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Abstract Centerline is generally used to measure topological
and morphological parameters of blood vessels, which is piv-
otal for the quantitative analysis of vascular diseases.
However, previous centerline extraction methods have two
drawbacks on complex blood vessels, represented as the fail-
ure on ring-like structures and the existing of multi-voxel
width. In this paper, we propose a monocentric centerline
extraction method for ring-like blood vessels, which consists
of three components. First, multiple centerlines are generated
from the seed points that are chosen by randomly sprinkling
points on blood vessel data. Second, multi-centerline fusion is
used to repair the notches of centerlines on ring-like vessels,
and the local maximum of distance from oundary is employed
to remedy the missing centerline points. Finally, monocentric
processing is devised to keep the vascular centerline with sin-
gle voxel width.We compared the proposedmethodwithWan
et al.’s method and topological thinning on five groups of data
including synthesized vascular datasets and MR brain images.
The result showed the proposed method performed better than
the two contrast methods both by visual inspection and by
quantitative assessment, which demonstrated the performance

of the proposed method on ring-like blood vessels as well as
the elimination of multi-voxel width points.
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1 Introduction

Cardiovascular and cerebrovascular diseases are serious
threats to human’s health, which account for a majority of
deaths in both the developed and the developing countries
[24, 31]. Image analysis plays a significant role in the diagno-
sis and treatment of such diseases, among which centerline
extraction is one of the most important components [9, 30].
The centerline is defined as the medial axis along a tubular
blood vessel [12], commonly used in measuring the vascular
topological and morphological parameters, such as vascular
diameter, vascular length, vascular thickness, vascular junc-
tion, and segment tortuosity [42]. Therefore, centerline is a
simplified morphological description of a blood vessel, with
significant importance in the accurate location and quantita-
tive analysis of cardiac-cerebral vascular diseases [15, 19, 35].
Besides, it can also be employed for fast registration of blood
vessels and updating blood vessel models obtained intra-
operatively [22, 23].

1.1 State-of-the-art methods

Nowadays, numerous scholars and researchers have studied
and developed a plenty of centerline extraction methods,
which can be roughly divided into two categories, i.e., the
manual and automatic methods. The automatic centerline ex-
traction methods have become the mainstream, which can be
further divided into the following three categories.
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Shortest path algorithm Dijkstra algorithm is a typical
single-source shortest path algorithm for computing the
shortest path from one node to all the other nodes and can
be applied to create the distance map [17]. The main proce-
dure of shortest path method is to grow a centerline from a
starting point in the center until it reaches the end point.
Without using the weight of distance from boundary (DFB-
distance), the centerline always travels in the vicinity of cor-
ners especially on crooked objects [4, 26]. Wan et al. im-
proved this method by bring the DFB-distance field into
Dijkstra’s shortest path algorithm. This method ensures that
the centerline is located at the center of the tubular colon [36].
Li and Yezzi invented a four-dimensional (4D) minimal path
method for centerline and vessel extraction [28]. They
modeled each blood vessel as 4D curves, consisting of three
spatial coordinates and an extra vascular diameter dimension.
The centerline is traced by a single and global minimal path in
this higher dimensional domain between user-supplied end
points. Starting from a root voxel, Jin et al.’s method iterative-
ly adds new branches to the skeleton. The new branches are
those connecting the farthest quench voxels to the current
skeleton, found by a minimum cost path [18]. Antiga et al.
developed a software package named VMTK, which semi-
automatically extracts centerline based on Voronoi diagrams
[1]. Each centerline point in Voronoi diagram framework can
be considered as the center of a maximal inscribed sphere. The
limitation is that VMTK requires manually assignment of all
the starting and end points, which is a huge challenge when
dealing with complex blood vessels. Currently, most of
shortest path algorithms can extract satisfying centerlines that
are approximated to the real center of tubular objects.
However, most of these methods are based on three-
dimensional (3D) distance map, which generally leads to dis-
connection when extracting centerlines on ring-like blood
vessels.

Topological thinning Topological thinning is a traditional
method in centerline extraction and has been widely used in
colon and artery examination [3, 6, 8, 25, 33, 36]. The princi-
ple of this method is to peel off vessels layer by layer until the
middle layer is left [16]. Similarly, Krissian et al. obtained the
centerline by gradually deleting the simple points whose re-
moval does not change the topology of the vessel [20, 21].
Bian et al. used graph-theoretic analysis to get the centerline of
airway. The method can be divided into two steps: first, delete
the border voxels symmetrically using topological thinning;
second, prune the extra branches using graph-theoretic analy-
sis [3]. Yang et al. obtained the skeleton of coronary artery by
continuously eroding the boundary voxels after the removing
the non-vessel structures with the improved Frangi’s
vesselness filter [39]. However, the speed is quite slow due
to the mechanism limitation of topological thinning. Many
researchers have devoted themselves to the issue of how to

accelerate the topological thinning algorithm. For example,
Arcelli et al. proposed a procedure that speeds up the thinning
transformation and gets a well-shaped skeleton [6]. Sadleir
et al. tried to improve the efficiency of the method by using
lookup tables to reduce the computational cost of the thinning
process [33]. Moreover, Lee et al. suggested a parallel thin-
ning algorithm to extract both the centerline and the medial
surfaces of 3D objects. By preserving the topological and the
geometrical conditions, their algorithm produces desirable
centerlines and performs well in terms of noise sensitivity
and speed [27]. We refer the readers to [25] for a more com-
prehensive survey of thinning methodologies.

Intensity-based method There are also some centerline ex-
traction methods based on the Hessian matrix, level sets, and
so on. We define these methods as intensity-based methods,
because all of themmainly exploit the intensity information of
blood vessel images. Kumar et al. employed two dimensional
cross section analysis to extract the centerline, where the ves-
sel on the cross section image is found based on Hessian
matrix, and then the central voxel of each cross section are
connected to form the centerline [23]. Aylward et al. adopted
the intensity ridge method to the problem of centerline extrac-
tion. This method represents an N-dimensional image as a
surface in an (N + 1)-dimensional space by mapping the in-
tensity to the height dimension, where the centerlines of tubu-
lar object will be represented as a one-dimensional height
ridges on the surface [2, 32]. The limitation of this method
lies in its sensitivity to initialization and noise. Based on re-
gion growing and level sets, Xu et al. gained the centerline of
tree-like blood vessel by tracking the points of the largest
curvature on the surface of the wave-front propagating from
a point of skeleton line with level sets [38]. This method can
effectively filter the noise interference. Furthermore,
Matamoros et al. utilized the difference of offset Gaussians
filters and region growing to extract the centerline. The points
associated with the highest filter responses are detected as the
candidates in four directions, followed by the collection of
centerline segments via region growing process [29].

1.2 Problem and contribution

Most of previous methods perform well on the tree-like vas-
cular networks and have been successfully applied in the clin-
ical and preclinical quantitative analysis of vascular related
diseases. Nevertheless, these methods have some drawbacks
on the complex blood vessels, which are manifested in the
following two aspects:

1. The shape of blood vessels varies, containing not only
tree-like but also ring-like structures sometimes. The
ring-like blood vessel is defined as a Bhead-tail^ vessel
structure, in which starting from any voxel on the ring-like
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vessel one can return to this voxel along a certain direc-
tion. For example, the circle of Willis (CoW) (see Fig. 8)
is a ring-like arterial blood vessel located at the bottom of
the brain. It is the main arterial anastomoses in the brain
and is responsible for the distribution of oxygenated blood
throughout the cerebral mass [7, 37]. In this case, the
centerline extracted by Wan et al.’s method in [36] is
fractured and disconnected, because the seed and end
points of the centerline on circular blood vessel are gen-
erally not fully connected with each other.

2. Multi-voxel width within extracted centerline often oc-
curs in previous work, which is an obstacle to the accurate
measurement of the parameters such as vascular length,
vascular radius, vascular junction, and segment tortuosity
[13, 14]. Thus, single voxel width is an important charac-
teristic of the extracted centerline for the accurate compu-
tation of vascular parameters. It is also critical for the
follow-up diagnosis and planning of vascular diseases.
Unfortunately, few studies specially focus on this
problem.

In this paper, we proposed a monocentric centerline extrac-
tion method for ring-like blood vessels. The proposed method
repairs the incomplete centerline on ring-like blood vessels
based on the multiple information fusion. Meanwhile, this
method removes the unnecessary voxels using the
monocentric processing of the centerline, to guarantee the
centerline with single voxel width. The proposed method not
only improves the continuity of the extracted centerline but
also makes the centerline thinner, which is essential for the
accurate computation of vascular parameters.

1.3 Structure of the paper

The structure of this paper is given as follows. We introduce
the proposed centerline extraction method in Sect. 2, which
consists of the recovery of incomplete centerline and the re-
moval of centerline points withmulti-voxel width. Results and
performance evaluations are presented in Sect. 3. Finally, dis-
cussion and conclusions are given in Sects. 4 and 5
respectively.

2 Method

To solve the disconnection of circular centerline and multi-
voxel width problem, we proposed a monocentric centerline
extraction method for ring-like blood vessels. This method is
based on binary blood vessels that have been segmented and
can be decomposed into three components as shown in Fig. 1.
First, we choose the seed points by sprinkling points randomly
on the blood vessel data. The centerline is generated from the
seed points based on the combination of distance from source

(DFS-distance) and distance from boundary (DFB-distance)
[36, 40]. Several original centerlines are obtained by different
seed points. Second, we use multi-centerline fusion to repair
the notches on the original centerlines and use local maximum
of DFB-distance to correct the off-center points. Finally,
monocentric processing of the centerline based on topological
information is adopted to remove the redundant points on the
centerline.

The rationale of our proposed method lies in the fusion of
complementary information. The original centerlines provide
the basic information about the true centerline. However, there
are distortions in the notch positions on centerline for each
ring-like blood vessel. Therefore, after retaining the correct
information of all the original centerlines and modifying the
distortions on notch positions, we readily obtain a theoretical-
ly accurate centerline on a ring-like blood vessel.

2.1 Acquisition of original centerline

We have mentioned above that Wan et al.’s method will lead
to disconnection of centerline on ring-link blood vessel. The
way centerline growing is starting from a seed point and track-
ing along the ring-like blood vessel, which generally does not
guarantee the connection between the seed point and the end
point. Thus, in this step, we first get the original centerlines
with the notches (disconnection sites) locating at different po-
sitions, which will be used for the intact centerline extraction
in Sect. 2.2.

For this goal, we improved Wan et al.’s method through
sprinkling points with equal probability on the whole volu-
metric data (including both blood vessels and background),
where the sprinkling is conducted by generating random num-
ber. The number of the sprinkled points is dependent on the
size of the data, i.e., more points should be sprinkled on larger
data to ensure enough points located at the volumetric data of
blood vessels. The points falling on the blood vessel are treat-
ed as seed points. Then, centerlines are generated along the
tubular blood vessel from the seed points by DFS-distance.
The DFB-distance ensures that the voxels on the centerline are
located at the center of blood vessel. The positions of the
notches are various with different locations of the seed points.
The first column of Figs. 1 and 2a shows the extracted center-
lines with different notch positions.

2.2 Multiple information fusion

In this paper, we use the fusion of multiple information to
solve the problem of centerline extraction on ring-like blood
vessels, as illustrated in Fig. 2. In detail, we first use multi-
centerline fusion to repair the notches on the original center-
lines. Second, we adopt local maximum of DFB-distance to
correct the off-center centerline points.
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Asweknow, the locationsofnotcheson the acquiredoriginal
centerlines are different. If there are enoughoriginal centerlines,
we are able to obtain a centerline that is correct and has no
notches. If there is a notch on one centerline, meanwhile, there
exists correctly distributed centerline points on the other center-
lines at the same position. The overlapped information among
these centerlines as complement can be exploited to form an
intact centerline on the ring-like blood vessel (Fig. 2a, b). To
utilize the complementary information, we merge the original
centerlines together by the following equation.

C ¼ C1∪C2∪⋯∪CR ð1Þ

whereR is thenumberoforiginalcenterlines,Ci is the ithoriginal
incomplete centerline, andC is the centerline after combination.
Themorecenterlinesmerged, themorevaluable informationcan
weobtain.But theerrors accumulate simultaneously.Therefore,
it is important to limit the number of merged centerline.
Typically, two to three centerlines are enough for providing the
complementary information.

We obtain most of the useful topological information of the
objective centerline by multi-centerline fusion. However,
there are off-center points after the centerline extraction,
which means that some centerline points that should be on
the centerline are missing (Fig. 2b). These missing centerline

Fig. 2 Diagram of multiple information fusion when using two original centerlines a Original centerlines. b Fusion of multiple centerlines. c
Incorporation of neighbor points with larger DFB-distances

Fig. 1 The framework of the proposed centerline extraction method
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points are of great importance for the integrity and accuracy of
the objective centerline.

To incorporate the missing centerline points, we first obtain
the 26-neighbor of each centerline points on the merged cen-
terline C. Second, we compare the DFB value of each center-
line point with its 26-neighbor. If the DFB value for one of its
26-neighbors is larger than that of the centerline point, the
neighbor is closer to the center and should be added into the
merged centerlineC (Fig. 2c). In this case, wemerge the neigh-
bor point together with C by using the following equation.

CM ¼ C∪G ð2Þ
where G is the set containing the missing centerline points
(whose DFB values are larger than the centerline points), and
CM is the centerline after the incorporation of local maximum
of DFB-distance.

In this paper, we conduct the searching for neighbors of
centerline point with larger DFB value only once. The ratio-
nale lies in that most of the cerebral blood vessels are approx-
imated from 2 to 3 mm in diameter [34]. In general, the reso-
lutions of CT or MRI images for human beings are no better
than 500 μm [10]. This leads to the computed radii of the
cerebral blood vessels are between two and three voxels.
Thus, the comparison of DFB value among the centerline
point and its neighbor only once is enough for finding the
voxel with local maximum DFB value. If the vessel diameter
is larger than 3 mm, the comparison can be conducted itera-
tively to extend the searching space.

2.3 Monocentric processing

Even though multiple information fusion repairs the notches
of the centerline, it produces many redundant points which
lead to the problem of multi-voxel width. Thus, it is necessary
for us to singularize the centerline and remove the redundant
centerline points with multi-voxel width.

There are two reasons for the existence of multi-voxel
width on centerline. First, this phenomenon often occurs near
the vascular branch or on the blood vessel whose radii change
dramatically (Fig. 3a). Errors are easily induced in the vicinity
of the vascular branch due to the high complexity of the vessel
at this location. And the more branches exist at the same
bifurcation, the more errors occur. Secondly, multi-centerline
fusion can cause multi-voxel width on the extracted centerline
(Fig. 3b). Moreover, the incorporation of voxels with local
maximum of DFB-distances also produces multi-voxel width
centerline.

In order to singularize the centerline, we adopt the
monocentric processing to remove the points with multi-
voxel width. Besides, we have to guarantee the connectivity
of the extracted centerline after the removal of centerline
points with multi-voxel width. Thus, which centerline points

have the issue of multi-voxel width is critical for accurate
monocentric processing. In this paper, the criterion is to judge
if a set composed by current centerline point and its neighbors
is within the set of another centerline point and its neighbors.
If the answer is yes, we locate the current centerline point as
the point with multi-voxel width and remove it subsequently.
We give the detailed judgement and removal of centerline
points with multi-voxel width as the following.

First of all, define N as the number of neighbors of a cen-
terline in terms of 26-neighborhood. Nb(⋅) is the neighboring
operator. If N > 2, define B =Nb(v) as the neighbor set of cur-
rent centerline points v, and then Pv =Nb(v) ∪ {v} is a set con-
taining current centerline point and its neighbors. For any one
of the neighbors bi ∈ B, Qbi =Nb(bi) ∪ {bi} is a set containing
one element bi and its neighbors. If Qbi ⊂ Pv, all the neighbors
of bi are within the region formed by the neighbors of v, which
means that the centerline is still a connective regionwithout bi.
Therefore, bi is a redundant centerline point and should be
removed. If Qbi = Pv, both the centerline point v and bi are
treated as the candidate points with multi-voxel width. In this
case, which one should be removed is based on their DFB-
distances. The higher the DFB value is, the closer is the point
to the center. Thus, the point with smaller DFB value is re-
dundant. If the DFB values of two candidate points are equal,
the two points are equivalent and any one of them can be
selected as the redundant point.

In order to illustrate the monocentric processing of the cen-
terline clearly, we present an example as shown in Fig. 4. In
Fig. 4a, v is the current centerline point, with B =Nb(v) = {b1,
b2, b3} and Pv =Nb(v) ∪ {v} = {v, b1, b2, b3}. The result ofQbi

(where i = 1, 2, 3) is given as follows.

Qb1 ¼ Nb b1ð Þ∪ b1f g ¼ b1; l; vf g
Qb2 ¼ Nb b2ð Þ∪ b2f g ¼ b2; b3; vf g
Qb3 ¼ Nb b3ð Þ∪ b3f g ¼ b3; b2; v; rf g

8
<

:
ð3Þ

It is obvious thatQb2 ⊂ Pv. According to the criterion, voxel
b2 is a redundant centerline point and should be removed.

There is another circumstancewhenwe select the candidate
voxel as shown in Fig. 4b. In this case, we also select v as the
current centerline point with B =Nb(v) = {b1, b2, b3} and Pv =
Nb(v) ∪ {v} = {v, b1, b2, b3}. The result of Qbi (where i = 1, 2,
3) is given as follows.

Qb1 ¼ Nb b1ð Þ∪ b1f g ¼ b1; l; v; b2f g
Qb2 ¼ Nb b2ð Þ∪ b2f g ¼ b1; b2; b3; vf g
Qb3 ¼ Nb b3ð Þ∪ b3f g ¼ b3; b2; v; rf g

8
<

:
ð4Þ

We find thatQb2 = Pv. Thus, both b2 and v are the candidate
points with multi-voxel width. Which one should be removed
is based on their DFB-distances. It is noticed that DFB(b2) <
DFB(v); thus, voxel v is closer to the center of the blood vessel
than b2 is. According to the criterion, point b2 is redundant and
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should be removed. We give the flowchart of the monocentric
processing of centerline in Fig. 5, where the readers can find
the implementation details.

After the monocentric processing of centerline, multi-voxel
width still exists on certain centerline points. Hence, the

monocentric processing can be implemented repeatedly until
all the centerline points having single voxel width.

In summary, algorithm 1 gives the pseudo-code of the pro-
posed monocentric centerline extraction method for ring-like
blood vessels.

Fig. 3 Diagram of centerline
points with multi-voxel width in
two cases. a At the bifurcation. b
After multiple information fusion.
The points in blue frame have
multi-voxel width (Color figure
online)

Generate R original centerlines.

2: Multiple information fusion

Referring to Eq. (1), combine R original centerlines and get a merged centerline.

Referring to Eq. (2), incorporate the neighbor points whose DFB-distances are larger 

than the current one. 

3: Monocentric processing of the centerline

for ki = 1 to K (where K is the number of iterations of the monocentric processing)

for li = 1 to Lc (where Lc is the number of centerline points)

v is assigned as the li
th

centerline point.

Calculate B, Pv, Qbi.

if bi vQ P

bi should be removed 

elseif bi vQ P

Remove the centerline points with smaller DFB-distance value. 

end 

end 

end

Output: Centerline of blood vessel

Algorithm 1 A monocentric centerline extraction method for ring-like blood vessels

Input: Blood vessel data

1: Selection of the original centerlines

Sprinkle random points, and determine the R seed points.
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3 Results

3.1 Analysis methodology

The experiments were conducted on five groups of data to
verify the feasibility of the proposed method. The synthetic
dataset includes four groups of data. Data1 and data2 are sim-
ple simulated data that is generated from the ground truth

centerlines (Fig. 6). Data3 and data4 are from a group of
synthesized vascular datasets [11]. The group of data consists
of 12 vasculatures, whose networks are substantially more and
more complex. We chose two data from the group of synthe-
sized vascular datasets and modified them by adding ring-like
blood vessels as our experimental data (i.e., data3 and data4)
in order to evaluate our proposed method (Fig. 7). Data5 is
from the Designed Database of MR Brain Images of Healthy

Fig. 5 Flowchart of the
monocentric processing of
centerline

Fig. 4 Diagram of monocentric
processing of centerline. a Qb2 ⊂
Pv. b Qb2 = Pv. The red box is the
current point and the orange box
is the redundant point (Color
figure online)
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Volunteers [5]. This database includes more than 100 human
brain magnetic resonance angiography (MRA) images, in
which 20 patients are scanned from which age range (18–29,
30–39, 40–49, 50–59, and 60+). Each group is equally divid-
ed by sex, diabetes history, hypertension, head trauma, psy-
chiatric disease, or other symptoms or history likely to affect
the brain. It is reported that the ring-like blood vessel often
appears in the human brain, which is manifested in CoW. Thus
we selected the data that have complete CoW to carry out the
real data experimental verification (Fig. 8). The size of the
data is 512 × 512 × 148.

Wan et al.’s method [36] and the topological thinning [27]
are the most commonly used centerline extraction methods in
the area of topological description, virtual endoscope, and

surgical planning. On the other hand, the topological thinning
is more likely to extract a complete circular centerline since it
equally treats the tree-like and ring-like blood vessels.
Therefore, we compared our proposed method with these
two methods to verify the feasibility from the perspective of
quantitation and visual inspection. To quantitatively analyze
the propose method, we employed three estimation criteria,
namely average distance, modified Dice coefficient, and
non-singularized count.

Average distance This is used to evaluate the displacement of
the extracted centerline to the ground truth, representing the
average minimum distance from each voxel on the ground
truth to the voxel that on the centerline of our method. The

Fig. 6 Results of centerline
extraction on two simple
simulation data. a Results of Wan
et al.’s method. b Results of
topological thinning. c Results of
the proposed method. d
Superposition results of the
proposed method and the ground
truth

Fig. 7 Results of centerline
extraction on synthesized
vascular datasets. a Results of
Wan et al.’s method. b Results of
topological thinning. c Results of
the proposed method
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evaluation of average distance (AD) is based on Euclidean
distance whose unit is pixel.

AD ¼
∑
i¼1

M c

min dis ið Þð Þ
N a

ð5Þ

where Na is the number of voxels on the ground truth center-
line Ct, Mc is the number of voxels on the centerline Cp ex-
tracted by the proposed method, and dis(i) is the distance from
one voxel on Cp to all the voxels on Ct.

Modified Dice coefficient This indicator is used to measure
the overlap between the result of the proposedmethod and that
of the ground truth. Because the centerline of blood vessel is
sparse and thin compared with regional object, such as lung
and liver, we modified the denominator of traditional Dice
coefficient to the number of voxels on the ground truth cen-
terline Ct. Thus, the modified Dice coefficient is calculated as
the ratio of the number of correct voxels to the total voxel
number on ground truth centerline.

MDC ¼ Ct∩Cp

N a
ð6Þ

where Ct∩Cp represents the number of overlapping voxels
between Ct and Cp, and Na is the number of voxels on the
ground truth centerline Ct. The range of modified Dice coef-
ficient (MDC) is within the interval [0, 1], where 0 stands for
no overlapping, and 1 stands for completely overlapping be-
tween Ct and Cp.

Non-singularized count Both AD and MDC characterize the
accuracy of the extracted centerline from the overall quantita-
tive point of view, which means they cannot quantify the ex-
tracted centerline in terms of single-voxel width or multi-
voxel width. In order to quantitatively analyze the single-
voxel width properties of the proposed method, we define
the non-singularized count (NSC) as the count of centerline
points with multi-voxel width as follows

NSC ¼ count centerline points with multi‐voxel widthð Þ ð7Þ

The critical issue for the computation of NSC to accurately
locate and count all the centerline points with multi-voxel
width. We located the multi-voxel width points by using the
same method as in monocentric processing. In other words,
we judged whether the set composed by one centerline point
and its neighbors is within the set of another centerline point
and its neighbors. If the answer is yes, we located the current
centerline point as the one with multi-voxel width. We refer
the readers to Sect. 2.3 for a more detailed description for
distinguishing multi-voxel width points.

3.2 Synthetic dataset

We first extracted the centerline by using the proposed meth-
od,Wan et al.’s method and topological thinning on the simple
simulation data, whose results are given in Fig. 6. There are
obvious absences of centerline points at the circle location of
centerline using Wan et al.’s method (Fig. 6a). This is because
that the centerline grows from a seed voxel along one side of
the ring-like blood vessel, and the end point of this centerline
does not link to the seed point. The results of using topological
thinning are acceptable on the data1 which is quite smooth and

Fig. 8 Results of centerline
extraction on the Database of MR
Brain Images. a Centerline
extracted by Wan et al.’s method.
b Centerline extracted by
topological thinning. c Centerline
extracted by the proposed
method. d Superposition results
of the proposed method (purple)
and the ground truth (yellow)
(Color figure online)
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standardized, but it deviates from the centerline at the end
point on data2 (Fig. 6b). Using the proposed method, we fine-
ly extracted the centerline on circle location and finally ob-
tained a complete centerline (Fig. 6c), where the notch is
repaired completely. Moreover, the extracted centerline by
the proposed method is almost fully overlapped with the
ground truth (Fig. 6d).

We further quantitatively evaluated the proposed method
by using the three criteria (Table 1). Because the random seed
sprinkling is involved in both the Wan et al.’s method and the
proposed method, the quantitative results of these two
methods are obtained by running five times on each data and
then averaging them. The AD value of the proposed method is
0.0265 ± 0.0085 on data1, which is much smaller than that of
Wan et al.’s method (0.1693 ± 0.0596) and topological thin-
ning (0.1600). And theMDC of our proposed method is com-
parable with these two contrast methods. The lower AD and
higher MDC demonstrates the accuracy of the proposed cen-
terline extraction method. In addition, the NSC values of the
proposed method and topological thinning are always zero,
which means that the proposed method has detected all the
multi-voxel width points and has removed it. Because the
simulation data are relatively simple, the phenomenon of
multi-voxel width on centerline extracted by these two con-
trast methods is not serious.

Although experiments on two groups of simple simulation
data verify the feasibility of the proposed method to a certain
extent, the simulation data are quite smooth and standardized.
Therefore, we employed two synthesized vascular data (i.e.,
data3 and data4) to test the performance of the proposedmeth-
od on complex synthesized blood vessels. The two synthe-
sized vascular data have no ground truth centerlines, so the
results can only be evaluated through visual inspection. The
results of three different methods are shown in Fig. 7. It is
noticed that there are lots of notches on the centerlines extract-
ed by Wan et al.’s method (Fig. 7a). The topological method
performs well on data3 which is neat and uniform. However,
the extracted centerline is broken when the vascular radius is
quite small or changes dramatically (Fig. 7b). In contrary, the

proposed method properly restores the missing centerlines at
notch positions (Fig. 7c), as well as obtains a continuous cen-
terline. Furthermore, the NSC values of data3 and data4 by
usingWan et al.’s method are 4.8 ± 0.8367 and 10.6 ± 1.5166,
respectively (Table 2), and those by using topological thinning
are 3 and 10, respectively. The NSC values on both data3 and
data4 employing our proposed method are reduced to zeros. It
fully guarantees that the extracted centerline has only single
voxel width, which can facilitate the accurate follow-up diag-
nosis and planning of vascular related diseases.

3.3 Real MRA dataset

After evaluation on the synthetic data, it is necessary to exam-
ine the performance of the proposedmethod onmore complex
clinical vascular networks. Thus, we test the feasibility of the
proposed method on cerebral blood vessels obtained from the
Designed Database of MR Brain Images of Healthy
Volunteers that contain complete circle of Willis (CoW).
Compared with the simple and synthesized data, the cerebral
MRA data have the characteristics of irregularity and high
complexity. The centerlines extracted by the proposed method
and these two contrast methods are shown in Fig. 8.

Due to the existence of many broken cerebral blood vessels
in the brain data, we have to randomly sprinkle millions of
points on the volumetric data to guarantee that every original
centerline is extracted from all the blood vessels. The extract-
ed centerlines using Wan et al.’s method and topological thin-
ning are given in Fig. 8a, b, respectively, where we highlight
the CoW at the bottom insets. On one hand, the Wan et al.’s
method fails on the ring-like CoW, although it almost success-
fully extracts the centerlines of all the tree-like cerebral blood
vessels. On the other hand, the extracted centerlines by topo-
logical thinning are discontinuous in many parts no matter on
the tree-like cerebral vessels or on the ring-like CoW. In con-
trary, the proposed method obtains intact centerlines on the
CoW and other tree-like blood vessels (Fig. 8c).
Furthermore, the centerlines extracted by the proposed meth-
od nearly completely overlap with the ground truth (Fig. 8d).

Table 1 Results of quantitative analysis on data1 and data2

AD MDC NSC

Mean (pixel) Std (pixel) Mean (%) Std (%) Mean (pixel) Std (pixel)

Data1 Wan et al.’s method 0.1693 0. 0596 94.42 2.43 1.4 0.5477

Topological thinning 0.1600 – 97.36 – 0 –

Proposed method 0.0265 0.0085 98.37 1.12 0 0

Data2 Wan et al.’s method 0.5717 0.0756 91.48 0.55 2.8 0.8165

Topological thinning 0.0464 – 97.84 – 0 –

Proposed method 0.0335 0.0059 98.90 0.89 0 0

The italic entries are the results of proposed method
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The results of quantitative analysis for the proposed meth-
od and these two compared methods are given in Table 3. The
lower AD (0.4804 ± 0.0061) and acceptable high MSD
(0.9910 ± 0.0020) demonstrate that the extracted centerline
by our proposed method is closer to the ground truth. In ad-
dition, the proposed method can also fully remove the center-
line points of multi-voxel width supported by theNSC value is
always zero. It is noticed that theMSD of topological thinning
is slightly higher than that of the proposed method. This is
because nearly all the points on the ground truth centerline can
find the overlapped points on the extracted centerline using
topological thinning, which has serious multi-voxel width
problem (whose NSC is 336). In this regard, the quantitative
analysis further demonstrates that the proposed method out-
performs Wan et al.’s method and topological thinning on
clinical cerebral blood vessels.

4 Discussion

To repair the notches of the extracted centerlines on ring-like
blood vessels, we employed two types of information, i.e., the
information of multiple original centerlines and local maxi-
mum DFB-distances. Because the complementary informa-
tion exists in the original centerlines, we can obtain a merged
centerline without notches only if we acquire as many original
centerlines as possible. As a matter of fact, no more than three
original centerlines are enough for the proposed method to
form a complete merger centerline. The incorporation of

neighbor points with higher DFB values into the merged cen-
terline is under the consideration of accuracy. There are lots of
off-centerline points at the notch positions and end points (root
and leaves). Thus, we have to incorporate the points who are
closer to the vascular center, which is the basis of extracting an
accurate centerline after monocentric processing.

The multi-voxel width of original centerlines com-
monly occurs on vascular branch or on the blood vessel
whose radii change dramatically. The reason behind this
is that the Euclidean distances from either pixels of the
centerline to the boundary pixels sometimes are the
same [41]. Moreover, another reason is the information
fusion of multiple original centerlines and the local
maximum of DFB-distances. Thus, we singularize the
centerline by employing the proposed monocentric pro-
cessing, whose input is the merged centerline formed by
Eqs. (1) and (2). Based on the topology of the merged
centerline, we gradually remove the points with multi-
voxel width by judging if the set composed by one
centerline point and its neighbors is within the set of
another centerline point and its neighbors. This strategy
not only eliminated all the multi-voxel width centerline
points but also guaranteed the connectivity of the
centerline.

Theoretically, the proposed monocentric processing seems
like topological thinning methods [3, 6, 8, 25, 33]. However,
the topological thinning performs well only on simple simu-
lation data with a fixed scale (Fig. 6). They fail to extract the
entire centerlines no matter on synthesized vascular data or on
the MR brain image (Figs. 7 and 8), due to the complex vas-
cular networks with multiple scales. Moreover, the
monocentric processing is more efficient compared with topo-
logical thinning method, because we only handle the merged
centerline points rather than the entire blood vessel.

5 Conclusions

In conclusion, we proposed a monocentric centerline extrac-
tion method aiming to solve the failure of centerline extraction
on ring-like blood vessels and the problem of centerline points
with multi-voxel width. The proposed method mainly consists

Table 3 Results of quantitative analysis on data5

AD MDC NSC

Mean (pixel) Std (pixel) Mean (%) Std (%) Mean (pixel) Std (pixel)

Data5 Wan et al.’s method 0.5583 0. 0670 96.99 0.0062 55.8 0.0152

Topological thinning 0.5042 – 99.45 – 336 –

Proposed method 0.4804 0.0061 99.10 0.0020 0 0

The italic entries are the results of proposed method

Table 2 Results of quantitative analysis on data3 and data4

NSC

Mean (pixel) Std (pixel)

Data3 Wan et al.’s method 4.8 0.8367

Topological thinning 3 –

Proposed method 0 0

Data4 Wan et al.’s method 10.6 1.5166

Topological thinning 10 –

Proposed method 0 0

The italic entries are the results of proposed method
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of multiple information fusion and monocentric processing.
The performance is tested on simple simulation data, synthe-
sized blood vessels, and clinical cerebral blood vessels.
Compared with previous methods, the proposed method can
properly complete the centerline extraction on ring-like blood
vessel and eliminate the points with multi-voxel width as well.
The proposed centerline extraction method is of great impor-
tance for the clinical and preclinical quantitative analysis of
vascular related diseases.
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