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Fluorescence molecular tomography (FMT) is a noninvasive imaging technique that enables the quantitative
three-dimensional reconstruction of fluorescent probe distributions 7n vive. However, FMT reconstruction is
limited in accuracy and reliability due to light scattering and the ill-posed inverse problem. In this paper, the adap-
tive Bayesian augmented Lagrangian (ABAL) algorithm is proposed, which adaptively adjusts the regularization
parameter to promote sparsity and enhance robustness to noise, while significantly improving computational
efficiency. By integrating sparse Bayesian learning (SBL) with the augmented Lagrangian (AL) framework, the
approach addresses the computational challenges and non-convexity introduced by the iterative adjustment of
regularization parameters in SBL. The inverse problem is reformulated as a weighted L; minimization with adap-
tive regularization and solved via the AL method, enhancing computational efficiency and mitigating the risk
of local minima. Moreover, the adaptive regularization mechanism enables the method to dynamically adjust to
data-specific characteristics, avoiding over-regularization or under-regularization and improving both stability
and reconstruction accuracy. To evaluate the effectiveness of our method, a series of numerical simulations and
implantation experiments were conducted. Results confirm that the ABAL method can achieve relatively accurate
reconstruction performance compared to other approaches, with an average minimum localization error (LE) of
0.358 mm and an average Dice coefficient of 0.775. These results show relatively high localization accuracy, shape
recovery, and robustness of the ABAL method in FMT reconstruction, indicating its potential for practical FMT
application. © 2025 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (Al)
training, and similar technologies, are reserved.

https://doi.org/10.1364/JOSAA.579369

1. INTRODUCTION

Fluorescence molecular tomography (FMT) is a noninvasive
optical imaging modality for reconstructing the three-
dimensional distribution of fluorescent probes iz vivo [1,2].
Upon external light excitation, targeted fluorophores emit
fluorescence signals that are subsequently detected at the tissue
surface [3]. FMT reconstruction is based on a photon propaga-
tion model, typically approximated by the diffusion equation
derived from the radiative transfer equation [4,5]. FMT has
been increasingly adopted in recent years for preclinical research
and small animal imaging owing to its moderate imaging depth,
high sensitivity, and quantitative capability [6]. It is valuable
in applications such as early disease detection, drug delivery
evaluation, and tumor molecular characterization, highlighting
its growing importance in biomedical imaging [7,8]. However,
the inverse problem is severely ill-posed due to complex tissue
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scattering and absorption, making FMT reconstruction highly
sensitive to noise and numerical instability [9,10].

To address the ill-posed inverse problem in FMT reconstruc-
tion, various methodological frameworks have been proposed
[11]. Among them, regularization-based methods incorporate
structural priors as penalty terms in the optimization objective
to stabilize the solution [12]. Classical regularization strategies
include L,-norm regularization [13] and L;-norm regulariza-
tion [14]. While Z;-norm regularization enhances robustness
and stabilizes the inverse solution by penalizing large deviations,
it often results in overly smooth reconstructions that obscure
fine structural details [15,16]. In contrast, L;-norm regulariza-
tion promotes sparsity in the fluorescence source distribution
and helps preserve sharp features but is sensitive to noise and
the measurement matrix conditioning [17]. Beyond convex
regularization approaches, non-convex sparse regularization
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(NSR) methods, such as smoothly clipped absolute deviation
(SCAD) [18] and minimax concave penalty (MCP) [19], have
been explored to strike a better balance between sparsity and
stability [20]. While these methods preserve structural features
and achieve higher reconstruction accuracy by balancing data
fidelity and sparsity constraints, they increase computational
complexity due to non-convex optimization, posing challenges
in convergence and algorithmic robustness [21]. To further
enhance reconstruction accuracy and better capture the sparse
structure of fluorescence distributions, dictionary learning
techniques have been introduced. It typically involves two
alternating stages: sparse coding and dictionary update. Sparse
coding computes sparse representations using a fixed dictionary,
while dictionary update adjusts the dictionary to better fit the
data [22]. For instance, the ROMP-DCP method [23] imple-
ments this strategy through regularized orthogonal matching
pursuit (ROMP) for sparse coding and difference of convex
(DC) programming for dictionary updates. This alternating
optimization enables the model to leverage data-adaptive rep-
resentations, improving reconstruction sparsity and accuracy
[23]. However, dictionary learning methods lack an adaptive
mechanism to automatically determine sparsity levels from
the observed data, which may restrict its generalizability and
robustness [23].

To overcome these limitations, Bayesian frameworks refor-
mulate the inverse problem as a probabilistic inference [24].
Unlike regularization-based methods that rely on fixed penal-
ties, Bayesian approaches model the fluorescence distribution as
arandom variable with prior distributions, allowing uncertainty
quantification and flexible incorporation of structural priors
such as expected sparsity or spatial smoothness [25,26]. They
also adapt the regularization strength and sparsity level to the
observed data, mitigating the lack of adaptability in dictionary

-V (Dx(r)vcbx(r)) + /‘Lux(r)@x(r) =04 (7‘ - r.r)
=V (D (r)V D, (1) + tam(r) P (r) = P (r) i ()

learning methods and enhancing robustness across varying
imaging conditions [27]. For example, sparse Bayesian learning
(SBL) promotes sparsity by assigning hierarchical priors to
solution coefficients, which are iteratively updated to adapt to
varying imaging conditions [28]. Gaussian Markov random
fields (GMRFs) capture spatial correlations in biological tissues
by enforcing local smoothness [24]. However, Bayesian infer-
ence often relies on computationally intensive techniques such
as Markov chain Monte Carlo (MCMC) sampling or variational
inference [29,30]. In high-dimensional FMT problems, these
methods become computationally expensive, necessitating
innovations to improve scalability without compromising
reconstruction accuracy [30].

To address these challenges, an adaptive Bayesian augmented
Lagrangian (ABAL) algorithm is proposed for FMT reconstruc-
tion. ABAL combines the sparsity-promoting power of SBL
with the computational efficiency of the augmented Lagrangian
(AL) optimization strategy. The ill-posed inverse problem
is reformulated as a weighted L; minimization, where SBL
introduces hierarchical sparsity priors and adaptively adjusts
regularization strength based on the posterior distribution.
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This adaptivity allows the algorithm to vary noise levels and
data characteristics, eliminating the need for manual tuning.
Meanwhile, the AL method decomposes the resulting non-
convex problem into manageable convex sub-problems, solved
iteratively by alternating updates of auxiliary variables and
Lagrange multipliers, accelerating convergence and numerical
stability. We comprehensively evaluate the ABAL algorithm
through a series of numerical simulations and implantation
experiments, comparing it with three algorithms: the fast
iterative shrinkage thresholding algorithm (FISTA) based on
Ly-norm [31], the incomplete variables truncated conjugate
gradient (IVTCG) based on L;-norm [32], and the orthogonal
matching pursuit (OMP) based on Ly-norm [33].

The remainder of this paper is organized as follows. Section 2
introduces the FMT reconstruction model and the ABAL
algorithm. Section 3 presents the evaluation metrics and exper-
imental design. Section 4 provides 3D visualization results and
quantitative performance analysis. Finally, Section 5 summa-
rizes the major contributions of this study and discusses future
work.

2. METHODOLOGY
A. Photon Propagation Model

In steady-state FMT with point excitation sources, photon
propagation in biological tissues, which exhibit high scattering
and low absorption in the near-infrared spectral range, can
be approximated by the diffusion equation (DE) [34,35]. To
accurately simulate photon behavior at tissue boundaries, DE
is coupled with Robin boundary conditions that account for
partial reflection and transmission of photons at the interface
between tissue and the external medium [36,37], which are

defined as follows:

r e, (1)

where 7 denotes the position vector within the imaging domain
2, and 7, refers to the location vector of the point excitation
sources. The diffusion and absorption coefficients for excitation
and emission light are denoted as D, f, and D,,, [, respec-
tively. The photon flux densities at position r for excitation
and emission light are ®, () and ®,,(r), respectively. The
fluorescence source to be reconstructed is represented by 144

By applying the finite-element method (FEM) [38], the
continuous photon propagation model described by the par-
tial differential Eq. (1) is discretized over the computational
domain, which is converted into the following linear algebraic
equation:

AX = @, (2

where A is a m x n forward system matrix, which contains the
specific optical property information of each part of the organ-
ism. The light intensity density on the surface of the organism
® can be obtained by practical measurement, and it is a column
vector of m x 1 dimension, and X is the distribution of the
fluorescent source to be reconstructed within the biological
tissue.



206 Vol. 43, No. 1/ January 2026 / Journal of the Optical Society of America A

B. ABAL Method for FMT Reconstruction

The ABAL method comprises two principal stages. First, the
SBL model reformulates the ill-posed inverse problem as a
weighted L, minimization problem to enhance sparsity adapt-
ability. Second, the weighted problem is solved under the AL
framework utilizing Lagrange multipliers and an alternating
iterative strategy for efficient computation.

Specifically, the first stage uses the SBL model to incorporate
sparsity priors via Bayesian inference, casting FMT recon-
struction as a weighted £; minimization problem. To address
the ill-posed property of FMT, SBL iteratively updates the
weights, dynamically adjusting regularization parameters to
varying imaging conditions. This strategy promotes optimal
sparsity in reconstructed solutions while avoiding the over-
sparsification seen in traditional Z; methods. In the second
stage, the weighted problem is solved within the AL frame-
work by introducing Lagrange multipliers and decomposing
it into smaller and more tractable sub-problems [39]. These
sub-problems are efficiently solved using an alternating iterative
scheme, which accelerates convergence and reduces compu-
tational complexity while maintaining high reconstruction
accuracy.

1. Weighted L, Minimization Problem

Considering background noise and data acquisition errors in
FMT, Eq. (3) can be reformulated as

AX+E=, (3)

where & represents the combined effect of background noise and
measurement error.

SBL is formulated as an iterative weighted L regularization
method based on a Bayesian probabilistic framework, where
model parameters are treated as random variables with assigned
priors [39]. Given the parameter X, the likelihood function of
the observed data ® in Eq. (3) is

P (®|X) =N (®|AX, L]) x exp [—% [|AX — d>||§} ;
(4)

where A denotes the variance of the observation noise. In
Bayesian inference, the prior distributions with heavy-tailed
characteristics are typically employed to effectively capture
the sparsity of the unknown parameters. The assumed prior
distribution of P (X) is given as follows:

1 M
P(X)  exp [—5 Yof (Xl»)] ) (5)
=1

In SBL, the sparsity of parameter X is controlled by a regu-
larization function f;(-), which is generally formulated as
a non-decreasing concave function to enhance sparsity by
penalizing small coefficients less than large ones. Each f;(X;)
corresponds to the negative log prior to each component,
e, P(X;) xexp (—%f[(X,)) Therefore, the prior P(X) is
constructed as a product of independent priors over each X;.
Given an assumed prior distribution P (X) = ]_Lﬁil P(X;), the
posterior distribution of X can be derived via Bayes’ theorem as
follows:
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_ P(@IX)P(X)
PX|®) = [ P(@X)P(X)dX" (©)

Due to model uncertainty and complex prior distributions,
the posterior distribution P (X|®) is typically non-Gaussian,
making the problem more difficult to solve. To address this
challenge, it is approximated by a Gaussian distribution. Here,
y € R denotes the hyperparameter vector controlling the
prior variance of each X;. By estimating an optimal y, the
approximated posterior P(X|®, y) remains computationally
efficient while closely matching the true posterior P (X|®). The
inference process proceeds as follows:

min || AX — ®|3 +log [A T+ AT A"| +2X'T'X, (7)
y=0,

where I' = diag[y] is a diagonal matrix representing the prior
covariance of the parameters. It is evident that directly estimat-
ing the model coefficients y and X from Eq. (7) is challenging.
To address this, we reformulate Eq. (7) as follows:

min g (X, ) = h(y), 8)

2
where  ¢(X,y)=[IAX - ®|F+AY, 2k and h(y)=
log [»1 + PT PT]. Since /(y) is convex and differentiable, its
gradient can be directly computed. The model parameter X,

and the hyperparameter Y441 are updated using the following
iterative strategy:

kol A . AT
[X/e+1,m+1]=argyglénxg()(, V=Vh (%) v. (9)

Based on the definition of 4(y), its negative gradient is as
follows:

—V, h(7) & = diag [AT()J + Ar,eAT)’IA] . (10)

Let o = diag[ AT (M1 + AFkAT)71 A] for notation simplic-
ity. Then, Eq. (9) becomes

[ Ker. e | =arg min 14X — @13
y=0,X

X2
+)»Z (y_{‘i‘(ak)ﬂ/j) , (11)
j J

where (az); denotes the jth diagonal element of a. Since
Eq. (11) is convex in X and y, global minimization can be
achieved by first solving for y with fixed X. The update of y is

expressed as

X2
Vet =argmin | AX — I3 +2 (—yf + (o), w) ,
> ~\ v,
J
(12)

where (Ve11); = X1/, /(at) ;. Substituting the updated Vsl
into Eq. (11) yields X, enabling iterative convergence to the
global optimum:

X1 = arg min || AX — D+ 202, /(@) | X, (13)
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Equation (13) can be further reduced to the classical weighted
L minimization problem as follows:

. 1
Xze+1=argm)}nEIIAX—<D|I§+MIGXII1, (14)

where G = diag[w,] is a diagonal matrix with adaptive weights
wy. These weights are dynamically adjusted through the
iterative update of hyperparameters to promote sparsity and
are computed as w; = +/(@), where o, is derived from the
parameter matrix at the kth iteration. Then a4 is calculated as

w1 = diag [AT()J + Ar,eHAT)”A] . (15

where Iy = diagl(Ve+ 1)1, Ves1)2, - s Vog1) ml-
The computation of Py is given as follows:

Pr1)i = |()?/e+l)i|/\/ (G (16)

Based on the above formulation, the weight matrix G is
calculated to adaptively control the regularization strength,
balancing data fidelity and prior constraints throughout the
iterative process.

2. Augmented Lagrangian Algorithm

In FMT reconstruction, the weighted L; minimization prob-
lem in Eq. (14) enforces sparsity to improve the stability of
solving the ill-posed inverse problem. It can be reformulated as
the following constrained optimization problem:

min  f1(v) + H(X) stv=GX, (17)
X, veRM

where fi(v) =A||v||; denotes the sparsity-promoting regu-
larization term, while f£(X) = %||AX — ®@||3 represents the
data fidelity term. The constraint in Eq. (17), |[v — GX||5 =0,
implies v = GX must be strictly satisfied at the optimal solu-
tion. The optimization problem can thus be reformulated as a
quadratically constrained optimization problem:

min fl(v)+f2(X)+ﬁ||GX—v||§s.t.v—GX:0,
X,veRM 2
(18)

where p denotes the Lagrange multiplier that enforces con-
straints, enabling Eq. (18) to better approximate the global
optimum of the weighted Z; minimization problem. Using the
AL optimization framework, Eq. (18) is reformulated as

Lo, X,u)= i)+ H(X)—u’ (GX —v)
+ S 116X Il (19)

where u is the dual variable used to impose a penalty on the con-
straint. Equation (19) is solved by alternately updating X, v, and
u while keeping the others fixed. This alternating optimization
strategy decomposes the problem into simpler sub-problems,
improving computational efficiency and convergence.

When v = GX, Eq. (19) reduces to the weighted Z; min-
imization problem. Given #, v, and G, X can be directly
obtained. The weighting matrix G is then updated using
Egs. (15) and (16), enabling the model to dynamically reflect
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the sparsity structure and data variation. The updated G is
expressed as

G = diag [M] . (20)

By substituting # with & in Eq. (18), the problem becomes
Lu. X, d) = i)+ ACO+ S 116X —v—dI}. @1)

The solution X is obtained by iteratively solving the following
convex sub-problems:

Xpp1 =argmin f(X) + £ |GX — v — i3
X

Vepr =argmin (V) + 51GXpp —v—dill3 . (22)
v

A1 = dp — <G)A(/e+1 - U/e+1)

In the Bayesian framework, the weighting matrix G is initial-
ized as a diagonal identity matrix and updated iteratively using
Eq. (20). For the first two sub-problems in Eq. (22), a gradient-
based method is employed. The first-order derivative of the
objective function is set to zero to derive the corresponding
equation:

X1 = (ATA+nGTG) ™ (AT® + uG” (v + dp))
Ve =sign (GXep1 — d) - max (|G Xir = dil = %, 0)
dp1 =dip — (GXpp1 — Vy1)
(23)
To enhance solution accuracy, the regularization parameter A
is adaptively updated based on the modeling error. The model-
ingerroratiteration # + 1 isdefined as

1 N 2
Efkarl:E H@—AX/hLIHz. (24)

The modeling error ratio is defined as By =
|Errgt1/Err, — 1] to quantify the relative change in error
between iterations. The ratio is utilized to adaptively adjust
the regularization parameter A, enhancing the reconstruction
performance. The update rule is expressed as

0.9 Ay
M1 =1 A

In conclusion, the main procedure of the ABAL algorithm is
outlined in Algorithm 1.

if Briy > 0.15

otherwise

(25)

3. EXPERIMENT DESIGN

In this section, numerical simulation and 7z vivo mouse exper-
iments with implanted light sources were conducted. Three
existing algorithms: FISTA-L;, IVTCG-L;, and OMP-L,
were used for comparison in terms of location accuracy, mor-
phological recovery, and robustness. All experiments and
procedures were conducted on a laptop equipped with an AMD
Ryzen 7 3700U processor (2.30 GHz), Radeon Vega Mobile
Graphics,and 8 GB of RAM.

A. Evaluation Index

Two evaluation metrics were adopted: localization error (LE)

[40] and the Dice coefficient (DICE) [41]. LE is defined as the
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Algorithm 1.  ABAL algorithm for FMT reconstruction Table 1. Optical Parameters of the Heterogeneous
Cylindrical Phantom at 650 nm

Input: the detected surface photon measurement ®eR”*1, the system : . .
matrix A€R”*”, the regularization parameters Ao. Tissue Pa(r)(mm™") ps (r) (mm ") g
Parameter initialization: the initial optimal approximation solution Muscle 0.0052 10.80 0.900
)A(O = 0, the maximum iteration number max [ ter = 100, the weight Bone 0.0060 60.09 0.900
matrix G = I, vy = dy = 0, ;£ = Ay, the current iteration £ = 0, Heart 0.0083 6.733 0.850
tol=1e — 6. Liver 0.0329 7.000 0.900
While || X* — X*~'||, > tol or k < maxIter do Lung 0.0133 19.70 0.900

1: Update X, v, and d:
Xpp1 = (A" A+ pGTG)H(AT® + uGT (i + )
Vet = sign(GXis = di) - max (|G Xt = dil = £,0)
A = dp — (GXp1 — Vpy1)
2: Update weighting matrix G:
st :dz’ag[AT()\]—l—AFH,AT)_IA]
3: Errpy = 31|® — AKXyl 2

didpr = { 09Ae i Bry >0.15
’ 1.1A,  otherwise

Sik=Fk+1

End while

Output: X

Euclidean distance between the center of the reconstructed
target (x,, J,, 2,) and the center of the true target (x,, y;, ).
A lower LE value indicates higher positioning accuracy of the
reconstructed result

LE=\/(v —5)?+ (= y)* + (5 —2)%. (26)
DICE is used to evaluate the spatial overlap between the

reconstructed region R, and the true region R,. Itis defined as
|R, N R,

DICE=2——.

(27)
| R |+ | R,

The DICE value ranges from 0 to 1. A higher DICE value
indicates greater similarity between the reconstructed region
and the true region, reflecting better morphological recovery.
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B. Numerical Simulation Experimental Setup

A heterogeneous cylindrical phantom with a radius of 10 mm
and a height of 30 mm was constructed to simulate biological
tissue. The model includes five major organs: muscle, bone,
heart, liver, and lungs. The optical parameters at a wavelength of
650 nm arelisted in Table 1 [42]. The model was discretized into
a tetrahedral mesh with 4626 nodes and 25,840 elements using
COMSOL Multiphysics 5.6 (COMSOL, Inc., Burlington,
Massachusetts) [43], as shown in Fig. 1(a). The single-source
target position is illustrated in Fig. 1(b). The forward simulation
result of the single-source experiment was obtained using the
Monte Carlo (MC) method implemented in the molecular
optical simulation environment (MOSE, Version 2.3) software
[44], as shown in Fig. 1(c).

Three experiments were designed: a single-source simulation
with a 1 mm radius source centered at (—5, —4, 11) mm; a
dual-source simulation with two identical sources at (—2, 2, 4)
mmand (—2,2,23) mm; and an anti-noise experiment in which
Gaussian noise with intensity levels ranging from 5% to 25%
(in 5% increments) was added to the single-source simulation to
evaluate the robustness of the proposed method.

C. Light Source Implantation Experimental Setup
To evaluate the feasibility of the ABAL method for i vivo FMT

reconstruction, a light source implantation experiment was
performed on a female BALB/c nude mouse (6-8 weeks old)
using a dual-modality FMT/CT imaging system, as shown in
Fig. 2. Specifically, a spherical fluorescent bead with a radius of
1 mm containing Cy5.5 solution (about 20 pl) was implanted

©

,“‘ Target

|

-10

s 0 N
J010 0y

Heterogeneous cylindrical phantom for numerical simulation studies. (a) The 3D view of the tetrahedral mesh. (b) The cylindrical

phantom with single source. (c) The forward simulation result of cylindrical phantom with single source.
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Fig.2. Theschematic diagram of the FMT/CT system.

into the abdominal cavity of the mouse at (14.5, 8, 16.6) mm
to simulate a fluorescence target. The bead was encapsulated
in a plastic material to enable precise localization by CT imag-
ing. The mouse was anesthetized with a 3% isoflurane-air
mixture and fixed vertically on a motorized rotation stage to
minimize motion artifacts. Six hours after implantation, a
750 nm continuous-wave laser was used for excitation. The
fluorescence signal was collected by a thermoelectrically cooled
electron multiplying charge coupled device (EMCCD) camera
(iXonEM +888, —80°C) with a 120° field of viewand a 1 s
exposure time. A 750 £ 10 nm bandpass filter was applied to
enhance contrast and suppress background noise. Subsequently,
CT scanning was performed to acquire anatomical data.

A landmark-based rigid registration method was employed to
align the fluorescence and CT images. The 2D irradiance distri-
bution was projected onto the 3D surface of the mouse model.
Major organs including muscle, heart, lungs, liver, stomach,
and kidneys were segmented using Amira 5.2 (Visage Imaging,
Australia). The mouse model was discretized into 6639 nodes
and 30,279 tetrahedral elements for 3D reconstruction.

4. RESULTS
A. Numerical Simulations Results
1. Single-Source Experiment

The reconstruction results of the single-source experiment are
shown in Fig. 3. The left subfigure displays the 3D reconstructed
results of FISTA-L, IVTCG-L, OMP-Lg, and ABAL, where
the reconstructed fluorescence source is depicted in red. The
right subfigure shows the cross-sectional view at the X = —5
mm plane, with the red area representing the reconstructed
source and the white circle denoting the actual location and
boundary of the true target. The quantitative evaluation results
of the four methods are summarized in Table 2. It can be seen
that the ABAL method achieves the lowest LE (0.258 mm)
and the highest DICE (0.783), indicating better positioning
accuracy and morphological recovery compared to the other
three methods.

2. Dual-Source Experiment

The reconstruction results of the dual-source experiment

are shown in Fig. 4. The left subfigure displays the 3D
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Fig.3. Reconstruction results of four methods for a single spherical target.
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Reconstruction results of four methods for dual source.

0

-10 s 0 5 10
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Table 2. Quantitative Results of Different Methods in
Single-Source Experiment

Table 3. Quantitative Results of Different Methods in
Dual-Source Experiment

Method Reconstructed Results (mm) LE (mm) DICE Method Reconstructed Results (mm) LE (mm) DICE
FISTA-L, (—4.260, —3.665, 11.167) 0.829 0.422 FISTA-L, (—2.071,2.065, 4.694) 0.701 0.336
IVICG-L, (—4.449, —3.698,10.909) 0.635 0.563 (—1.261,1.554,22.226) 1.159 0.381
OMP-L, (—4.667, —4.054,10.883) 0.358 0.554 IVTCG-L, (—1.690,1.799, 3.892) 0.385 0.757
ABAL (—4.902, —3.821,10.843) 0.258 0.783 (—2.432,2.658,23.517) 0.942 0.394
OMP-L, (—2.229,2.432,3.752) 0.548 0.657

reconstruction results of FISTA-L;, IVTCG-L;, OMP-L,, (=2.221,2.269, 22.520) 0.593  0.392
and ABAL. The right subfigure shows the cross-sectional view ABAL (—1.948,2.064,4.452) 0459 0.726
(—2.189,1.818,22.567) 0.506 0.792

at the X = —2.0 mm plane. In these images, the reconstructed
sources are shown in red, and the actual source positions are
marked with white circles, consistent with the single-source
experiment. The quantitative evaluation results of the four
methods are summarized in Table 3. It can be seen that the
ABAL method achieves the lowest LE (0.459 and 0.506 mm)
and the highest DICE (0.726 and 0.792), indicating better
positioning accuracy and morphological recovery compared to
the other methods.

3. Anti-Noise Experiment

The results of the anti-noise experiment are presented in
Fig. 5. Gaussian noise at levels of 5%, 10%, 15%, 20%, and
25% was added to the measurement data based on the single-
source experiment. It can be seen that at lower noise levels
(5% and 10%), LE increases slightly and DICE decreases
marginally. As the noise level rises to 15%-25%, LE exhibits

minor fluctuations and DICE gradually decreases but remains
above 0.65. These results demonstrate that the ABAL method
achieves robust reconstruction performance under varying noise
conditions.

B. Light Source Implantation Experiment Results

The results of the light source implantation experiment are
shown in Fig. 6, which presents the reconstruction results of
four methods: FISTA-L,, IVTCG-L;, OMP-L,, and ABAL.
For each method, three views are displayed: the 3D recon-
struction view, the axial view at plane Z = 16.6 mm, and the
sagittal view at plane X = 14.5 mm. In the sectional views,
the reconstructed fluorescence source is shown in red, while
the actual position and boundary of the implanted fluorescent
microsphere are indicated by a white circle. As observed from
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Fig.6. The reconstruction results of the light source implantation experiment.
both 3D and sectional views, the ABAL method demonstrates Table 4. Quantitative Results of Light Source
better spatial alignment with the true target compared to the Implantation Experiment
other methods. For quantitative analysis, the LE and DICE val-
R Method Reconstructed Results (mm) LE (mm) DICE
ues of the four methods are summarized in Table 4. The ABAL
method yields the lowest LE (0.208 mm) and the highest DICE FISTA-L, (14.723,7.413,16.593) 0.628  0.444
(0.800), indicating superior performance in both localization VTCG-L, (14.190,8.318, 16.684) 0.453  0.667
aceuracy and morphological recovery OMP-Z, (14.648, 8.031, 16.240) 0391  0.500
’ ABAL (14.504, 8.153, 16.743) 0.208 0.800

5. DISCUSSION AND CONCLUSION

EMT is a promising imaging modality with high sensitivity,
non-invasiveness, and quantitative capability, enabling precise

localization of fluorescence-labeled molecular probes iz vivo.
Nevertheless, the complex light scattering and absorption of
photons in biological tissues make the FMT reconstruction
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problem highly ill-posed, which poses significant challenges
in achieving accurate and robust reconstructions, especially in
multiple-source and complex morphologies.

To address these issues, this study proposed an adaptive
reconstruction algorithm named ABAL, which combines the
sparsity-promoting SBL with an efficient AL optimization
strategy. SBL adaptively adjusts regularization weights based
on reconstruction feedback, enhancing the flexibility and spar-
sity of the solution. Meanwhile, AL optimization decomposes
the original non-convex problem into convex sub-problems,
accelerating convergence and reducing computational complex-
ity. This integration improves both localization accuracy and
morphological recovery in FMT.

The performance of ABAL was systematically validated
through numerical simulations and light source implantation
experiments. Compared with conventional methods including
FISTA-L,, IVICG-L,, and OMP-L,, ABAL consistently
achieved better reconstruction results in terms of LE and DICE.
The light source implantation experiment further confirmed its
practical feasibility, with ABAL achieving an LE of 0.208 mm
and a DICE of 0.800, indicating high consistency between the
reconstructed and actual source distributions.

Although the proposed method has shown promising per-
formance, certain limitations remain. The reconstruction
quality may be affected by photon shot noise, finite-element
mesh resolution, and anatomical heterogeneity within com-
plex biological tissues. Future efforts may focus on enhancing
automation and computational efficiency through adaptive
mesh refinement, GPU-based parallel reconstruction, and the
integration of anatomical priors.

In summary, ABAL provides an effective solution for FMT
reconstruction by combining adaptive regularization and
efficient optimization. Its superior performance in terms of
localization accuracy, robustness, and morphological recovery
highlights its potential for preclinical imaging and biomedical
applications.
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