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Abstract

Objective. Bioluminescence tomography (BLT) is a significant molecular imaging modality with
promising potential in biomedical research. However, the reconstruction results of BLT are
frequently sensitive and imprecise due to the light scattering effect and ill-posed inverse problem.
Approach. We propose an accelerated forward-backward splitting and the difference of convex
functions algorithm (AFBS-DCA) based on a dictionary learning framework. In the sparse coding
phase, a k-sparsity strategy enables adaptive adjustment of the regularization parameter, improving
the overall efficiency. The non-convex generalized minimax-concave regularization is employed to
enhance sparsity, while Nesterov’s acceleration strategy improves convergence speed. During
dictionary updating, DCA is utilized to efficiently solve a non-convex optimization problem
modelled as a difference of two convex functions, effectively reducing computational complexity.
Main results. The effectiveness of the AFBS-DCA method was evaluated through numerical
simulations and light source implantation experiments. It achieved the highest reconstruction
accuracy with an average localization error of 0.391 mm, an average Dice coefficient (DICE) of
0.774, and a contrast-to-noise ratio of 0.872. Compared with three baseline methods, the
AFBS-DCA reduced reconstruction errors by 62.8%, 52.5%, and 37.8%, respectively. Significance.
The proposed AFBS-DCA method demonstrates superior performance in terms of localization
accuracy, morphological recovery, and robustness, indicating its potential to advance the practical
application of BLT in biomedical research and molecular imaging.

1. Introduction

As a non-invasive and highly sensitive optical molecular imaging technique, bioluminescence imaging (BLI)
has become an indispensable tool in biomedical research, especially in tracking luciferase-labelled tumours
in living organisms (Guo et al 2017a). However, BLI can only provide two-dimensional (2D) image
information, which means it cannot accurately locate the three-dimensional (3D) spatial position and
morphology of the bioluminescent source in the organism, thereby limiting its in-depth application in
preclinical research (Liu ef al 2022). To overcome this limitation, bioluminescence tomography (BLT)
technology has been proposed. The light propagation model and inversion algorithms are utilized in BLT to
reconstruct the 3D distribution of the internal bioluminescent source based on the luminous flux measured
on the surface of organisms, enabling in vivo visualization and quantitative analysis (Mclennan et al 2005,
Guo et al 2017b).

In recent years, BLT technology has been extensively utilized in early disease diagnosis, drug
development, and treatment monitoring with its superior sensitivity and non-invasive advantages, and its 3D
imaging capability also provides important support for biomedical research (Qin ef al 2012, Ren et al 2020).
Nevertheless, BLT reconstruction remains challenging due to the intricate light scattering and absorption in
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biological tissues, and limited photon detection at tissue boundaries, which significantly impair
reconstruction stability and accuracy (Guo et al 2020). Therefore, alleviating ill-posedness and improving
BLT reconstruction accuracy has become a key focus in biomedical imaging research (Yang et al 2018).

Researchers have proposed a variety of approaches to tackle the BLT reconstruction problem, which can
generally be divided into two main categories: deep learning-based methods and mathematical iteration
methods (Liu et al 2015). Deep learning-based methods provide several advantages, including significant
flexibility, high accuracy, and automated feature extraction. For example, the approach introduced by
Rezaeifar et al shows outstanding performance in tumour targeting within BLT studies, achieving
sub-millimetre tumour targeting accuracy with a median Dice similarity coefficient (DSC) of 61% in Monte
Carlo simulations and a median geometrical tumour coverage of 95% with a DSC of 42% in real BLI
measurements of mouse glioblastoma models (2023). However, despite these advantages, a primary
challenge of deep learning-based methods is their limited interpretability, making it difficult to understand
the reasoning behind their predictions. Additionally, the availability and quality of datasets remain crucial, as
deep learning models heavily rely on large, high-quality datasets for effective training and generalization.
This is why researchers continue to explore mathematical iterative approaches to solve the inverse problem in
BLT, aiming to approximate the real bioluminescent source distribution with improved stability and
accuracy, especially when combined with regularization techniques to address ill-posed problems
(Kaltenbacher and Huynh 2022). Among mathematical iterative methods, regularization plays an essential
role, where common loss functions include convex penalties such as the L;-norm (Chen et al 2021) and
L,-norm (Cao et al 2007), and non-convex sparse regularization (NSR) methods. However, the L;-norm may
result in over-sparse reconstruction results, negatively impacting the accuracy of light source shape
estimation, while the L,-norm may produce over-smooth reconstructions (Zhang et al 2017). To overcome
these limitations, various NSR methods have been proposed, such as the smoothly clipped absolute deviation
method (Fan and Li 2001) and the minimax concave penalty method (Zhang 2010). The NSR approaches
achieve a better balance between sparsity and accuracy compared to conventional convex regularization
methods by introducing non-convexity, enabling precise sparsity control and a more flexible trade-off
between sparsity and model fit (Olsson et al 2017).

In the research field of inverse problem solving, several iterative optimization methods have been
proposed to solve objective functions, including classical approaches such as the gradient descent method
and the alternating direction method of multipliers (Boyd et al 2010), and more advanced techniques like the
fast iterative shrinkage thresholding algorithm (FISTA) (Daubechies et al 2010), and
majorization—minimization algorithm (Lange and Yang 2000). These methods are widely applied in solving
inverse optimization problems. On this basis, Bayesian approaches, as probabilistic iterative optimization
methods, integrate prior knowledge into reconstruction, enhancing stability by modelling uncertainty and
leveraging prior distributions (Calvetti and Somersalo 2018). For example, regularized Bayesian models such
as the Gaussian Markov random field, effectively preserve target edges and improve accuracy (Feng et al
2009). However, their high computational complexity and reliance on intricate priors limit their flexibility.
In addition to the previously discussed techniques, combining regularization with dictionary learning offers
more flexible and efficient sparse representations, often outperforming Bayesian approaches (Chun and
Fessler 2017). Dictionary learning involves two iterative stages: sparse coding and dictionary update. Sparse
coding computes sparse representations based on a fixed dictionary, while dictionary update optimizes the
dictionary for improved adaptability and accuracy (Li et al 2020). Typically, orthogonal matching pursuit
(Wang and Shim 2012), a common sparse coding method, iteratively selects relevant dictionary atoms to
approximate the signal and minimize residual error but suffers from high computational complexity,
especially with large dictionaries or high-dimensional signals. Another notable approach, the k-sparse
approximation and orthogonal procrustes analysis (KSAOPA) improves reconstruction stability by enforcing
sparsity through k-coefficients Lipschitzian mappings while refining dictionary atoms using orthogonal
Procrustes analysis (Su et al 2024). However, the effectiveness of KSAOPA is partially constrained by the need
for manual tuning of certain crucial parameters, such as the sparsity level K, which can introduce additional
time overhead and reduce overall efficiency. The proposed method effectively overcomes this limitation
while preserving accuracy.

The accelerated forward-backward splitting (FBS) and the difference of convex functions algorithm
(AFBS-DCA) method based on dictionary learning framework is proposed, implementing a dual-stage
optimization strategy through iterative alternation between sparse coding and dictionary update phases. This
method achieves high-precision reconstruction, and fast convergence, and effectively balances sparsity and
shape recovery. To improve adaptive regularization, a k-sparsity strategy is introduced in the sparse coding
phase, enabling the adaptive adjustment of the regularization parameter and eliminating the need for
manual and sub-optimal tuning. To increase the sparsity while maintaining the convexity of the objective
function, the non-convex generalized minimax-concave (GMC) regularization (Selesnick 2017) is employed
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within the convex AFBS framework. Additionally, Nesterov’s acceleration technique is integrated to further
enhance convergence speed and computational efficiency. For efficient dictionary updates, the problem is
formulated as a difference of two convex functions and solved using the DCA (Gasso et al 2009), which offers
low computational complexity and robust convergence (Le Thi et al 2015). By leveraging an adaptive
k-sparse strategy and NSR, our approach effectively balances reconstruction accuracy and computational
efficiency. To confirm its performance, we set up two different numerical simulation experiments and light
source implantation experiment comparing the AFBS-DCA algorithm with three existing methods: the
incomplete variables truncated conjugate gradient algorithm (IVTCG) based on L;-norm (He ef al 2010), the
FISTA based on L,-norm (Beck and Teboulle 2009) and the FBS algorithm (Zhang et al 2021).

The rest of the paper is arranged as follows. Section 2 introduces the BLT forward model, defines the
inverse problem, and presents the proposed AFBS-DCA method. Section 3 describes numerical simulations
and light source implantation experiments used to verify the effectiveness of the proposed algorithm.
Section 4 presents the 3D visualization results of these experiments with comparative and quantitative
analyses. Section 5 summarizes the main contributions of the study.

2. Methods

2.1. Traditional numerical model method for BLT reconstruction
In BLT reconstruction, the diffusion equation (DE) is commonly used to describe the process of light
propagation in phantom models and experimental mice due to the high scattering and low absorption
properties of biological tissues (Huang and Yu 2018). DE is a simplified approximation of the radiation
transfer equation, which describes light propagation in a strictly controlled light-free environment through
the first-order spherical harmonic expansion (Zhang et al 2011). The BLT experimental environment is a
strictly controlled light-free environment, ensuring that there is no interference from any external light
source (Wen et al 2018). Therefore, Robin boundary conditions are applied, assuming all light reaching the
boundary is completely reflected and does not escape into the surroundings (Yang et al 2012).
The steady-state DE with Robin boundary condition is expressed as follows:
[T Ou) 610 =50, <0 0
O (r)+2A(n)D(r)[v(r)- Vo (r)] =0,r € 00

where S is the internal light source intensity distribution; ¢ represents luminous flux density; € is the
domain of the organism; 0f2 is the boundary region of the organism; v is the outward normal vector; # is the
refraction coefficient of the organism. D (r) = m represents the diffusion coefficient at position r,
where 11, and p; are the absorption and optical scattering coefficients; g is the anisotropic parameter; A (n) is

the refractive index mismatch factor at the interface between organism and air, as shown in equation (2):

1+ (14399772 40.7099n ' 4-0.6681 + 0.6361)

A = . 2
() =12 (1439972 +0.7099n~1 4 0.6681 4 0.6367) @)
According to the Robin boundary condition, the theoretical value of the light intensity density passed
through the biological surface can be calculated as follows:
['(r)==D(r)[v(r)- V¢ (r)] = ¢ (r) /2A(n). 3)

By applying the finite element method (FEM) to solve the photon transmission model, a crucial linear
relational expression is established, which connects the luminous flux on the surface of biological tissue with
the internal bioluminescent source distribution (Gasso et al 2009):

AX=® (4)

where A is a m X n system matrix, which contains the specific optical property information of each part of
the organism. The light intensity density on the surface of the organism ® can be obtained by practical
measurement, and it is a column vector of m X 1 dimension. X is a coefficient vector with # X 1 dimension.

2.2. The AFBS-DCA dictionary learning method for BLT reconstruction

BLT reconstruction is inherently ill-posed due to strong light scattering and absorption in biological tissues
(Yang e al 2012), resulting in most photons being unable to penetrate the tissue to reach the detector.
Therefore, the measurable fluorescence signal is very limited, while the number of unknowns in the source
distribution far exceeds the number of observations (Ding et al 2014). This imbalance makes it almost
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impossible to obtain a unique solution by solving equation (4) directly, which brings difficulties to the
accurate reconstruction of tumour localization (Hu et al 2012).

To alleviate the ill-posedness of the inverse problem and attain a stabilized solution, additional constraints
are typically added to the BLT reconstruction process by introducing regularization into the objective
function (Hu et al 2020). Here, the non-convex GMC regularization is employed as a penalty term to
constrain equation (4), leading to the formulation of equation (5):

m}}n{p(x) - %HAX—@H;-‘FOJGMC (X)} (%)

where the subscript F denotes the Frobenius norm of a matrix, defined as the square root of the sum of the
. 2 . .. . .
squared elements, that is ||A|| = /3" |a;j|". The parameter « is the regularization coefficient controlling the
i

sparsity level. Jomc represents the sparse regularization term, which imposes a normalization constraint on
the column vectors of the dictionary A. GMC regularization can preserve the convexity of the objective
function, reducing the risk of false local minima (Tan et al 2020). The GMC penalty is defined as follows:

) A
Jowe 00 = X1, ~mjn { 2], + 5114 X~ 2) 1} ©)

where Z is an auxiliary variable with n x 1 dimension. ||X]|, is the L;-norm of the vector X, which is defined
as the sum of absolute values of elements for X.
According to the GMC penalty, the cost function can be formulated as follows:

1 . A
P = 51X~ @+ allx], - min { a2} + 5 14 (X~ 2]}
1 2 A 2
— max{ L |l4x @2+ al[X]|, ~ a2zl - 3 4 (X~ 2|1
1
—mgx{ (1) [AX1 4 allX], + ¢ (x.2)

1
=5 (1= V) [|AX][z + o[ X]|, + max{p (X,2)} (7)
where the function ¢ (X,Z) = (% 1@ — lZ]|, — 21AZ| |12;> +(X,AT (AAZ — ®)) is affine in X for any
fixed Z, and affine functions are convex (Tan et al 2020). Moreover, since F(X) is the pointwise supremum of
convex functions over Z, it remains convex. This shows that the GMC regularization not only preserves the
convexity of the objective function when 0 < A < 1, but also enhances the sparsity of the coefficient vector.

Based on the above GMC sparse regularization, we can define the following dictionary learning cost
function:

()A(, A, 2) = argminmaxF (X, A, Z) (8)
AX Z
where F(X, A, Z) is as follows:
1 2 A 2
F(X,A,Z) = [|[AX — @[+ al[X]], —allZ]|, - S [[A(X = 2)][;- 9)

In this work, an alternating optimization method based on a dictionary learning framework is used to
solve the dictionary matrix A, the coefficient vector X, and the auxiliary variable Z. The AFBS-DCA
algorithm is applied to iteratively perform sparse coding and dictionary updating, as detailed below.

2.2.1. Sparse coding based on AFBS algorithm

During the sparse coding phase, the GMC regularization preserves the convexity of the objective function
when the parameter ) is between 0 and 1, making it solvable by the AFBS convex optimization algorithm
(Wang et al 2018). In this algorithm, the objective coefficient vector X and auxiliary variable Z are iteratively
updated with a fixed dictionary A, as follows:

(X(J‘+1>,Z(j+1)) = argminmaxF (X, Z) (1o
. . 1 A
X0+ — arg;(an(X) = llax-@ 17+ el X1l - > |A(X-2)||> (11)
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. ) A
VAR :argmlnF(Z):a||Z||1+§||A(X—Z)||12; (12)
z

where F(X, Z) is a saddle-point function that exhibits convexity with respect to X and concavity with respect
to Z. Therefore, the proximal gradient algorithm AFBS can be utilized to achieve the global optimal solution.
In general, the AFBS algorithm is used to solve the following forms of minimization problems:

minfy (x) +f3 () (13)

For the objective function to be solved in the sparse coding stage: fi (x) represents the data fidelity term,
given by fi (x) = 1 [[AX — @ H;, which ensures the reconstructed signal approximates the observed
measurements. This term is convex and differentiable. f; (x) represents the L;-norm regularization term,
given by f, (x) = a||Z||,, which promotes sparsity. The function f, (x) is arbitrarily convex but not necessarily
smooth.

Let P(x) = Vfi (x) = AT (AX — @), Q(x) = 9f, (x) = asign (Z), where sign (Z) is the sign function,
which preserves the sign of the elements in Z while applying the soft-thresholding operator. It is defined as:

1, Z>0

sign(Z) =4 0, Z=0 .P(x)is the gradient of the smooth objective function f; (x), while Q(x) is the
~1,7<0

sub-gradient of the objective function f; (x):

w0 :xopup(xo)) (14)

where wU) represents an intermediate variable obtained by a gradient descent step on f; (x), commonly used
in proximal gradient methods to handle non-smooth terms (Beck and Teboulle 2009). It provides a
temporary update before applying the soft-thresholding to enforce sparsity in X.

The AFBS algorithm is applied to solve the L;-norm regularization optimization, and the update rule is
as follows:

w) = Xx0) — ;AT (AXW—@) (15)

XU+ —soft( au) = sign ( )max(‘wo ’fau, ) (16)

where soft (w(j) , ozu) represents the soft-thresholding operator used to promote sparsity. The thresholding
parameter oy is determined by the regularization parameter « and the step size i, controlling the extent to
which values in w) are shrunk towards zero.

To further improve efficiency, Nesterov’s acceleration technique (Phan et al 2018) is employed to update
X and Z, accelerating convergence of the algorithm. We infer wU*") from the current w(¥) and the last
iteration of w01, aiming to find a better w0 and w) to calculate XUtD:

Wit = (1 = 7)) 4 700D (17)

where the parameter 7 is a momentum factor in Nesterov’s acceleration technique, which determines how
much influence the previous iterate wU=D has on the current iterate wUtY (Phan ef al 2018). When 7 is
small, the update relies mostly on the current value w), leading to a more conservative update; when 7 is
large, more weight is given to wU =", introducing a momentum effect that helps accelerate convergence.

The updating rules of the AFBS algorithm are as follows, where we incorporate a k-sparsity strategy for
adaptively selecting the regularization parameter A\ (Wang et al 2018):

Wi = x0) ;AT (AXU> - <I>) +purATA (X(j) —ZO'))

wi) = Z0) 4 rATA (Xo) 7Zo'>)

10 =y

w{JH) (1— ) +Tw - (18)
wz(jH) (1-— ) +Tw -b

XU+ = soft( T(’))

ZU+D = soft ( )
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where the convergence condition is 0 < p < W [|A]l, and 0 < A < 1; w, [(,](]) denotes the kth largest
X

. i\2
coefficient in the vector w; ¥); the momentum parameter is defined as 7 = lt(jﬁ)) with t0F1) = w
and t() = 1. Although this choice may lead to 7 < 0, it is mathematically equivalent to the classical
Nesterov’s acceleration scheme with a positive momentum parameter 3% = % (Phan et al 2018).

In the traditional AFBS algorithm, the regularization parameter A mainly controls the soft thresholding
level, determining how many coefficients are set to zero during each iteration (Beck and Teboulle 2009).
Under the proposed k-sparsity strategy, although A still appears as a fixed parameter in the equations,
manual adjustment of ) is no longer required. Instead, at each iteration, the threshold T0U) is adaptively set to
the kth largest (sorted by absolute value) element in wY), thatis TU) = w[(,i) (Wang et al 2018). Thus, the
so-called ‘adaptive adjustment of A actually refers to dynamically adjusting the effective threshold during the
iterative process, based on the desired sparsity level k, rather than manually tuning \. This adaptive
thresholding strategy enables soft thresholding to retain only the k largest coefficients while setting the rest to
zero, thus eliminating the need for manual adjustment of the regularization parameter and significantly
improving the efficiency (Wang et al 2018).

During the sparse coding phase, the iteratively updated X and Z is obtained. Following this, in the
dictionary update stage, the iterative update of the dictionary matrix A is carried out by fixing X and Z.

2.2.2. Dictionary update based on DCA method

In the dictionary updating stage, A is updated by minimizing the cost function in equation (19), which is
expressed as a difference of two convex functions (DC) programming function (Li et al 2020). This
formulation allows the use of DCA to iteratively solve the associated convex subproblems,

. . 1 A
AUFD) = argminF(A) = E||AX—<I'||12¢—E||A(X—Z)H,2¢ (19)
A

We define the convex DC components G and H, where the function H(A) is clearly defined and
differentiable, as follows:

min{F(A) = G(A) —H(A)|A e R"*"} (20)
1 2

G(4)= - [|AX~ ®|]; (21)
A 2

H(4) =S [lAX=2)||;. (22)

The DCA method is applied to linearize the sub-differential of the DC component H (A) and optimize
equation (20). In each iteration of j, the sub-differential of DC components is as follows:

AV —vH(AD) = ) (x—2)(x-2)"

: : (23)
VG (4V) = (40X~ @) X!
Inj + 1 iterations, the function H(A) is linearized, and AUTY) is updated iteratively by solving the
following functions:
AGHD) . ~0) _ .1 2 /50)
=argmin{G(A) — (A ",A) » =argminq - |[[AX—- @[, — (A ",A (24)
AER!’HXM AERYIIXH 2

where ZO) denotes the sub-differential of H, <;1(]) 7A> represents the Frobenius inner product between two

~(j ~ T
matrices, which is defined as: <A(]) ,A> =tr (A(] ) ,A) , where tr represents the trace of a matrix, defined as

the sum of all the elements along the main diagonal of a square matrix.

Various methods can be used to solve equation (23), but the choice of optimization strategy significantly
affects the effectiveness of the dictionary update. For instance, while the gradient descent method can directly
solve equation (23), it often suffers from slow convergence. As a result, we choose to reformulate
equation (23) into a program of DC form and apply the DCA algorithm for optimization. In this process, the
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Algorithm 1. AFBS-DCA algorithm for BLT reconstruction.

Input: The system matrix A € R™*", the photon measurement ® € R™*", sparse level k.
Initialization: The parameter X is positive constant, maximum parameter jmax, j = 0, ) = 1,err=1e—6,
X© e R™ and A € R"™*" with each column normalized as unit 1.
While || X0 — X0~
Step1: Sparse coding updating rules based on Eq. (18)
Step2: Dictionary update flow
VH A0’>) =MD (X-2)(X-2)"
VG (V) = (4VX- @) X!
A0 — 4, 0) _ [V (’))[*]VH(A:': )
: : "

> errorj < jmax do
2

Step3: j =7 +1
End while
Output: X = xU+D

update of the dictionary A involves two DC decomposition. To simply the optimization problem, we
optimize A; column by column:

0 n T
Jmin 0 ()= { 5 1ax- @ - (X7.a) =S {Shes - axii- (A7) a0 | e

i=1

We decompose ¢ into two convex functions, where ¢ and ¢, are defined as follows:

o1(4s) = yAscing () ()"~ (&) . a0") 20

02 (Ax) = 5 Aidiag (1) (A:) — 3 1@ — A XI] (27)

where n = 1;x, |M|, where M = XX" and 1, «,, denotes that after taking the absolute value of each element of
M, the diagonal elements are extracted to form a 1; ., row vector. diag(n) is the diagonal matrix constructed
from the diagonal elements of M and used to ensure the convexity of decomposition.

Applying DCA, on the jth iteration we can calculate Z(j):
2(]) = v¢2 (Al(j)) = A,’; U)dlag (’I]) - (A,':X— P i;)XT. (28)

On the j + 1 iteration, AU can be calculated by solving for the following convex function:

A;;UD) = argmin {9751 (A;) — <Z(j)T,Ai:T>} _ a0 {VG (A,-f”) — VH(Ai,O))}

29
0 (29)

Finally, the columns of the dictionary matrix A are normalized with L,-norm to maintain numerical
stability and scale consistency.
The AFBS-DCA algorithm with k-sparsity strategy is outlined in Algorithm 1.

3. Experiment design

In this section, numerical simulations and light source implantation experiment were conducted to evaluate
the proposed method. Three traditional algorithms: IVTCG based on L;-norm, FISTA based on L;-norm,
and FBS were used for comparison in terms of morphological recovery, localization accuracy, and
robustness. All experiments and procedures were conducted on an AMD Ryzen 7 3700 U laptop with Radeon
Vega Mobile Gfx (2.30 GHz) and 8GB of RAM.

7
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Figure 1. (A) The 3D view of the main organs of cylindrical phantom. (B) The 3D view of meshed cylindrical phantom. (C) The

Table 1. Optical properties of the heterogeneous cylindrical phantom at 650 nm.

Tissues pa (r) (mm™") ps () (mm™") g

Muscle 0.0052 10.80 0.900
Bone 0.0060 60.09 0.900
Heart 0.0083 6.733 0.850
Liver 0.0329 7.000 0.900
Lung 0.0133 19.70 0.900

3.1. Numerical simulation experiments setup

A non-uniform cylindrical model with a height of 30 mm and a radius of 10 mm was constructed to simulate
biological structure, including five major organs: heart, bone, liver, lung, and muscle, as shown in figure 1(A).
At a wavelength of 650 nm, the optical parameters of each organ are listed in table 1 (Zhang et al 2024).

The model was discretized using COMSOL Multiphysics 5.6 (COMSOL, Inc., Burlington, Massachusetts)
software (Parvitte et al 2013) into 4626 nodes and 25 840 tetrahedral elements, as shown in figure 1(B). The
forward simulation result of single-source was simulated with the Monte Carlo method using the molecular
optical simulation environment (Ren et al 2010), as shown in figure 1(C).

Three experiments were designed: a single-source simulation with a 1 mm radius source cantered at (—1,
—4, 22) mm; a dual-source simulation with two identical sources at (—2, —7, 10) mm and (—2, —7, 17) mm;
and an anti-noise experiment where Gaussian noise of 5%, 10%, 15%, 20%, and 25% was added to the
single-source simulation to evaluate the noise robustness of the AFBS-DCA method.

3.2. Light source implantation experiment setup

To verify the feasibility of the AFBS-DCA method in vivo, a light source implantation experiment was
performed on an adult BALB/c mouse using a BLT/CT dual-mode imaging system. All experimental
procedures were approved by the Animal Ethics Committee of Northwest University, China. The mouse was
anesthetized with a 3% isoflurane-air mixture throughout the operation and fixed on a rotation stage to
minimize motion.

A flexible plastic tube with a 1 mm radius and a 2 mm height was implanted at (6, 12, 20) mm to simulate
an early tumour. Bioluminescent images were captured by an electron multiplying charge-coupled device
camera (iXon Ultra 888) equipped with a 630 nm band-pass filter, with an exposure time of 1 s and no gain
applied. CT imaging was performed using the CT system built into the BLT/CT device, with a tube voltage of
50 kVp and x-ray power of 40 W. The structure diagram of the dual-mode system is shown in figure 2.

After image acquisition, a landmark-based rigid registration method was applied to align
bioluminescence and CT images. The 2D irradiance distribution was then projected onto the 3D surface of
the mouse model. Magor organs including muscle, heart, lung, liver, stomach, and kidneys were segmented
using Amira software. For reconstruction, the mouse model was meshed into 6848 nodes and 38 468
tetrahedral elements, as shown in figure 3.

3.3. Evaluation index
To further quantify the performance of different methods, three evaluation metrics were used: Localization
error (LE) (Guo et al 2020), Dice coefficient, and the contrast to noise ratio (CNR) (Guo et al 2020).
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Figure 3. (A) Three-dimensional mouse model with a target. (B) Mouse tetrahedral mesh model with a target.

LE assesses spatial positioning accuracy by calculating the Euclidean distance between the reconstructed
object centre (x,, y,, z,) and the actual object centre (x;, ¥, ;). A smaller LE indicates higher positioning
accuracy:

LE = ||L; — L], = \/(xr - xt)z + O _J’t)2 + (2 — Zt)2 (30)

where L; and L; represent the centres of the reconstructed and true sources, respectively. A smaller LE
indicates higher positional accuracy.

DICE evaluates morphological recovery between the reconstructed target region R, and the real target
region Ry:

|R: MRy

DICE=2-——+
[R: |+]| Ry

(31)

The DICE value ranges from 0 to 1, a higher value indicates greater overlap between the reconstructed
and actual target regions, reflecting better ability of morphological recovery.
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Table 2. Quantitative results of single-source numerical simulation.

Method Reconstructed results (mm) LE (mm) DICE CNR
IVTCG-L, (— 1.425, — 4.536, 21.941) 0.687 0.675 0.165
FISTA-L; (— 1.417, — 4.629, 21.968) 0.756 0.381 0.143
FBS (— 1.444, — 4.321,21.879) 0.562 0.543 0.290
AFBS-DCA (— 1.278, — 3.999, 21.976) 0.280 0.864 1.343

CNR is utilized to assess the quality of reconstruction results:

CNR = |,UROI - MBCK|

(32)
1/2
(MRro10%or + MBCK Tk ) /

where pgror and ppck represent the mean values in the region of interest (ROI) and background, respectively;
0%op and o3 are represent the variances; mgor and mpck represent the number of nodes included in the
ROI and background, respectively. A higher CNR value indicates better reconstruction quality.

4, Results

4.1. Numerical simulations results

4.1.1. Single-source experiment

The reconstruction results of the single-source experiment are shown in figure 4. The first row displays the
3D reconstruction results of IVTCG, FISTA, FBS, and AFBS-DCA, where the reconstructed light source is
depicted in red. The second row shows the cross-sectional view at the X = —1 mm plane, with the red area
indicating the reconstructed source and the white circle denoting the actual location and boundary of the
true source. In addition, the quantitative evaluation results of the four methods are summarized in table 2. It
can be seen that the AFBS-DCA method achieves the lowest LE (0.280 mm), the highest DICE (0.864), and
the highest CNR (1.343), indicating better positional accuracy, morphological recovery, and image contrast
compared to the other methods.

10



10P Publishing Phys. Med. Biol. 70 (2025) 205010 B Yang et al

IVTCG FISTA FBS AFBS-DCA
) o ¢ (%) o
q;) 1» f % f - ¢ ; .
= : al . 47 | : & 2
z
)
>
=
= £ =
] “ 5 vk
=
3
[70}

10 3 s g s W Eg s o B 0 " 5 o s o

Y(mm) “Y(mm) Yimm) Y(mm)

I | [ [ [2

Figure 5. Comparison results of four algorithms in dual-source numerical simulation experiment (3D view and sectional view).

NIIN

Table 3. Quantitative results of dual-source numerical simulation.

Reconstructed results Total LE

Method (mm) LE (mm) (mm) DICE CNR

IVTCG-L, (—2.521, — 7.519, 10.445) 0.859 1.838 0.391 0.351
(—2.818, — 7.211, 17.496) 0.979 0.192

FISTA-L; (— 2.669, — 7.482, 10.585) 1.011 1.896 0.333 0.293
(—2.716, — 7.210, 17.475) 0.885 0.183

FBS (—2.225, — 7.215, 10.572) 0.651 1.416 0.452 0.357
(= 2.596, — 7.151, 17.456) 0.765 0.266

AFBS-DCA (— 1.709, — 7.180, 10.149) 0.373 0.878 0.744 1.148
(= 2.335, — 7.105, 16.597) 0.505 0.769

4.1.2. Dual-source experiment

The reconstruction results of the dual-source experiment are shown in figure 5. The first row presents the 3D
reconstruction results of IVTCG, FISTA, FBS, and AFBS-DCA, and the second row displays the axial view at
the X = —2 mm plane. The reconstructed sources are shown in red, and the actual sources are marked with
white circles, consistent with the single-source experiment. As summarized in table 3, the AFBS-DCA
method achieves the lowest average LE (0.439 mm), reducing the reconstruction error by 54%, 52%, and
38% compared with the other methods. It also attains the highest average DICE (0.756) and CNR (1.148),
indicating better positional accuracy, morphological recovery, and image contrast in dual-source
reconstruction.

4.1.3. Anti-noise experiment

The results of the anti-noise experiment are shown in figure 6. Based on the single-source experiment,
Gaussian noise at levels of 5%, 10%, 15%, 20%, and 25% was added to the measurement data (Liu et al
2022). It can be observed that the LE, DICE, and CNR values of the AFBS-DCA method show only slight
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fluctuations with increasing noise levels, indicating that the method is robust and maintains good
reconstruction performance under varying noise interference.

4.2. Light source implantation experiment results

The results of the light source implantation experiment are shown in figure 7. The first to fourth columns
display the 3D views, axial slices (at the plane Z = 20 mm), and CT-fused images reconstructed by the
IVTCG, FISTA, FBS, and AFBS-DCA methods, respectively. The reconstructed light source is marked in red,
and the white circular area in the slice indicates the actual source location, while the CT image provides
anatomical reference. For quantitative analysis, LE, DICE, and CNR values are summarized in table 4. The
AFBS-DCA method achieves the lowest LE (0.404 mm), and the highest DICE and CNR values among all
methods, indicating better spatial localization, morphological recovery, and image contrast. These results
confirm the effectiveness and practical applicability of AFBS-DCA in light source implantation experiment.
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Table 4. Quantitative results of light source implantation experiment.

Method Reconstructed results (mm) LE (mm) DICE CNR
IVTCG-L,; (6.736, 12.047, 20.201) 0.765 0.362 0.070
FISTA-L, (4.896, 11.207, 19.237) 1.558 0.138 0.001
FBS (6.316, 11.698, 19.694) 0.533 0.140 0.036
AFBS-DCA (6.341, 11.846, 19.845) 0.404 0.717 0.124

5. Discussion and conclusion

BLT is an advanced and non-invasive imaging modality with high sensitivity, offering significant potential
for preclinical molecular imaging. However, the BLT reconstruction problem is severely ill-posed, making it
highly sensitive to noise and measurement errors, resulting in instability and inaccuracy in the reconstructed
bioluminescent source distribution. Traditional algorithms often suffer from slow convergence and
sub-optimal solutions, while dictionary learning-based methods further increase computational complexity
due to high-dimensional properties.

To address these challenges, this study proposed the AFBS-DCA method, which integrates dictionary
learning with non-convex optimization strategies. In the sparse coding stage, non-convex GMC
regularization is introduced to enhance sparsity, and Nesterov’s acceleration technique is employed to
improve convergence speed. Additionally, a k-sparsity strategy is utilized to adaptively adjust the
regularization parameter, reducing the need for manual tuning. In the dictionary update stage, the DCA
decomposes the original non-convex problem into a sequence of convex subproblems, thereby improving
computational efficiency and feasibility.

The performance of the AFBS-DCA method was systematically evaluated through numerical simulations
and light source implantation experiments, and compared with three representative methods: IVTCG-L;,
FISTA-L;, and FBS. Experimental results consistently demonstrated that AFBS-DCA outperformed the
baseline methods in terms of localization accuracy, morphological recovery, and robustness to noise. In both
single- and dual-source simulations, the proposed method achieved superior reconstruction precision. Its
stability under different noise levels was verified by the anti-noise experiment, while the light source
implantation experiment validated its practical applicability. Quantitatively, AFBS-DCA attained an average
minimum LE of 0.391 mm, an average DICE of 0.774, and an average CNR of 0.872. These results highlight
the efficacy and robustness of AFBS-DCA for accurate bioluminescence source reconstruction.

Despite the superior performance demonstrated by the AFBS-DCA method, certain limitations remain,
including the need to extend its applicability to other optical molecular imaging modalities and to further
validate its reliability in complex biological and clinical settings. Future work will focus on broadening the
method’s application scope and conducting comprehensive in vivo and clinical studies to fully establish its
practical value.

In conclusion, we proposed an AFBS-DCA method to improve the reconstruction performance of BLT.
This method integrates non-convex GMC regularization to enhance sparsity, Nesterov-accelerated sparse
coding for efficient convergence, and an adaptive k-sparsity strategy to reduce manual parameter tuning. In
addition, a DCA-based dictionary learning framework is employed to ensure effective dictionary update and
optimization. Compared with several conventional methods, AFBS-DCA demonstrates superior
performance in terms of localization accuracy, morphological recovery, and robustness across both
numerical simulations and light source implantation experiments. We believe that this method will provide
broader application prospects and greater practical value in both preclinical and clinical biomedical research.
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