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Abstract

Purpose: Vessel segmentation from volumetric medical images is becoming an essential pre-step in aiding 

the diagnosis, guiding the therapy and patient management for vascular-related diseases. Deep 

learning-based methods have drawn many attentions, but most of them did not fully utilize the multi-scale 

spatial information of vessels. To address this shortcoming, we propose a multi-scale network similar to the 

well-known multi-scale DeepMedic. It also includes a double-pathway architecture and a class-balanced A
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loss at the voxel level (MDNet-Vb) to achieve both the computation efficiency and segmentation accuracy.

Methods: The proposed network consists two parallel pathways to learn the multi-scale vessel morphology. 

Specifically, the pathway with a normal resolution uses three-dimensional (3D) U-Net fed with small inputs 

to learn the local details with relatively small storage and time consumption. The pathway with a low 

resolution employs 3D fully convolutional network (FCN) fed with down-sampled large inputs to learn the 

overall spatial relationships between vessels and adjacent tissues, and the morphological information of 

large vessels. To cope with the class-imbalanced issue in vessel segmentation, we propose a class-balanced 

loss at the voxel level with uniform sampling strategy. The class-balanced loss at the voxel level 

re-balances the loss function with a coefficient that is inversely proportional to the normalized effective 

number at the voxel level of each class. The uniform sampling strategy extracts training data by sampling 

uniformly from two classes in every epoch.

Results: Our MDNet-Vb outperforms several state-of-the-art methods including ResNet, DenseNet, 3D 

U-Net, V-Net and DeepMedic with the highest dice coefficients of 72.91% and 69.32% on cardiac 

computed tomography angiography (CTA) dataset and cerebral magnetic resonance angiography (MRA) 

dataset, respectively. Amongst four different double-pathway networks, our network (3D U-Net+3D FCN) 

not only has the fewest training parameters and shortest training time, but also gets competitive dice 

coefficients on both the CTA and MRA datasets. Compared with classical losses, our class-balanced focal 

loss (FL-Vb) and dice coefficient loss at the voxel level (Dsc-Vb) alleviates class imbalanced issue by 

improving both the sensitivity and dice coefficient on the CTA and MRA datasets. Moreover, 

simultaneously training on two datasets shows that our method has the highest dice coefficient of 73.06% 

and 65.40% on CTA and MRA datasets respectively, outperforming the commonly used methods, such as 

U-Net and DeepMedic, which demonstrates the generalization potential of our network for segmenting 

different blood vessels.A
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Conclusions: Our MDNet-Vb method demonstrates its superiority over other state-of-the-art methods, on 

both cardiac CTA and cerebral MRA datasets. For the network architecture, the MDNet-Vb combined the 

3D U-Net and 3D FCN, which dramatically reduces the network parameters yet maintains the segmentation 

accuracy. The class-balanced loss at the voxel level further improves accuracy by properly alleviating the 

class-imbalanced issue between different classes. In summary, MDNet-Vb is promising for vessel 

segmentation from various volumetric medical images.

Keywords: Vessel segmentation, deep leaning, fully convolutional network, computed tomography 

angiography, magnetic resonance angiography

1. Introduction

Precise segmentation of blood vessels from volumetric medical images has an important role in examining vascular 

morphology, calculating hemodynamics, and diagnosing vascular-related diseases.1 Manual delineation of blood 

vessels is a tedious and time-consuming process during which experts need to mark tiny vessels slice by slice. Over 

the last decade, a number of automatic methods have been proposed to segment vessels from volumetric medical 

images. These procedures can be categorized into rule-based methods and machine-learning-based methods.2-4 The 

rule-based methods mainly include the Hessian matrix,5-8 mathematical morphology,9-11 and minimal cost path,12-15 

etc. The learning-based methods consist of conventional machine learning approaches,16-18 such as support vector 

machines (SVM) and random forests, and deep learning methods. It is well known that most rule-based methods and 

conventional machine learning methods require the exquisite design of rule sets or quantitative features, which heavily 

depend on the user’s domain knowledge. 

Compared with conventional methods, deep learning methods can directly extract vessel features from raw 

medical images due to the efficient representation of complex image features through multiple layers of learning. For 

example, Kitrungrotsakul et al. 19 proposed a multi-view convolutional neural network (CNN) for hepatic vessel A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

segmentation. Haft-Javaherian et al. 20 proposed a CNN with a fully connected layer to segment 3D vessels within 

volumetric in vivo images acquired by multiphoton microscopy. Xu et al. 21 developed a stage-wise three-dimensional 

(3D) fully convolutional network (FCN) for accurate pulmonary vessel segmentation. However, all these methods do 

not consider multi-scale information to provide additional guidance for vessel segmentation.

The well-known DeepMedic,22 a classical deep learning method for brain lesion segmentation, feeds input 

images of different scales into two parallel FCNs, allowing simultaneous learning of morphological details and the 

overall context information. However, the FCNs used in DeepMedic only includes the encoding module, which 

consists of convolutional layers, pooling layers, activation function and batch normalization. The size of outputs is 

smaller than that of inputs. The U-Net 23 encompasses both the encoding module and decoding module in the 

architecture to generate the output with the same size as the input, which could dramatically reduce the storage and 

time consumption compared to FCN. Based on these observations, in this study, we proposed a novel multi-scale 

double-pathway network to segment blood vessels from volumetric medical images (Figure 1). For the pathway with 

a normal resolution, a typical 3D U-Net fed with smaller-size images is used to learn the local vascular morphological 

details and reduce storage and time consumption. For the pathway with a low resolution, a 3D FCN fed with 

down-sampled larger-size images is employed to learn not only the overall spatial relationships between vessels and 

adjacent tissues, but also the morphological information of large vessels.

In addition to the network architecture, the performance of deep learning is vulnerable to the class-imbalance 

issue between different classes. Data re-sampling strategy (sample training data uniformly from each class) has been 

used to alleviate this issue22; yet, this method may lead to over-sampling from the minor class and under-sampling 

from the major class. Besides, loss re-balance strategy is also widely used to alleviate class-imbalance in 

classification,24-27 object detection,28 and semantic segmentation,29-38 which assigns a weight to loss function in order 

to match a given data distribution.

For vessel segmentation, each voxel has to be classified as vessels or backgrounds, which causes a severe A
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class-imbalanced issue at the voxel level due to the sparse and thin vessel structures. To solve this issue, we integrated 

a class-balanced loss function at the voxel level with a uniform sampling strategy during the training process of the 

network. Inspired by the class-balanced loss at the image level,37 the class-balanced loss function at the voxel level 

re-balanced loss functions based on the normalized effective number at the voxel level of each class during network 

training. For the sampling strategy, we sample training data uniformly from two classes in every epoch, instead of 

sampling only once as the traditional training process. This strategy efficiently increases the amount of training data, 

and ensures that the number of each class is almost balanced during each training epoch. 

In summary, in this study, we proposed a novel multi-scale double-pathway network with class-balanced loss at 

the voxel level (MDNet-Vb) to segment blood vessels from volumetric medical images. The contributions of the 

present study are the following: (1) the proposed multi-scale double-pathway architecture can learn both the local 

vascular morphological details and overall context information and reduce the storage and time consumption. (2) To 

cope with the severe class-imbalanced issue at the voxel level in vessel segmentation, this new network is effectively 

trained end-to-end from scratch by using the proposed class-balanced loss function at the voxel level and uniform 

sampling strategy. (3) Experimental results on two datasets (cerebral magnetic resonance angiography (MRA) and 

cardiac computed tomography angiography (CTA) images) demonstrate the performance of the proposed method 

compared with several state-of-the-art methods. (4) Simultaneously training on the two datasets (MRA and CTA) 

shows that our method has the potential to be generalized to the segmentation of blood vessels from different 

volumetric images.

2. Materials and Methods 

2.1 Materials

Two volumetric medical images datasets were included in this study as follows.

(1) Cerebral vessels segmentation from magnetic resonance angiography (MRA) images. Twenty-nine publicly A
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available MRA images from the MIDAS platform 39 were recruited for this task. The resolution of each image is 

0.5×0.5×0.8 mm3, and the size of them is 448×448×128. The provided vessel centerline and radius were used to 

generate the ground truth cerebral vessel (or label) for each MRA data 40. We randomly partitioned this dataset into 12 

training data, 3 validation data, and 14 testing data.

(2) Coronary arteries segmentation from cardiac computed tomography angiography (CTA) images. 

Twenty-seven cardiac CTA images were acquired with 120 KVp tube voltage and 55 mAs tube current from the 

Chinese PLA General Hospital. All the images were resampled to the same voxel size of 0.5×0.5×0.5 mm3. Ground 

truth of coronary arteries were annotated by two experienced cardiologists with medical software MITK 2015.5.0. 

This dataset was randomly partitioned into 12 training data, 3 validation data, and 12 testing data.

2.2 Methods

2.2.1 Network architecture 

Figure 1 depicts the architecture of the proposed MDNet-Vb network, which consists of two parallel pathways (i.e., 

3D U-Net and FCN), followed by a fusion module (with two convolutional layers). Specifically, the pathway with the 

normal resolution follows the framework of 3D U-Net, encompassing an encoding module and a decoding module. In 

the encoding module, we first perform 3×3×3 convolution with the stride of 1 and zero padding, and then calculate the 

rectified linear unit (ReLU) activations and batch normalization (BN). Besides, successive 2×2×2 max pooling with 

the stride of 2 are performed to enlarge receptive fields after 3×3×3 convolution with the stride of 1 and zero padding. 

It can be observed that the inputs of this pathway are down-sampled two times to capture the global contextual 

information of vessels. 

Symmetric to the encoding module, the feature maps of subsequent decoding module are up-sampled two times 

with de-convolutions to recovery spatial details. Specifically, the 2×2×2 de-convolutions are performed with the stride 

of 2, and then the same convolutional operations as those in the encoding module are performed. Furthermore, skip A
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connections are deployed to fuse the up-sampled feature maps with the feature maps of the same level obtained from 

the encoding module, and to complementarily combine global contextual information with spatial details.

The pathway with a low resolution adopts the architecture of the 3D FCN, consisting of a series of convolutional 

layers and an up-sampling layer. We first perform 3×3×3 convolution with the stride of 1 without zero padding, and 

then calculate ReLU and BN. Note that the inputs of this pathway are down-sampled to low resolution, so at the end 

of this pathway, an up-sampling operation implemented by nearest neighbor interpolation is used to restore the 

resolution of output feature maps.

The multi-scale features extracted from the two pathways are fused by two convolutional layers with the stride of 

1, in which kernel size are 3×3×3 and 1×1×1, respectively. The first 3×3×3 convolutional layer helps combining the 

multi-scale features smoother 22. The fully connected layer is replaced by a 1×1×1 convolutional layer to generate 

dense predictions. Finally, it is connected to a softmax function with temperature parameter to obtain the final 

segmentation results. 

2.2.2 Multi-scale feature learning

As illustrated in Figure 1, our MDNet-Vb network simultaneously extracts multi-scale features from the multi-scale 

inputs in two pathways. For the normal-resolution pathway, the smaller-size inputs SI are fed to 3D U-Net to capture 

the local vascular morphological details. If this pathway adopts FCN instead of U-Net, it will need larger inputs under 

the same output size because of the lack of up-sampled decoding module in the FCN, and lead to greater storage and 

time consumption. 

When the inputs of U-Net are part of the whole volumetric images, the spatial context information learned by 

lager inputs is important for being able to discriminate voxels that otherwise appear very similar. Therefore, in order 

to learn the overall spatial relationships between vessels and adjacent tissues, the larger-size inputs LI  underwent 

down-sampling are fed to low-resolution pathway. For this pathway, a series of convolutional layers of FCN reduce A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

the spatial dimension of larger input to ensure that the size of output feature maps of two pathways are matched. To 

ensure that the output features of two pathways correspond to the same area of the volumetric image, the multi-scale 

inputs of two pathways should be extracted centered on the same image location. Moreover, according to the network 

architectures of two pathways, the relationship between the size of LI  and SI  can be formulated as:

                        (1)size( ) [ ( 1) size( ) ]L SI F L K I F    

where  indicates the reduced size by the convolutional operations of FCN. L and K denote the total ( 1)L K 

number of convolutional layers and kernel size of those layers, respectively. F is the down-sampled factor used to 

reduce the resolution of the input in the low-resolution pathway. 

2.2.3 class-balanced loss at the voxel level

Cui et al. 37 proposed an image-level class-balanced loss function to address the problem of long-tailed data 

distribution in natural image classification, in which they rebalanced the loss functions with a coefficient that was 

inversely proportional to the effective number of each class. The effective number of each class was calculated by the 

number of images belonging to each class based on random covering theory 41. However, in this study, we have to 

classify each voxel instead of an image as vessels or backgrounds, which therefore will cause severe class-imbalanced 

issue at the voxel level due to the sparse and thin vessel structures (e.g., the ratio of the average number of background 

voxels to vessel voxels exceeds 900:1 on the CTA dataset). Therefore, inspired by the image-level class-balanced loss, 

we propose a class-balanced loss function at the voxel level to re-balance losses with a coefficient that is the inversely 

proportional to the effective number at the voxel level of each class. The effective number at the voxel level for class v 

can be written as:
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where  is the average number of voxels for class v in every mini batch, which reflects the distribution of the class vn

v in the actual training process after data re-sampling.  is the number of all possible data in the feature space of vN

the class v. Similar to the image-level class-balanced loss, we assume that for all classes in the dataset, Nv is a fixed 

number. According to the total number of voxels in each mini batch,  and  can be estimated as:vN v

                                (4)  v bN N T N

                                 (5)1  
 v

N
N

where Nb denotes the total number of voxels in each mini batch. T is a non-zero hyper-parameter, which is utilized to 

bridge the gap between Nv and Nb. Moreover, to ensure the total loss roughly in the same scale when applying , 
vnE

we introduce v  that is equal to the normalized effective number at the voxel level of class v:
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The class-balanced loss at the voxel level (Vb) can be written as:

                                    (7)1


Vb o
v

L L

In practice, we choose the focal loss 28 and dice coefficient loss 34 as oL  to build our class-balanced loss 

function at the voxel level in the coronary artery and cerebral vessel segmentation task, respectively. Specifically, we 

assume y is the ground truth, ŷ  is the vessel probability map. The class-balanced cross-entropy loss at the voxel 

level is:

                           (8)
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The class-balanced focal loss at the voxel level is:
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where  or  is the modulating factor to automatically assign low weights to easy examples during ˆvy ˆ(1 ) vy 

training; γ adjusts the rate of the modulating factor.28

The class-balanced dice loss at the voxel level is:

                             (10)1
0

ˆ21
ˆ

v v
Vb dice v

v v v

y y
L

y y 

 
  



2.2.4 Uniform sampling strategy

In addition, we further integrate the uniform sampling strategy to correct the severe class-imbalanced issue. Instead of 

sampling only once in the training phase, we sample the training data uniformly from two classes in every epoch. This 

strategy can efficiently increase the number of training data, and ensure that the number of vascular and background 

voxels is balanced in every training epoch. Specifically, in every epoch, we randomly selected every voxel from 

vessels with equal probability, and a pair of cubes (normal- and low-resolution inputs) with this voxel as the center are 

extracted as the positive training data. Repeating this process M/2 times, we obtained M/2 pairs of positive training 

data. Similarly, an equal number of background training data are generated. After training with N epochs, a total of 

NM pairs of normal- and low-resolution inputs were generated from the volumetric medical images. Note that these 

training data are randomly sampled with replacement. In this study, referring to the DeepMedic22, M was set to 1000 

and N was set to 700 in the training phase. Therefore, the total number of input pairs is NM =700,000.

2.2.5 Implementation

The proposed method was implemented using Python language and TensorFlow package 42 on the workstation with 

single graphics processing unit (NVIDIA GeForce GTX TITAN V). As mentioned in 2.2.2, the normal- and 

low-resolution inputs were concentric with the size of 36×36×36 and 84×84×84, respectively. The number of 

convolutional layers L and kernel size K were set to 8 and 3, respectively. The down-sampled factor F was set to 3. L1 

and L2 regularization was employed to alleviate over-fitting. The batch size in each epoch was 8. The network was A
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trained by the RMSProp 43 optimizer with rho of 0.9 and e of 0.0001. The initial learning rate was set to 0.001. The 

search space of hyper-parameter T was , and the search space of parameter  was  0.01, 0.1, 1, 10, 100T  

. The total number of voxels in each mini batch Nb was equal to 8×36×36×36. Note that we used both  0.5, 1, 2 

the training set and validation set to develop the proposed loss function. In the testing phase, we extracted 

non-overlapped multi-scale inputs from each testing image in order, and fed them into the trained network to generate 

the concentric 36×36×36 likelihood maps. Then we mosaicked those likelihood maps to form the segmentation result 

for each test image. To alleviate the impact of random initialization during network training, we ran our MDNet-Vb 

network and other methods three times, and took the average value as the final results.

2.2.6 Evaluation Metrics

Using manual annotations as ground truth, the segmentation performance of our method was quantitatively evaluated 

with the following four metrics: (1) sensitivity (SEN), (2) specificity (SPE), (3) dice coefficient (DSC) and (4) 

Hausdorff distance (HD), defined as

                               (11)( ) SEN TP TP FN

                               (12)( ) SPE TN TN FP

                            (13)2 (2 )  DSC TP TP FP FN

                           (14) max ( , ), ( , )
r r

HD HDHD d A B d B A

                           (15)  ( , ) max min ( , )HD y Bx A
d A B d x y




r

where TP and FP denote the numbers of true positives and false positives respectively, while TN and FN are the 

numbers of true negatives and false negatives respectively. HD is maximum distance between two voxel sets, in which 

 is the directed Hausdorff distance of ground truth A and prediction B, where  represents the ( , )
r

HDd A B ( , )d x y

Euclidean distance between two voxels. A
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To compare the statistical difference between two groups, we first calculated the p-values of all experiments 

using two-tailed paired t-test, and then used Holm-Bonferroni Method44 (also called Holm’s Sequential Bonferroni 

Procedure) for correcting the p-values. Specifically, the Holm-Bonferroni Method first sorts the original p-values from 

small to large, and then multiplies the original p-values by the corresponding order. Finally, the corrected p-values of 

the adjacent sequences are equal to the larger one between them. When the corrected p-values are less than 0.05, it 

represents there is a statistical difference between two groups.

3. Results

3.1 Comparison to state-of-the-art methods

The segmentation results on both the CTA and MRA dataset obtained by our method using the MDNet-Vb network, 

and the other five state-of-the-art methods including ResNet 45, DenseNet 46, 3D U-Net 23, V-Net 34, and DeepMedic 22 

are shown in Figure 2 and 3, and Table 1 and 2. According to the experimental results of the validation set, the 

hyper-parameters T and γ of our loss function were set to 0.01 and 1, respectively. As can be seen from visualization 

results, the automatic segmentations obtained by the proposed MDNet-Vb were more consistent with the manual 

ground truth in these examples, especially for the relatively low-contrast blood vessels. 

From Table 1 and 2, we concluded the following: firstly, compared with state-of-the-art methods, the proposed 

MDNet-Vb had the highest dice coefficients (72.91% and 69.32% on CTA and MRA datasets, respectively), which 

was significantly higher than others (p<0.05) excepted for DeepMedic (p>0.05) on the CTA dataset, and significantly 

higher than others (p<0.05) excepted for DeepMedic and 3D U-Net (p>0.05) on the MRA dataset. Secondly, the 

proposed MDNet-Vb efficiently reduced the Hausdorff distance to 17.52 voxels on the CTA dataset. Thirdly, 

compared with the well-known DeepMedic, our MDNet-Vb improved the sensitivity and dice coefficient on 

CTA/MRA dataset by 0.99% (p>0.05) /3.14% (p<0.05) and 0.27% (p>0.05) /0.68% (p>0.05), respectively, and 

reduced Hausdorff distance by 1.63 (p>0.05) /0.01 (p>0.05) voxels.A
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To evaluate the generalization ability, we simultaneously trained the MDNet-Vb with both MRA and CTA 

datasets. DeepMedic and 3D U-Net are two widely used segmentation networks, and had good performance in Table 

1 and 2. Therefore, to reduce the time consumption, we only compared the proposed network with DeepMedic and 3D 

U-Net in this part. Compared to DeepMedic and 3D U-Net, our MDNet-Vb had a good performance in the 

segmentation of thick blood vessels on CTA and MRA (Figure 4). As indicated in Table 3 and 4, compared with 3D 

U-Net and DeepMedic, our MDNet-Vb had the highest dice coefficient values (73.06% and 65.40% on CTA and 

MRA datasets, respectively), which was significantly higher than others (p<0.05) on the CTA dataset, and 

significantly higher than others (p<0.05) excepted for DeepMedic (p>0.05) on the MRA dataset. It also achieved the 

significant lowest Hausdorff distance (21.02 voxels, p<0.05) on the CTA dataset and the significant highest sensitivity 

(59.37%, p<0.05) on the MRA dataset. These data suggest that the new MDNet-Vb may potentially a generalized 3D 

vessel segmentation approach. 

3.2 Evaluation of network architectures

To assess the effectiveness of our multi-scale double-pathway network (MDNet-Vb) architecture, we performed the 

four possible combinations of the 3D FCN and 3D U-Net. The setting and the number of training parameters of the 

four architectures are shown in Table 5. The visualization results on two datasets are presented in Figure 5, and the 

corresponding quantitative results are shown in Table 6 and 7. After evaluating the results, we concluded the 

following: (1) compared with other models, our architecture (U-Net+FCN) had the fewest training parameters (~1.53 

million) and the shortest training time (~42.22 hours and ~33.06 hours on CTA and MRA datasets, respectively). (2) 

The performance of our architecture was similar to (p>0.05) that of the architecture of the DeepMedic (FCN+FCN), 

but we reduced the parameters by ~0.15 million and saved the computation time by ~18.69 hours and ~11.08 hours on 

CTA and MRA datasets, respectively. (3) It can be seen from the visualization results, the architecture of FCN+U-Net 

was difficult to segment thin coronary blood vessels of the arteries and it also tended to generate dotted false positive A
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predictions on the MRA dataset. From Table 6 and 7, the architecture of FCN+U-Net had the significant lowest 

sensitivity (p<0.05), and significant highest dice coefficient (p<0.05) and the longest time consumption.

To further evaluate whether it would be beneficial to increase the amount of down-sampling, we compared the 

double-pathway networks with different down-sampling factors (F=3, 5, 7), and the results are given in Table 8 and 9. 

It is observed from the results that the larger down-sampling factors led the lower dice coefficients (F=5, 7), compared 

to smaller down-sampling factor (F=3). This may be due to that the larger F results in lower resolution, and the 

morphological information of medium to large vessels is weakened. 

3.3 Evaluation of different loss functions

We compared class-balanced loss functions at the voxel level including cross-entropy (CE-Vb), focal loss (FL-Vb), 

and dice coefficient loss (Dsc-Vb) with their corresponding classical loss, i.e., CE, FL28, and Dsc 34 (Table 10 and 11). 

The quantitative results indicated that our class-balanced loss functions at the voxel level consistently improved the 

sensitivity (p>0.05 and p<0.05 on CTA and MRA dataset, respectively) and dice coefficient (p>0.05 on both datasets) 

compared with three corresponding classical loss functions on both CTA and MRA datasets and decreased the 

Hausdorff distance (p>0.05) on the CTA dataset. Moreover, FL-Vb had the significant highest sensitivity (76.46%, 

p<0.05) and highest dice coefficient (72.58%, p>0.05) on the CTA dataset, while Dsc-Vb had the highest sensitivity 

(65.28%) and dice coefficient (69.06%) on the MRA dataset, which were significantly higher than others (p<0.05) 

excepted for CE-Vb (p>0.05). According to the dice coefficient, we chose FL-Vb and Dsc-Vb as our training losses 

on CTA and MRA datasets, respectively.

3.4 Evaluation of different sampling strategies

We evaluated the proposed sampling strategy, which uniformly extracted training data in every epoch, and compared 

these data with the traditional sampling strategy that uniformly extracted training data only once. As shown in Table 

12 and 13, our sampling strategy significant outperformed the traditional strategy in terms of dice coefficient and A
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Hausdorff distance on both CTA and MRA dataset (p<0.05). Compared with the traditional strategy, our sampling 

strategy increased the dice coefficient by 4.05% and dramatically decreased Hausdorff distance by 11.38 voxels on the 

CTA dataset, and improved the dice coefficient by 2.91% and reduced Hausdorff distance by 0.18 voxels on the MRA 

dataset.

3.5 Evaluation of data augmentation

Both rotation and flipping are common data augmentation tricks during the training phase of deep neural networks. 

Therefore, we rotated and flipped the training data with a probability of 0.5, and the rotation angles were 45, 90, 180 

and 270, respectively; the flip direction was along the first dimension of the images. After data augmentation, the 

cubic bilinear interpolation was used. We evaluated the effectiveness of rotation and flipping on CAT and MRA 

datasets (Table 14 and 15). Compared to the results without data augmentation, the results with data augmentation 

significantly improved the sensitivity by 5.36% and 2.32% on CTA and MRA datasets respectively (p<0.05), but 

reduced the specificity on both datasets. It also increased the Hausdorff distance by 9.95 and 0.35 voxels on CTA and 

MRA datasets, respectively. According to the dice coefficient, we adopted the data augmentation on the MRA dataset, 

but we directly used the non-augmented data to train the proposed network on the CTA dataset.

4. Discussion 

Our MDNet-Vb simultaneously learns both local morphological details and overall context information from 

multi-scale inputs. The results presented in Table 1 and 2 have shown that our method has higher dice coefficient 

compared with single input networks (ResNet, DenseNet, 3D U-Net, V-Net). Amongst different multi-scale networks, 

our network has the fewest parameters and the shortest training time without sacrificing segmentation accuracy. The 

reason is that we use 3D U-Net to minimize the input size of the normal-resolution pathway, and use 3D FCN to 

minimize the output size of the low-resolution pathway (Table 5), which reduces the number of double-pathway 

parameters and training time. A
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Our class-imbalanced loss at the voxel level assigns higher weights to vessel voxels according to data distribution 

during the training process, and makes the loss higher when the vessel voxels are misclassified, thus it achieves higher 

sensitivity and dice coefficient compared with the classical loss function (Table 10 and 11). We also observe that the 

highest dice coefficients on the CTA and MRA datasets are obtained by FL-Vb and Dsc-Vb losses, respectively. 

Correspondingly, amongst the three classical losses, the highest dice coefficients on CTA and MRA datasets are 

obtained by FL and Dsc losses, respectively. These consistent experimental results may indicate that there are hard 

and easy examples in the CTA dataset, while there may not be obvious hard and easy examples in the MRA dataset. In 

theory, the FL loss studies the hard example mining, and automatically assigns higher weights to hard examples 

during training28, while the Dsc loss directly optimizes dice coefficient metric and do not establishes the right balance 

between hard and easy examples. 34  

The data augmentation (rotation and flipping) improves dice coefficient on the MRA dataset, but it does not 

apply to the CTA dataset. The possible reason of this inconsistent results may be the morphological difference 

between two datasets. Zhang et al. 47 mentioned that data augmentation is dataset-dependent, and Cubuk et al. 48 

indicated that horizontal flipping of images improved the performance on CIFAR-10, but it is not the case on MNIST 

due to the different symmetries present in these datasets. The segmentation tasks are actually to classify pixels 

according to the neighborhood information of each pixel, and the rotation and flipping may change the neighborhood 

information of pixels. From the visual observation of CTA and MRA, we find that cerebral vessels are approximately 

symmetrical layout, and coronary arteries are not. 

The experimental results of generalizability have shown that our method obtains highest dice coefficients on two 

datasets, compared with well-known 3D U-Net and DeepMedic (Table 3 and 4). This may benefit from the 

combination of our multi-scale feature learning and class-balanced loss at the voxel level. Firstly, our double-pathway 

network can effectively learn multi-scale features from the different scales of cerebral vessel and coronary artery. It 

can also be seen from Table 4 that the dice coefficients of DeepMedic and our network are both nearly 7% higher A
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than single-pathway 3D U-Net. Secondly, class-balanced loss at the voxel level further improves the performance of 

our method by alleviating class-imbalance. From the Table 6 and 1, we can find that our method improves the dice 

coefficient after adding class-balanced loss at the voxel level, so that it performs better than DeepMedic on the CTA 

dataset in Table 1.

Although the proposed MDNet-Vb obtained competitive segmentation performance compared with several 

state-of-the-art methods, there are still some shortcomings that need to be improved. (1) The proposed method has 

lower dice coefficient on finer cerebral vessel segmentation task. One direct way to overcome such difficulty is to 

combine more advanced blocks (attention blocks, dilated dense blocks and so on) with current network to pay more 

attention to these small objects. (2) The proposed method may produce some false positive predictions that do not 

connect with other blood vessels. We may need to add some connectivity constrains to guide the training of our 

network. (3) The rotation and flipping are not suitable for CTA dataset. We may need to find a generalized 

automatically learned data-augmentation methods, or develop our method to a semi-supervised method to improve 

accuracy further. (4) The performance of our method may not be sufficient for clinical application because of the 

relatively low metrics. This may be caused by the small datasets in this study, where the CTA and MRA datasets only 

contain 27 and 29 images, respectively. We need to collect more data to further improve the accuracy of our method 

and to evaluate it more comprehensively in the future.

5. Conclusions 

In this study, we have proposed a multi-scale double-pathway network with class-balanced loss at the voxel level 

(MDNet-Vb) to automatically segment blood vessels from volumetric medical images. The double-pathway network 

can learn both the local morphological details and the overall context information from multi-scale inputs, while the 

class-balanced loss function at the voxel level alleviates the severe class-imbalanced issue at the voxel level between 

different classes. The results demonstrate that the proposed method outperforms state-of-the-arts with highest dice A
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coefficients on two datasets. Moreover, simultaneously training on two datasets shows that our method has potential 

to be generalized to segment different blood vessels.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61601363, 61601364, and 

61971350), the National Key R&D Program of China (2016YFC1300300), the China Postdoctoral Science 

Foundation (2019M653717), Innovative Talents Promotion plan of Shaanxi (2017SR5024), and Shaanxi International 

Science and Technology Cooperation Program (2021KW-55). The MRA brain images from healthy volunteers used in 

this paper were collected and made available by the CASILab at The University of North Carolina at Chapel Hill and 

were distributed by the MIDAS Data Server at Kitware, Inc.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Data Availability Statement

The MRA brain images that support the findings of this study are openly available in TubeTK at 

https://vtk.org/Wiki/TubeTK/Data. The CTA cardiac images that support the findings of this study are available from 

the corresponding author upon reasonable request.

References

1. Moccia S, De Momi E, El Hadji S, Mattos LS. Blood vessel segmentation algorithms - Review of methods, datasets and evaluation metrics. 

Computer Methods and Programs in Biomedicine. 2018;158:71-91.

2. Zhao F, Chen Y, Hou Y, He X. Segmentation of blood vessels using rule-based and machine-learning-based methods: a review. Multimedia 

Systems. 2019;25(2):109-118.A
cc

ep
te

d 
A

rt
ic

le

https://vtk.org/Wiki/TubeTK/Data


This article is protected by copyright. All rights reserved

3. Bibiloni P, Gonzalez-Hidalgo M, Massanet S. A survey on curvilinear object segmentation in multiple applications. Pattern Recognition. 

2016;60:949-970.

4. Lesage D, Angelini ED, Bloch I, Funka-Lea G. A review of 3D vessel lumen segmentation techniques: Models, features and extraction 

schemes. Medical Image Analysis. 2009;13(6):819-845.

5. Frangi R, Niessen WJ, Vincken K, Viergever M. Multiscale Vessel Enhancement Filtering. Med Image Comput Comput Assist Interv. 

2000;1496.

6. Xiao C, Staring M, Wang Y, Shamonin DP, Stoel BC. Multiscale Bi-Gaussian Filter for Adjacent Curvilinear Structures Detection With 

Application to Vasculature Images. IEEE Transactions on Image Processing. 2013;22(1):174-188.

7. Krissian K, Malandain G, Ayache N, Vaillant R, Trousset Y. Model-based detection of tubular structures in 3D images. Computer Vision and 

Image Understanding. 2000;80(2):130-171.

8. Zhao F, Liang J, Chen D, et al. Automatic segmentation method for bone and blood vessel in murine hindlimb. Medical Physics. 

2015;42(7):4043-4054.

9. Wang R, Li C, Wang J, et al. Threshold segmentation algorithm for automatic extraction of cerebral vessels from brain magnetic resonance 

angiography images. Journal of Neuroscience Methods. 2015;241:30-36.

10. Passat N, Ronse C, Baruthio J, Armspach JP, Foucher J. Watershed and multimodal data for brain vessel segmentation: Application to the 

superior sagittal sinus. Image and Vision Computing. 2007;25(4):512-521.

11. Bouraoui B, Ronse C, Baruthio J, Passat N, Germain P. 3D segmentation of coronary arteries based on advanced mathematical morphology 

techniques. Computerized Medical Imaging and Graphics. 2010;34(5):377-387.

12. Mohan V, Sundaramoorthi G, Tannenbaum A. Tubular Surface Segmentation for Extracting Anatomical Structures From Medical Imagery. 

IEEE Transactions on Medical Imaging. 2010;29(12):1945-1958.

13. Benmansour F, Cohen LD. Tubular Structure Segmentation Based on Minimal Path Method and Anisotropic Enhancement. International 

Journal of Computer Vision. 2011;92(2):192-210.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

14. Cetin S, Demir A, Yezzi A, Degertekin M, Unal G. Vessel Tractography Using an Intensity Based Tensor Model With Branch Detection. IEEE 

Transactions on Medical Imaging. 2013;32(2):348-363.

15. Forkert ND, Schmidt-Richberg A, Fiehler J, et al. 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with 

anisotropic energy weights. Magnetic Resonance Imaging. 2013;31(2):262-271.

16. Ochs RA, Goldin JG, Abtin F, et al. Automated classification of lung bronchovascular anatomy in CT using AdaBoost. Medical Image Analysis. 

2007;11(3):315-324.

17. Zhao B, Cao Z, Wang S. Lung vessel segmentation based on random forests. Electronics Letters. 2017;53(4).

18. Xin H, Yuanzhi C, Deqiong D, Dianhui C. Axis-Guided Vessel Segmentation Using a Self-Constructing Cascade-AdaBoost-SVM Classifier. 

BioMed Research International. 2018;2018:1-12.

19. Kitrungrotsakul T, Han X-H, Iwamoto Y, et al. VesselNet: A deep convolutional neural network with multi pathways for robust hepatic vessel 

segmentation. Computerized Medical Imaging and Graphics. 2019;75:74-83.

20. Haft-Javaherian M, Fang L, Muse V, Schaffer CB, Nishimura N, Sabuncu MR. Deep convolutional neural networks for segmenting 3D in vivo 

multiphoton images of vasculature in Alzheimer disease mouse models. Plos One. 2019;14(3).

21. Xu Y, Mao Z, Liu C, Wang B. Pulmonary Vessel Segmentation via Stage-Wise Convolutional Networks With Orientation-Based Region 

Growing Optimization. IEEE Access. 2018;6:71296-71305.

22. Kamnitsas K, Ledig C, Newcombe VFJ, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. 

Medical Image Analysis. 2017;36:61-78.

23. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Paper presented at: Medical Image 

Computing and Computer-Assisted Intervention – MICCAI 2015; 2015//, 2015; Cham.

24. Mahajan D, Girshick R, Ramanathan V, et al. Exploring the Limits of Weakly Supervised Pretraining. Paper presented at: Computer Vision – 

ECCV 2018; 2018//, 2018; Cham.

25. Huang C, Li Y, Loy CC, Tang X. Learning Deep Representation for Imbalanced Classification. Paper presented at: 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR); 27-30 June 2016, 2016.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

26. Koh PW, Liang P. Understanding Black-box Predictions via Influence Functions. Proceedings of the 34th International Conference on Machine 

Learning; 2017; Proceedings of Machine Learning Research.

27. Ren M, Zeng W, Yang B, Urtasun R. Learning to Reweight Examples for Robust Deep Learning. Proceedings of the 35th International 

Conference on Machine Learning; 2018; Proceedings of Machine Learning Research.

28. Lin T, Goyal P, Girshick R, He K, Dollár P. Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine 

Intelligence. 2020;42(2):318-327.

29. Cai J, Lu L, Xie Y, Xing F, Yang L. Pancreas Segmentation in MRI Using Graph-Based Decision Fusion on Convolutional Neural Networks. 

Paper presented at: Medical Image Computing and Computer Assisted Intervention − MICCAI 2017; 2017//, 2017; Cham.

30. Rahman MA, Wang Y. Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation. Paper presented at: Advances 

in Visual Computing; 2016//, 2016; Cham.

31. Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge Cardoso M. Generalised Dice Overlap as a Deep Learning Loss Function for Highly 

Unbalanced Segmentations. Paper presented at: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision 

Support; 2017//, 2017; Cham.

32. Resheff YS, Mandelbaum A, Weinshall D. Every Untrue Label is Untrue in its Own Way: Controlling Error Type with the Log Bilinear Loss. 

arXiv e-prints. 2017.arXiv:1704.06062. https://ui.adsabs.harvard.edu/abs/2017arXiv170406062R Accessed April 01, 2017.

33. Ren M, Zemel RS. End-to-End Instance Segmentation with Recurrent Attention. Paper presented at: 2017 IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR); 21-26 July 2017, 2017.

34. Milletari F, Navab N, Ahmadi S. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. Paper presented 

at: 2016 Fourth International Conference on 3D Vision (3DV); 25-28 Oct. 2016, 2016.

35. Huang Y, Tang Z, Chen D, Su K, Chen C. Batching Soft IoU for Training Semantic Segmentation Networks. IEEE Signal Processing Letters. 

2020;27:66-70.

36. Nogueira K, Mura MD, Chanussot J, Schwartz WR, Santos JAd. Learning to semantically segment high-resolution remote sensing images. 

Paper presented at: 2016 23rd International Conference on Pattern Recognition (ICPR); 4-8 Dec. 2016, 2016.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

37. Cui Y, Jia M, Lin T, Song Y, Belongie S. Class-Balanced Loss Based on Effective Number of Samples. Paper presented at: 2019 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (CVPR); 15-20 June 2019, 2019.

38. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. Paper 

presented at: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; 2018//, 2018; Cham.

39. Bullitt E, Zeng D, Gerig G, et al. Vessel Tortuosity and Brain Tumor Malignancy: A Blinded Study1. Academic Radiology. 

2005;12(10):1232-1240.

40. Zhao F, Chen Y, Chen F, et al. Semi-Supervised Cerebrovascular Segmentation by Hierarchical Convolutional Neural Network. IEEE ACCESS. 

2018;6:67841-67852.

41. Janson S. Random coverings in several dimensions. Acta Mathematica. 1986;156(1):83-118.

42. Abadi M, Agarwal A, Barham P, et al. TensorFlow: Large-scale machine learning on heterogeneous systems. 2015.

43. Dauphin YN, Vries Hd, Bengio Y. Equilibrated adaptive learning rates for non-convex optimization. Computer Science. 2015.

44. Holm SA. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics. 1979;6(1):65-70.

45. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. Paper presented at: 2016 IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR); 27-30 June 2016, 2016.

46. Huang G, Liu Z, Maaten LVD, Weinberger KQ. Densely Connected Convolutional Networks. Paper presented at: 2017 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR); 21-26 July 2017, 2017.

47. Zhang H, Cissé M, Dauphin Y, Lopez-Paz D. mixup: Beyond Empirical Risk Minimization. ArXiv. 2018;abs/1710.09412.

48. Cubuk ED, Zoph B, Mané D, Vasudevan V, Le QV. AutoAugment: Learning Augmentation Strategies From Data. Paper presented at: 2019 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 15-20 June 2019, 2019.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Figure Legends

Fig. 1. MDNet consists of two parallel pathways. The pathway with the normal resolution is a 3D U-Net, for illustration to omit the 

short cuts (from max pooling to the de-conv layers) in the figure. The pathway with the low resolution is a 3D FCN with four 

5×5×5 convolutional layers without zero-padding (for illustration to reduce the number of layers in the figure, in practice, the 

kernel size is 3×3×3).

Fig. 2. Cerebral vessel segmentation results on the MRA dataset obtained using six different methods. Second row zooms in the 

white box in the first row. The green arrows indicate low-contrast blood vessels and background voxels, which are easily 

misclassified on the original image and ground truth, and can be effectively segmented by the proposed MDNet-Vb. The white 

arrows indicate the wrong segmentation on the same region using the other five state-of-the-art methods.

Fig. 3. Coronary artery segmentation results on the CTA dataset obtained using six different methods. The yellow arrows in the 

first row indicate background voxels that are easily misclassified on the original image and ground truth, and can be effectively 

segmented by the proposed MDNet-Vb. The white arrows indicate the wrong segmentation on the same region using the other five 

state-of-the-art methods.

Fig. 4. 3D segmentation results on MRA (first row) and CTA (second row) images, respectively. The results achieved by the three 

methods simultaneously trained on both two datasets.

Fig. 5. Coronary artery (first row) and cerebral vessel (second row) segmentation results on two datasets obtained using four 

combinations of FCN and U-Net networks.
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Table 1. Performance on the testing set with different segmentation methods on the CTA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) 

ResNet 78.06 99.91 59.41 46.52 

DenseNet 76.92 99.92 61.59 42.69 

3D U-Net 70.63 99.97 69.20 24.87 

V-Net 70.85 99.96 67.92 27.54 

DeepMedic 75.47 99.97 72.64 19.15 

Ours 76.46
 

99.96 72.91 17.52 
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Table 2. Performance on the testing set with different segmentation methods on the MRA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) 

ResNet 69.92 99.84 60.98 4.80 

DenseNet 45.15 99.90 49.62 4.83 

3D U-Net 61.01 99.95 68.22 1.73 

V-Net 64.46 99.94 69.21 1.90 

DeepMedic 64.46 99.94 68.64 2.48 

Ours 67.60
 

99.92 69.32 2.47 
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Table 3. Performance on the testing set by simultaneously training with both MRA and CTA images on the CTA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) 

3D U-Net 72.27 99.96 70.10 31.25 

DeepMedic 79.79 99.95 70.06 27.76 

Ours 75.50 99.97 73.06 21.02 
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Table 4. Performance on the testing set by simultaneously training with both MRA and CTA images on the MRA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) 

3D U-Net 43.96 99.96 58.35 2.42 

DeepMedic 55.89 99.96 65.22 2.51 

Ours 59.37 99.94 65.40 2.58 

 

A
cc

ep
te

d 
A

rt
ic

le



 

This article is protected by copyright. All rights reserved 

Table 5. The setting of four double-pathway networks 

 S(IS) S(OS) S(IL) S(OL) #Parameters 

FCN+FCN 52 36 28 12 1,679,427 

U-Net+U-Net 36 36 28 28 2,233,024 

FCN+U-Net 52 36 28 28 1,865,374 

U-Net+FCN 

(ours) 

36 36 28 12 1,530,524 

Note: S(IS), S(IL) denote the sizes of inputs of normal- and low-resolution pathways described in II.A, respectively. S(OS), 

S(OL) are the sizes of outputs of normal- and low-resolution pathways, respectively. 
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Table 6. Performance on the testing set with four double-pathway networks on the CTA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) Time (s) 

FCN+FCN 75.47 99.97 72.64 19.15 219,175 

U-Net+U-Net 72.12 99.96 68.36 28.22 176,144 

FCN+U-Net 55.93 99.96 58.25 19.02 220,287 

U-Net+FCN 

(ours) 

72.56 99.97 71.82 19.95 151,840 
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Table 7. Performance on the testing set with four double-pathway networks on the MRA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) Time (s) 

FCN+FCN 64.46 99.94 68.64 2.48 158,756 

U-Net+U-Net 58.42 99.96 67.75 1.76 119,714 

FCN+U-Net 31.90 99.64 23.95 8.25 159,938 

U-Net+FCN 

(ours) 

63.20 99.95 68.92 1.92 118,870 
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Table 8. Performance on the testing set with different down-sampling factors on the CTA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) 

3 (ours) 76.46 99.96 72.91 17.52 

5 74.75 99.97 72.84 18.68 

7 74.80 99.97 72.68 19.74 
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Table 9. Performance on the testing set with different down-sampling factors on the MRA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) 

3 (ours) 67.60 99.92 69.32 2.47 

5 67.42 99.93 69.09 2.50 

7 65.31 99.94 69.06 2.48 

 

A
cc

ep
te

d 
A

rt
ic

le



 

This article is protected by copyright. All rights reserved 

Table 10. Performance on the testing set with different loss functions on the CTA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) 

CE 72.56 99.97 71.82 19.95 

FL 72.62 99.97 72.29 17.64 

Dsc 70.99 99.97 71.56 17.39 

CE-Vb 72.66 99.97 72.48 18.29 

FL-Vb 76.46 99.96 72.58 17.52 

Dsc-Vb 71.01 99.97 72.14 16.60 
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Table 11. Performance on the testing set with different loss functions on the MRA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) 

CE 63.20 99.95 68.92 1.92 

FL 62.30 99.94 67.84 1.97 

Dsc 63.55 99.95 69.03 1.72 

CE-Vb 65.06 99.94 68.94 2.10 

FL-Vb 65.01 99.93 68.35 2.21 

Dsc-Vb 65.28 99.94 69.06 2.12 

Note: CE denotes cross-entropy, and FL denotes focal loss, and Dsc denotes dice coefficient loss. CE-Vb, FL-Vb, Dsc-Vb 

denote our class-balanced cross-entropy, focal loss, and dice coefficient loss at the voxel level, respectively. 
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Table 12. Performance on the testing set with different sampling strategies on the CTA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) 

traditional 76.61 99.95 67.77 31.33 

ours 72.56 99.97 71.82 19.95 
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Table 13. Performance on the testing set with different sampling strategies on the MRA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) 

traditional 59.04 99.95 66.01 2.10 

ours 63.20 99.95 68.92 1.92 
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Table 14. Performance on the testing set with/without augment on the CTA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) 

Without 76.46 99.96 72.91 17.52 

With 81.82
 99.95 71.02 27.47 
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Table 15. Performance on the testing set with/without augment on the MRA dataset 

 SEN (%) SPE (%) DSC (%) HD (voxel) 

Without 65.28 99.94 69.06 2.12 

With 67.60 99.92 69.32 2.47 
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