority for small samples. The penalty
coefficient C and kernel parameter σ were 10 and 0.6, respec-
tively. In all experiments, we randomly set 80% of the RRS
feature vectors as the training data and the remaining 20% of
the RRS feature vectors as the testing data. The amount of
normal data was determined by trial-and-error to eliminate
the training error. All the experiments were run with 10-fold
cross-validation.

3.2 Cross-section validation

To test the performance of plaque detection in cross sections
over that in original CTA images in three orthogonal views,
we sliced the axial images from 3D CTA image along z-axis,
which was equivalent to those along x-axis and y-axis. No
matter which axis we choose, the slicing angle was fixed
and the axial images was impossible to be normal to the cor-
onary centerline. We set the radii for both the transverse cross
sections along the centerline and the axial images normal to z-
axis as 5 in pixel. Then, we carried out the RRS feature vector
extraction on the two types of 2D images in the circular areas
with radius of 5 pixels (Fig. 2).

The quantitative results are given in Table 1. The F1 scores
of non-calcified and mixed plaques on cross sections are
higher than those in the original axial images. It is also ob-
served that the F1 score of calcified plaques in the axial images
are better than that in the cross sections. Nevertheless, the
average precision, recall, F1 score, and accuracy of the pro-
posed framework in cross sections are higher than those in the

axial images, demonstrating the feasibility and effectiveness
of plaque detection in cross sections.

3.3 ROI selection validation

After validating the effectiveness of plaque detection in cross
sections, it is imperative to test the performance of the ROI
section. The estimated radii in different coronary segments (17-
segments) ranged from 3.1 to 5.7 in pixel, i.e., the sampling area
in our framework was adaptively determined for each cross sec-
tions. In control experiments, we fixed the radius of ROI as 3, 4,
5, and 6 pixels, respectively. Comparison between samplingwith
adaptive radius and fixed radius was given in Table 2, where the
average precision, recall, F1 score, and overall accuracy were
calculated. With the increase of radius, most of the quantitative
indices peak at radius of 4 pixels. The proposed ROI selection
with adaptive radius prevail in terms of average recall, F1 score,
and overall accuracy. Thus, the superiority of the proposed ROI
selection was demonstrated.

3.4 RRS feature vector validation

In Sections 3.2 and 3.3, we demonstrated that the cross-
section transformation and ROI selection in our framework
improved the performance of plaque detection. However, the
detection ability for all classes of plaques should be improved,
as indicated by the relatively low F1 score and accuracy. To
handle these problems, we randomly collected up to nine folds
of different combinations of initial anglesΔψi (i = 1, 2, 3) and
extracted the same amount of RRS feature vectors in each
cross section. Therefore, we boosted the original 1786 plaque
features vectors up to 17,820 ones. The feature vectors of
normal arteries could also be boosted with the same way if
necessary.

The results with different folds of augmenting training data
are given in Table 3, where the average precision, recall, F1

score, and overall accuracy were calculated. In our experi-
ment, the testing data were also augmented to maintain the
ratio of training and testing data (80 vs. 20%). With the in-
crease of training data, the detection rate for coronary plaques
increases, which reaches the maximum when 8-fold augmen-
tation of training data are used for SVM training. For example,
the average precision is 88.1 ± 2.1% before augmentation and
grows dramatically to 92.6% ± 1.9% after 8-fold augmenta-
tion. This also lead to great improvement of F1 score and
accuracy with the augmentation of training data, which are
much higher compared with the plaque detection without data
augmentation.

3.5 Results of the proposed framework

To further validate the proposed framework, we conducted
two comparative experiments, including using different
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feature vectors and classifiers. We noticed that both Tessmann
et al. [25] and Zuluaga et al. [34] employed intensity metrics
feature vector. Thus, we first compared our proposed RRS
feature vector with the feature vector only using intensity met-
rics, including mean, variance, skewness, and kurtosis. In ad-
dition, we tested the influence of different classifiers: SVM
and random forests (RF), as the latter was another state-of-the-
art machine learning method. The precision and recall for the
three classes of coronary plaques (non-calcified, calcified, and
mixed plaques) and the overall estimation (F1 score and accu-
racy) are given in Fig. 7.

The four evaluation indices (average precision, recall, F1

score, and accuracy) for SVM classifier are almost monoton-
ically increased nomatter with the proposed RRS or only with
the intensity feature vector. The similar trend can also be ob-
served in the precision of RF classifier. Nearly for all the
augmentation folds (from 1 to 9), the evaluation indices of
our RRS feature vector are higher than those of intensity fea-
ture vector, while the SVM classifier are better than the RF
classifiers. To show the performance differences clearly, we
highlighted the results of the SVM and RF classifiers after 8-
fold augmentation with both feature vectors in Table 4.

All the four indices (precision, recall, F1 score, and accu-
racy) of SVM with the RRS feature vector are higher than
those of SVM with the intensity feature vector. Similarly, RF

with the RRS feature vector outperforms RF with the intensity
feature vector. It indicates that the performance of the RRS
feature vector is superior to the intensity feature vector. On the
other hand, almost all the indices of SVM classifier with the
RRS feature vector are higher than RF classifier with the same
feature vector. The average precision and recall of the SVM
classifier with RRS feature vector are 92.6 ± 1.9 and 94.3 ±
2.1%, respectively, while those of RF are 88.4 ± 2.9 and 79.4
± 3.0%, respectively. The results demonstrate that the SVM
classifier is more suitable for the task of multi-class plaque
detection and classification.

4 Discussion

The proposed multi-class coronary plaque detection and clas-
sification framework is based on the assumption that the cor-
responding centerline has been extracted. Actually, centerlines
are often used in the topological description of complex vas-
cular networks [32, 33]. Specifically, the extraction of coro-
nary centerline before lumen segmentation has been widely

Table 1 Results of plaque
detection in axial images and
cross sections

Pre (%) Rec (%) F1 (%) Acc (%)

Axial images Non-calcified 87.5 ± 3.0 92.0 ± 2.4 89.7 ± 2.6 –

Calcified 83.6 ± 3.7 91.1 ± 2.8 87.6 ± 3.1 –

Mixed 88.1 ± 3.8 85.0 ± 3.6 86.5 ± 3.7 –

Mean 86.4 ± 3.3 89.3 ± 2.9 87.8 ± 3.2 87.1 ± 2.1

Cross sections Non-calcified 85.0 ± 3.3 97.4 ± 0.9* 90.8 ± 2.1* –

Calcified 83.2 ± 3.3 90.6 ± 3.5 86.7 ± 3.4 –

Mixed 94.2 ± 2.5* 83.9 ± 3.4 88.8 ± 2.0* –

Mean 87.5 ± 2.1* 90.6 ± 2.6* 88.8 ± 2.9* 88.7 ± 1.2*

The italicized entries are the highest values of corresponding indices among the two groups. Precision, recall, F1
score, and accuracy are abbreviated as Pre, Rec, F1, and Acc, respectively

*The indices having statistically significant differences among the two groups

Table 3 Plaque detection with different folds of augmenting training
data

Fold Pre (%) Rec (%) F1 (%) Acc (%)

1 88.1 ± 2.1 91.5 ± 2.3 89.5 ± 2.5 89.2 ± 1.3

2 89.8 ± 2.6 92.5 ± 2.6 91.0 ± 2.4 91.0 ± 1.7

3 91.2 ± 2.4 93.3 ± 2.3 92.1 ± 2.1 92.1 ± 1.4

4 91.4 ± 2.0 94.1 ± 1.7 92.6 ± 1.8 92.7 ± 0.8

5 91.5 ± 2.0 93.5 ± 2.1 92.4 ± 1.9 92.7 ± 1.1

6 92.0 ± 1.9 94.0 ± 2.0 92.8 ± 1.9 93.0 ± 1.1

7 91.5 ± 2.0 93.4 ± 2.2 92.3 ± 2.0 92.8 ± 0.8

8 92.6 ± 1.9 94.3 ± 2.1 93.3 ± 1.9 93.5 ± 1.0

9 91.9 ± 1.9 93.5 ± 2.2 92.6 ± 2.0 93.0 ± 1.6

The italicized entries are the highest values of corresponding indices
among different groups. Precision, recall, F1 score, and accuracy are
abbreviated as Pre, Rec, F1, and Acc, respectively

Table 2 Results of plaque detection in cross sections with fixed and
adaptive radii

r Pre (%) Rec (%) F1 (%) Acc (%)

Fixed 3 86.2 ± 2.9 87.6 ± 2.1 86.8 ± 2.4 86.8 ± 1.1

4 88.3 ± 3.0 90.3 ± 2.6 89.1 ± 1.7 88.9 ± 1.0

5 87.5 ± 2.1 90.6 ± 2.6 88.8 ± 2.9 88.7 ± 1.2

6 87.3 ± 2.3 91.4 ± 2.7 88.7 ± 2.1 87.5 ± 1.4

Adaptive – 88.1 ± 2.1 91.5 ± 2.3 89.5 ± 2.5 89.2 ± 1.3

The italicized entries are the highest values of corresponding indices
among the groups. Precision, recall, F1 score, and accuracy are abbrevi-
ated as Pre, Rec, F1, and Acc, respectively
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investigated [3, 30]. This paper mainly focuses on the multi-
class detection of plaques; thus, we did not discuss the influ-
ence of centerline extraction, however, which will be incorpo-
rated in the future.

To transform the original CTA images into cross sections,
we had to slice the CTA volumetric image transversely along
the centerline and fit the sliced images into a new coordinate
system, which formed the so-called cross sections. The

Fig. 7 Comparison with other
feature vectors and classifiers.
The horizontal line represents the
folds of data augmentation

Table 4 Performance of plaque
detection with different classifiers
and feature vectors after 8-fold
data augmentation

Pre (%) Rec (%) F1 (%) Acc (%)

SVM with RRS feature vector Non-calcified 91.7 ± 1.9 98.2 ± 1.1 94.8 ± 1.4 –

Calcified 89.2 ± 1.7 94.5 ± 2.4 92.0 ± 2.0 –

Mixed 96.8 ± 2.0 89.7 ± 2.9 93.1 ± 2.3 –

Mean 92.6 ± 1.9 94.3 ± 2.1 93.3 ± 1.9 93.5 ± 1.0

SVM with intensity feature vector Non-calcified 88.9 ± 2.1 96.2 ± 1.4 92.4 ± 1.7

Calcified 82.6 ± 1.8 93.6 ± 2.5 87.7 ± 2.1

Mixed 85.0 ± 2.2 88.5 ± 3.3 86.7 ± 2.6

Mean 85.5 ± 2.0 92.8 ± 2.4 89.0 ± 2.1 87.7 ± 0.8

RF with RRS feature vector Non-calcified 95.1 ± 1.8 80.7 ± 2.9 87.4 ± 2.2 –

Calcified 87.9 ± 3.2 78.2 ± 3.6 82.8 ± 3.4 –

Mixed 82.2 ± 3.7 79.1 ± 2.5 80.6 ± 3.0 –

Mean 88.4 ± 2.9 79.4 ± 3.0 83.6 ± 2.9 84.1 ± 1.1

RF with intensity feature vector Non-calcified 95.0 ± 1.6 78.7 ± 2.5 86.1 ± 2.0 –

Calcified 82.4 ± 2.2 76.5 ± 2.3 79.4 ± 2.3 –

Mixed 82.4 ± 3.9 60.1 ± 3.1 69.5 ± 3.5 –

Mean 86.6 ± 2.6 71.8 ± 2.7 78.3 ± 2.6 77.8 ± 1.3

The italicized entries are the highest values of corresponding indices among different groups. Precision, recall, F1

score, and accuracy are abbreviated as Pre, Rec, F1, and Acc, respectively
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alignment between the axial image in the original coordinate
system and the cross section in the new coordinate systemwas
reduced to the registration between their corresponding nor-
mal vectors m and n. Since n is constantly equal to (0, 0, 1),
the accuracy of estimation of m determines the precision of
transformation. In our framework,mwas acquired by forward
difference of centerline points, which could be improved by
more sophisticated fitting method in the future. Another factor
affecting the transformation is the interpolation strategy, e.g.,
the employed linear interpolation in our framework is more
effective than nearest neighbor interpolation.

The proposed random radius symmetry (RRS) feature vec-
tor brought the randomness to the multiple contextual features
of coronary plaques in the ROI in each cross section, which
greatly improved the detection rates of all three classes of
plaques. A critical issue of RRS feature vector extraction is
how to determine the number of patches, which generally
depends on the radius of ROI. We need to guarantee that the
number of patches is sufficient to sample as many different
locations as possible, while any two sampling patches cannot
be overlapped with each other. Moreover, the distribution of
the patches should be approximately uniform in the ROI.
Taking these two factors and the experimented values of radii
into account, we sampled the patches on three concentric cir-
cles in the ROI of each cross section and acquired 8, 12, and
18 patches on each circle, respectively.

There are two limitations in our present work that will be
addressed in the future. The first one is that we improved the
detection rate of different classes of coronary plaques at the
expense of computation time. Compared with the original data
without augmentation, the training time on the augmented
data was increased dramatically, especially for the SVM clas-
sifier with Gaussian kernel. The second limitation is that the
detection and classification of plaques were only based on
single cross section. Generally, a plaque spans across several
cross sections and leads to the occurrence of stenosis.
Therefore, we will take the detection results on neighboring
cross sections into consideration and create an integrated de-
tection and classification framework in the future.

5 Conclusions

In conclusion, we proposed an automatic multi-class coronary
atherosclerosis plaque detection and classification framework.
Firstly, we retrieved 2D transverse cross-section images from
the original 3D CTA image along the given centerline.
Secondly, we coarsely segmented the coronary lumen, esti-
mated the lumen radius, and extracted the ROI on the cross
section. Thirdly, we designed and extracted a random radius
symmetry (RRS) feature vector, which incorporated multiple
contextual features and greatly augmented the training data of
coronary plaques. The results validated the effectiveness of

plaque detection with RRS feature vector after ROI selection
in cross sections. Moreover, compared with previous intensity
feature vectors and other classifiers, the SVM classifier with
the proposed RRS feature vector performs the best in terms of
precision, recall, F1 score, and accuracy. The proposed frame-
work provides a computer-aided diagnostic method for multi-
class plaque detection and classification.
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