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Feature‑preserving simplification 
framework for 3D point cloud
Xueli Xu1,2,3,4, Kang Li1,3,4*, Yifei Ma1,3, Guohua Geng1,3, Jingyu Wang1, Mingquan Zhou1,3 & 
Xin Cao1,3*

To obtain a higher simplification rate while retaining geometric features, a simplification framework 
for the point cloud is proposed. Firstly, multi-angle images of the original point cloud are obtained 
with a virtual camera. Then, feature lines of each image are extracted by deep neural network. 
Furthermore, according to the proposed mapping relationship between the acquired 2D feature 
lines and original point cloud, feature points of the point cloud are extracted automatically. Finally, 
the simplified point cloud is obtained by fusing feature points and simplified non-feature points. 
The proposed simplification method is applied to four data sets and compared with the other six 
algorithms. The experimental results demonstrate that our proposed simplification method has the 
superiority in terms of both retaining geometric features and high simplification rate.

With the improvement of 3D data acquisition capabilities1–3, point cloud models are gaining increasing atten-
tion and being widely utilized in many fields, such as scene reconstruction4–9, museum display10–13, and virtual 
projection14–18. High precision of the 3D scanning technology can provide abundant details of the point clouds, 
but it will simultaneously generate a mass of redundant data, which seriously reduces the efficiency of data pro-
cessing, transmission and display, thereby affecting subsequent applications.

The previous research on point cloud simplification methods can be generally classified into two kinds. One is 
mesh-based and the other is scattered-point-based. The mesh-based methods convert the point cloud to the mesh 
model with polygons, and then reduce the points based on specific rules for simplification. Hamann19 developed 
an algorithm to iteratively delete triangles according to the triangulation, and it had a good effect on the model 
surface. Lounsbery et al.20 simplified the connected triangular mesh through wavelet representation. Weir et al.21 
proposed a simplification algorithm based on the bounding box. The algorithm constructed a bounding box that 
surrounded all the points of the 3D model, and the bounding box was divided into several small cubes evenly, 
and the closest point from the center of the small cube replaced all other points. The implement is simple and 
easy, however, different point clouds need different division scales, and the simplification accuracy cannot be 
guaranteed. Kalvin and Taylor22 proposed a bounded approximation method, which placed the vertices of the 
polyhedral mesh in an error region, and this method improved the practical feasibility. Gong et al.23 combined 
voxel grid with the bounding box, and confirmed the center of each small grid by calculating the distance of k 
neighborhood and the normal for simplification. This method is apt to discard feature points in the area where 
the curvature changes. The main disadvantages of these mesh-based methods are that they are seriously complex 
and building polygonal structural meshes require a great quantity of extra information and memory space. In 
contrast, the scattered-point-based methods can consume the point cloud directly. These methods can mainly 
be summarized into two categories. One is based on the global ideology for simplification, and the other is based 
on the partition strategy, extracting the feature points before simplification. Song and Feng24 reduced the points 
globally according to the specified simplification ratio. Shi et al.25 proposed a simplification method based on 
k-means clustering. Xiao and Huang26 proposed a kd-tree-based method that uniformly simplified the point 
cloud. Although the simplification efficiency is high, the threshold needs to be adjusted according to the specific 
model. Zin et al.27 presented a simplification method based on the unit normal vector. The feature points were 
extracted by constructing boundary spheres to search for k nearest neighbors and measuring the curvature of 
each point. Wei28 established the tangent plane based on the least squares fitting method29, analyzed the geo-
metric distribution characteristics of the points on the projection surface according to the relationship between 
the points, and detected the edge feature points. Zanger et al.30 presented a multi-level method for preserving 
geometric features of different scales. Han et al.31 proposed an edge-preserving algorithm. Elkhrachy32 segmented 
the edges of the point cloud by the normal vector. This method detected the adjacent normals according to the 
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threshold to determine the edge points. Chen and Sun33 proposed a method that divided the original point cloud 
into spaces, constructed the k neighborhood of the point, set parameters of features for analysis, and combined 
the local average distance with the contours of the edge points for classification. The prime shortage of the 
scattered-point-based methods is that they neglect the intrinsic correlation between points of the point cloud 
owing to their lack of topological structures, resulting in the loss of some significant geometric characteristics.

Here, a novel simplification framework for the point cloud is presented. It consists of two parts, the feature 
points and the simplified non-feature points. Feature points, which are vital for representing the geometric fea-
tures of the point cloud, are extracted through three steps. The first is obtaining multi-angle images of the point 
cloud; the second is extracting feature lines of each image; the third is obtaining the feature points from the 
original point cloud based on the extracted feature lines. The simplified non-feature points, which are utilized 
for filling the flat areas of the 3D model to maintain its integrity, are extracted from the subset of the point cloud 
except for feature points. The flowchart of the proposed framework is shown in Fig. 1.

Experimental results demonstrate that the proposed framework can achieve a simplified point cloud with 
high quality. The main contributions of this work can be summarized as:

(1)	 A feature-line based framework is proposed for point cloud simplification. Inspired by the success of deep 
learning in extracting critical image features, a method that transforms 3D point cloud to 2D images is 
proposed to better learn the characteristics of the point cloud.

(2)	 The mapping relationship between the images and the point cloud is presented. According to the corre-
spondence between the point cloud and images, one pixel in the image is related to a group of 3D points 
(one-to-k), and a novel method is proposed to receive the final correspondence (one-to-one).

Figure 1.   Flowchart of the proposed simplification framework.
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(3)	 Large numbers of experiments demonstrate that the framework proposed in this paper has obvious advan-
tages and achieves higher simplification rate and better simplification effect simultaneously.

Experiments and results
Experiments settings.  To evaluate the performance of the proposed framework, the simplified results of 
our method are compared with the results of the other six simplified methods: DFPSA34, Gaussian spheres35, 
octree coding36, k-means clustering37, uniform simplification38, and geometric algebra39. The experiment uses 
two platforms. One is windows10: CPU is Intel(R) Xeon(R) E5-2650 v3 @2.30 GHz, 32 GB memory, mainly for 
running Matlab code and processing related model software; the other is Ubuntu 18.04: CPU is Intel(R) Core 
i7-9700 @3.00 GHz, 64 GB memory, graphics card is NVIDIA GeForce RTX 2080Ti, mainly used for debugging 
and running related deep learning code with python.

The choice of the axis and angle for capturing 2D images.  In order to analyze the influence of the 
coordinate axis, the experiment fixes the rotation angle at 60° to extract the feature points of the X-axis, X/Y-axis, 
and X/Y/Z-axis respectively. The results of different feature points are shown in Table 1:

Figures 2, 3, 4 and 5 illustrates the point cloud with different numbers of the feature points extracted with dif-
ferent axes for Bunny, Elephant, Gargo50k and Horse. For example, in Fig. 2, X_1657 represents that the original 
point cloud model is rotated around the X-axis to capture the corresponding 2D images, and 1657 is the feature 
points extracted from the original point cloud based on the mapping relationship between 2D images to the 3D 
model. X/Y_3126 shows that the 3D model is rotated around the X-axis and Y-axis to capture the 2D images, 

Table 1.   Results of different feature points under X-axis, X/Y-axis, and X/Y/Z-axis with 60°.

X-axis X/Y-axis X/Y/Z-axis Original model

Bunny 1657 3126 3982 35,944

Elephant 1162 2423 3347 24,950

Gargo50k 958 1580 2166 25,036

Horse 1883 3401 4324 48,447

Figure 2.   The point cloud with different numbers of feature points extracted with different axes for Bunny.

Figure 3.   The point cloud with different numbers of feature points extracted with different axes for Elephant.
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and the number 3126 is similar to the number in X_1657. The meaning of X/Y/Z_3982 is similar. The labels in 
other pictures are with same meaning.

From Table 1 and Figs. 2, 3, 4 and 5, it can be known that with the increase of information provided by the 
X-axis, X/Y-axis, and X/Y/Z-axis, the number of feature points increases significantly, and the corresponding 
information increments provided by the X-axis and X/Y-axis are obviously more than that of the X/Y/Z-axis. It is 
obvious that Stanford’s model is regular based on the X/Y/Z-axis. The information of most points is concentrated 
on the X-axis and Y-axis, and the information on the Z-axis is naturally relatively small. However, as most of the 
models do not satisfy the standard X/Y-axis coordinates, the information on the Z-axis is also very important, 
and the Z-axis information should be retained. Moreover, under the unified mode of X/Y/Z-axis, not only the 
integrity of the 3D point cloud feature information is guaranteed, but also the irregular model does not need to 
be initialized, eliminating some troublesome preprocessing processes.

To analyze the impact of different rotation angles, the experiment fixed the rotation axis with the X/Y/Z-axis 
to extract the feature points of the angles 90°, 60°, 45°and 30° respectively. The results of different feature points 
are shown in Table 2:

Figures 6, 7, 8 and 9 illustrates the point cloud with different numbers of the feature points extracted with 
different rotation angles for Bunny, Elephant, Gargo50k and Horse. For example, in Fig. 6, 90°_2123 represents 
that the original point cloud model is rotated with angle 90° to capture the corresponding 2D images, and 2123 
is the feature points extracted from the original point cloud based on the mapping relationship between the 
images to the point cloud. The meanings of other labels in figures are similar.

Table 2 shows that as the angle gradually increases, the information of the corresponding captured image 
is less, and the feature points extracted from the original point cloud are also fewer. Therefore, the smaller the 
angle is, the more the feature points are, and the higher the fineness of the image would be. However, with the 

Figure 4.   The point cloud with different numbers of feature points extracted with different axes for Gargo50k.

Figure 5.   The point cloud with different numbers of feature points extracted with different axes for Horse.

Table 2.   Results of different feature points under rotation angles 90°, 60°s, 45° and 30° with X/Y/Z-axis.

90° 60° 45° 30° Original model

Bunny 2123 3982 4658 6641 35,944

Elephant 1870 3347 4554 6285 24,950

Gargo50k 1505 2166 2719 3809 25,036

Horse 4620 6726 9402 13,211 48,447
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Figure 6.   The point cloud with different numbers of feature points extracted with different angles for Bunny.

Figure 7.   The point cloud with different numbers of feature points extracted with angles for Elephant.

Figure 8.   The point cloud with different numbers of feature points extracted with different angles for Gargo50k.

Figure 9.   The point cloud with different numbers of feature points extracted with different angles for Horse.
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number of images increasing, the information redundancy gets worse, resulting in time-consuming and complex 
calculation to achieve the goals. Therefore, it is essential to balance the rotation angles and the number of images.

From the Figs. 6, 7, 8 and 9, it can be found that the result with rotation angle 60° not only satisfies the geomet-
ric characteristics retaining of the point cloud compared to the results of 90°, but also reduces time consumption 
compared to the results of 45° and 30°. Therefore, X/Y/Z-axis and 60° are to be the best choice of the axis and 
angle for capturing 2D images.

The choice of parameters for extracting feature points of the 3D point cloud.  Based on the pre-
dicted feature images, there are three parameters α , β and γ together constraining the feature point extraction 
effect. α controls the threshold of the predicted grayscale feature image to decide whether each pixel belongs to 
the feature line. β controls the width of the feature line. γ controls the spatial size of each feature pixel in the 2D 
image corresponding to the 3D model. The influence of different parameters for extracting feature points of the 
3D point cloud (bunny for instance) is shown in Table 3:

Table 3 shows that different parameters have different effects on extracting the feature points. The change 
of α has little effect on the number of feature points, while β and γ bring great difference. Figure 10 shows the 
feature extraction results of bunny with approximate feature points.

It can be seen that the point clouds are too sparse in Fig. 10e–g, and the contours are not complete enough to 
cover all feature points. However, (a) has too many points and does not meet the requirements of simplification. 
The ears in (c) and (d) are not perfect, and there are holes in both. In contrast, (b) shows best among them, not 
only retaining the contour points, but also showing more details such as ears, neck and bottom. Therefore, we 
select the parameters with the number of feature points around 4000. There are three groups of such parameters 
in Table 3, α = 0.2,β = 2, γ = 0.33 ; α = 0.23,β = 2, γ = 0.33 and α = 0.25,β = 2, γ = 0.33 . A series of experi-
ments on other models with these parameters are carried out and it indicates that the results are most stable with 
parameters α = 0.23,β = 2, and γ = 0.33 . Therefore, we adopt α = 0.23,β = 2, and γ = 0.33 as the optimal 
ones. The feature point extraction results obtained with these optimal parameters are shown in Fig. 11.

Table 3.   The number of feature points with different parameters α, β, γ.

α β γ Feature points α β γ Feature points α β γ Feature points Approximation

0.2 2 0.5 6925 0.23 2 0.5 7097 0.25 2 0.5 7270 7000

0.2 2 0.33 3885 0.23 2 0.33 3982 0.25 2 0.33 4088 4000

0.2 2 0.25 2408 0.23 2 0.25 2471 0.25 2 0.25 2531 2500

0.2 2 0.2 1659 0.23 2 0.2 1705 0.25 2 0.2 1748 1700

0.2 3 0.5 2859 0.23 3 0.5 3064 0.25 3 0.5 3289 3000

0.2 3 0.33 1462 0.23 3 0.33 1565 0.25 3 0.33 1687 1700

0.2 3 0.25 882 0.23 3 0.25 944 0.25 3 0.25 1007 1000

0.2 3 0.2 593 0.23 3 0.2 635 0.25 3 0.2 680 600

Figure 10.   The feature extraction results with different parameters.
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Results
To show the simplification results more intuitively, the simplified point cloud is reconstructed to the 3D model. 
To further verify the superiority, our method is compared with other existed ones.

Figure 12 shows the reconstruction results of the simplified bunny. (a) Original data, total number of the 
points = 35,947, (b) Our method, total number of the points = 7000, (c) The simplified method based on DFPSA, 
total number of the points = 6730, (d) The simplified method based on Gaussian spheres, total number of the 
points = 8491, (e) The simplified method based on octree coding, total number of the points = 3005, (f) The 
k-means clustering simplification method, total number of the points = 17,385, (g) The uniform simplification 
method, total number of the points = 4539, (h) The geometric algebra method, total number of the points = 5434.

Figure 12 reveals that the simplification methods based on Gaussian spheres, octree coding, k-means, uniform 
simplification, and geometric algebra result in serious holes at the end of bunny’s ears. For DFPSA, a pair of ears 
looks complete and has the same outline as the original model, but there are still some holes on the corners. Our 
method looks smoother and the total number of simplified points is similar with that of DFPSA.

Figure 13 shows the reconstruction results of simplified elephant. (a) Original data, total number of the 
points = 24,955, (b) Our method, total number of the points = 7485, (c) The simplified method based on DFPSA, 
total number of the points = 8483, (d) The simplified method based on Gaussian spheres, total number of the 
points = 8591, (e) The simplified method based on octree coding, total number of the points = 2696, (f) The 

Figure 11.   Feature points extraction results. The number of feature points of bunny = 3982, elephant = 3347, 
garg50K = 2166, and horse = 4324.

Figure 12.   Different simplified results of Bubby. (a) Original data. (b) Our method. (c) The simplified method 
based on DFPSA. (d) The simplified method based on Gaussian spheres. (e) The simplified method based on 
octree coding. (f) The k-means clustering simplification method. (g) The uniform simplification method. (h) 
The geometric algebra method.
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k-means clustering simplification method, total number of the points = 15,833, (g) The uniform simplification 
method, total number of the points = 2851, (h) The geometric algebra method, total number of the points = 3887.

Figure 13 illustrates that the simplification method based on octree coding and the uniform simplification 
method have seriously poor results in reconstruction. Not only are there large areas of holes, but also many other 
details lose. Except for the result of our method in (b), the other four methods have some small holes in nose, 
body or other parts. The reconstruction result generated by our method is nearly consistent with the original 
point cloud model and has fewer number of simplified points.

Due to the obvious asymmetry of the gargo50k, the front and the back side are both used to reconstruct 3D 
models for comparison explanation. The first row shows the front reconstruction results and the second row 
shows the back reconstruction results in Figs. 14 and 15.

The reconstruction results of gargo50k with different simplified methods are shown in Figs. 14 and 15. 
(a) Original data, total number of the points = 25,038, (b) Our method, total number of the points = 10,000, 
(c) The simplified method based on DFPSA, total number of the points = 12,604, (d) The simplified method 
based on Gaussian spheres, total number of the points = 16,138, (e) The simplified method based on octree cod-
ing, total number of the points = 2409, (f) The k-means clustering simplification method, total number of the 
points = 23,146, (g) The uniform simplification method, total number of the points = 3905, (h) The geometric 
algebra method, total number of the points = 3841.

The reconstruction results are not promising based on the octree coding and the uniform simplification 
method. There are large holes at the wing of gargo50k model. The simplified method based on k-means cluster-
ing has bad simplification rate, and the base at the back side still has holes. The methods based on the Gaussian 
spheres and geometric algebra also lead to a lot of holes, and there are vacancies on the front and back. Except for 
some small blanks, the DFPSA-based method has almost the same effect as our method proposed in this work. 
The overall analysis shows that the result generated by our method is superior to others.

Figure 16 shows the reconstruction results of horse. (a) Original data, total number of the points = 48,485, 
(b) Our method, total number of the points = 7000, (c) The simplified method based on DFPSA, total number 
of the points = 8107, (d) The simplified method based on Gaussian spheres, total number of the points = 10,058, 
(e) The simplified method based on octree coding, total number of the points = 2648, (f) The k-means clustering 
simplification method, total number of the points = 19,271, (g) The uniform simplification method, total number 
of the points = 4032, (h) The geometric algebra method, total number of the points = 7194.

Figure 13.   Different simplified results of Elephant. (a) Original data. (b) Our method. (c) The simplified 
method based on DFPSA. (d) The simplified method based on Gaussian spheres. (e) The simplified method 
based on octree coding. (f) The k-means clustering simplification method. (g) The uniform simplification 
method. (h) The geometric algebra method.
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Figure 14.   One of the reconstruction results of Gargo50k with different simplified methods. (a) Original data. 
(b) Our method. (c) The simplified method based on DFPSA. (d) The simplified method based on Gaussian 
spheres.

Figure 15.   The other reconstruction results of Gargo50k with different simplified methods. (e) The 
simplified method based on octree coding. (f) The k-means clustering simplification method. (g) The uniform 
simplification method. (h) The geometric algebra method.
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In Fig. 16, the octree coding method and the uniform simplification method have high simplification rate, 
but many details of legs are lost, not only large holes, even faults. The method based on k-means clustering shows 
obvious details losing on the back of horse. The simplification results based on Gaussian spheres, DFPSA, and 
geometric algebra are almost the same as our method, and they are very close to the result of original data, but 
the total number of simplified point cloud by our method is fewer.

From the results of different simplification methods, we find that the simplification method based on octree 
coding and the uniform simplification method only retain the limited contours because of fewest points extracted, 
and there are holes in the model, and the simplification results are not good; the method based on geometric 
algebra has smaller number of simplified points, but in addition to the horse model, other models all show detail 
features losing. The k-means clustering method retains the detailed features to a large extent, but the simplifica-
tion rate is lower, and some non-feature points also have holes, which makes the clustering method not ideal. 
Compared to the Gaussian sphere method and the DFPSA method, they maintain the surface feature contours, 
but our method has a higher simplification rate and has a better fitting effect according to the reconstruction 
results.

Conclusion
Point cloud simplification plays a very important role in 3D data processing. One of the most important prin-
ciples of point cloud simplification is to reduce the number of points as much as possible without affecting the 
reconstruction effect obviously. In this paper, a novel feature-preserving point cloud simplification framework is 
developed. It takes the advantages of deep learning in images and retains the geometric features and the potential 
surface of the point cloud, with higher reconstruction quality and fewer point numbers. The experimental results 
demonstrate that the proposed method is more universal to different models than other algorithms, and can 
better express the geometric appearance and detailed features of the 3D model. On the premise of the integrity 
of the model, our method can reach the highest simplification rate of the same point cloud. As for future work, 
the self-adaptive parameters should be developed. We hope this work can provide a useful data preprocessing 
tool for 3D model digitization.

Methods
Acquisition of the multi‑angle 2D images.  2D images are the projection of the 3D point cloud on a 
certain cross-section. To accurately describe the shape of the point cloud model with 2D images, the model 
needs to be rotated with multi-angles to obtain different images. Here, by writing a script file for the point cloud 
processing software (Geomagic Wrap), multi-angle 2D images are obtained by performing single axis variation 
of the model. It should be noted that the model is rotated around X-axis, Y-axis, and Z-axis respectively.

As shown in Fig. 17, different axes provide different positions, and different rotation angles of the same axis 
also bring differences in feature points. The selecting of the rotating axis and the angle will be discussed later.

Figure 16.   Different simplified results of Horse. (a) Original data. (b) Our method. (c) The simplified method 
based on DFPSA. (d) The simplified method based on Gaussian spheres. (e) The simplified method based on 
octree coding. (f) The k-means clustering simplification method. (g) The uniform simplification method. (h) 
The geometric algebra method.
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Extraction of the surface feature lines.  The neural network extracts feature lines contains five groups 
of convolutional layers, and the results of each side output layer are used for feature expression. An overview of 
the network is presented in Fig. 18. The network is mainly divided into two parts: one for feature extracting and 
the other for feature synthesis.

The feature extracting module is modified from the VGG-1640. The training dataset S is 
S = {(Xn,Yn), n = 1, . . . , N},Xn = {Xi , i = 1, . . . , N} represents the input images of the network, 
Yn = {Yi , i = 1, . . . , N} represents the binary labels of Xn , Yn ∈ {0 , 1} , and N  refers to the number of input 
images. The dataset is fed into the network with 13 convolutional layers, 3 fully connected layers, and 5 pooling 
layers. The network has five stages of the side output for feature extracting and is deep supervised for each stage 
and the final fusion.

The feature synthesis module is to fuse feature maps of each stage. As shown in Fig. 18, the framework takes 
the image of Stanford’s bunny as input with the size of 224× 224 , and the size cuts in half every time when 
the image passes through each stage of convolutional layers, from 224× 224 to 112× 112 , from 112× 112 to 
56× 56 , and drops until 14× 14 . The intermediate results are simultaneously extracted and saved with the size 
of 112× 112 , 56× 56 , 28× 28 , 14× 14 . These results are respectively enlarged at 2, 4, 8, and 16 times by decon-
volution operation to make them consistent with the size of the input image. Finally, they are fused to output 
the grayscale feature image.

Each loss function used in this work is based on cross-entropy loss41 which can directly and clearly describe 
the relationship between the ground truth and prediction. The total loss is calculated by Eq. (1):

Ltotal describes the total loss of the network, Lstage(W ,w) is the sum of each branch loss, and Lfuse(W , h) is 
the fusion loss of the mentioned branches. W denotes the collection of all network layer parameters. 
w =

(

w(1), . . . ,w(M)
)

 denotes the weight of each stage, and M is the number of stages, here is 5. h = (h1, . . . , hM) 
is the fusion weight.

αk in Eq. (2) is the weight parameter, and l(k)stage denotes the loss function for the side output of stage k . The 
network is deep supervised and image-to-image training. All losses are trained equally and simultaneously. 
Ltotal is minimized via standard (back-propagation) stochastic gradient descent to achieve the promising effect.

Extraction of the feature points.  According to the ideology of normalization, a mapping relationship is 
established between the feature lines of the 2D image and the feature points of 3D point cloud as follows.

(1)Ltotal = Lstage(W ,w)+ Lfuse(W , h),

(2)Lstage(W ,w) =

K
∑

k=1

αkl
(k)
stage

(

W ,w(k)
)

,

Figure 17.   Schematic diagram of bunny model rotating around X/Y/Z axis.
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x3 and y3 represent the values of X-axis and Y-axis coordinate of the 3D point cloud. x′3 and y′3 are the 3D coordi-
nates of the candidate feature point. x2 and y2 represent the values of the X-axis and Y-axis coordinate of the 2D 
image. max (x3) and max

(

y3
)

 refer to the maximum values of the X-axis and Y-axis coordinate of the 3D point 
cloud, min(x3) and min

(

y3
)

 are the corresponding minimum values. m and n represent the length and width of 
the image. Based on mapping relationship in Eq. (3) and Eq. (4), the coordinates of X-axis and Y-axis for the 
candidate feature point can be roughly conformed. However, the coordinate of Z-axis cannot be determined 
directly. Here, we utilize (x′3, y

′
3) as the centroid to expand the filtering range of the surrounding point cloud. 

Therefore, the Eqs.3 and 4 can be updated to Eqs.5 and6. In this way, a point set P contained a series of candidate 
points is obtained from the point cloud.

γ is the expansion coefficient, which is used to control the number of candidate points. To characterize the point 
cloud as much as possible, the feature image obtained from the aforementioned network needs to be processed 
more finely. There are two main parameters α and β to control the threshold of grayscale image and the boldness 
of the feature line. Three parameters α , β and γ together control the quality of feature point acquisition.

In the point cloud, the same coordinates of X-axis and Y-axis often have multiple values of Z-axis. When 
selecting key points, all points in candidate point set P are calculated to obtain the average z . As the 2D images are 
captured from the front side, that is, they are always at the positive direction of the Z-axis, and the corresponding 
Z-axis coordinate must be greater than the average z . Based on this, we filter out the points with Z-axis coor-
dinate less than the average z in point set P. In the remaining candidate point set P’, the point with the smallest 
variance is the corresponding feature point. Finally, the whole feature points of the point cloud can be extracted.

(3)x′3 =
max (x3)−min(x3)

m
∗ x2 +min(x3)

(4)y′3 =
max

(

y3
)

−min
(

y3
)

n
∗ y2 +min

(

y3
)

(5)x ∈

[

x′3 − γ
max (x3)−min (x3)

m
, x′3 + γ

max (x3)−min(x3)

m

]

(6)y ∈

[

y′3 − γ
max

(

y3
)

−min
(

y3
)

n
, y′3 + γ

max
(

y3
)

−min
(

y3
)

n

]

Figure 18.   Feature line extraction neural network.
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Non‑feature point simplification.  As the non-feature points have a small amount of point cloud model 
information, they can be simplified to a great extent. The simplification method should be convenient and with 
low time complexity. For this purpose, an octree coding method is used for simplifying the non-feature points. 
The whole flowchart of the non-feature point simplification is shown in Fig. 19.

The octree coding construction consists of three steps. (1) Initialization: the maximum recursion depth, 
the maximum scale of the non-feature points, and the first cube. (2) The elements (here are points) are put into 
the cube without child node. (3) If the maximum depth is not reached, the octree coding subdivides the cube 
continuously, until the number of elements allocated to the child cube is not zero and is the same as the parent 

Figure 19.   The flowchart of the non-feature point simplification.
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cube. The octree coding method is convenient and error-free when searching for voxels and corresponding points 
in voxels, and easy to balance the display accuracy and speed because of its orderly and layered characteristic.

As the non-feature points in the same leaf node are spatially close, we pay more attention to the relationship 
between the point and the whole leaf node. The average normal vector and the average curvature are used to 
describe the whole leaf node. In each octree leaf node, for all points located in it, the average normal vector navg 
and the average curvature cavg of these points are calculated. Then, the difference between the normal vector n of 
each point and navg and the difference between the curvature c of each point and cavg are calculated respectively. 
Moreover, the difference of normal vector and the curvature are added up. Finally, the point with the smallest 
sum value is selected to replace the other points in the leaf node.

Finally, the simplified point cloud can be obtained by fusing the feature points and non-feature points.

Data availability
The datasets analyzed during the current study available from the corresponding author on reasonable request.
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