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Abstract

Objective. To address the quality and accuracy issues in the distribution of nanophosphors (NPs)
using Cone-beam x-ray luminescence computed tomography (CB-XLCT) by proposing a novel
reconstruction strategy. Approach. This paper introduces a sparse Bayesian learning reconstruction
method termed SBL-LCGL, which is grounded in the Lipschitz continuous gradient condition and
the Laplace prior to overcome the ill-posed inverse problem inherent in CB-XLCT. Main results.
The SBL-LCGL method has demonstrated its effectiveness in capturing the sparse features of NPs
and mitigating the computational complexity associated with matrix inversion. Both numerical
simulation and in vivo experiments confirm that the method yields satisfactory imaging results
regarding the position and shape of the targets. Significance. The advancements presented in this
work are expected to enhance the clinical applicability of CB-XLCT, contributing to its broader
adoption in medical imaging and diagnostics.

1. Introduction

X-ray luminescence computed tomography (XLCT) is one hybrid imaging modality, which combines the
high molecular sensitivity of optical imaging and the excellent spatial resolution of x-ray imaging (Zhang

et al 2019). As a branch of optical molecular imaging technology, XLCT has received attention in the field of
biomedical research because it can provide qualitative and quantitative information at the cellular and
molecular levels (Qin et al 2011). In XLCT, nanophosphors (NPs) within a biological organism are irradiated
by externally applied x-ray beams, leading to the generation of near-infrared (NIR) light. This light can
propagate through the tissue and be measured by the charge coupled device (CCD) (Chen et al 2023). XLCT
offers superior image quality over x-ray imaging modalities and has the ability to provide structural
information inside the object (Ahmad et al 2014). Compared with other optical molecular tomography
modalities, XLCT has its unique advantages. For example, compared with fluorescence molecular
tomography, since the fluorescent probe can only be excited and luminescent by x-rays, XLCT can effectively
reduce the interference of autofluorescence (Mishra and Kappiyoor 2014); compared with bioluminescence
tomography, XLCT effectively solves the limitation of low photon count by adopting a selective excitation
scheme under the standard radiation dose (Pratx et al 2010). So far, the XLCT technology has been
successfully applied in tumor imaging and treatment: Oh ef al used XLCT for angiography and bimodal
image-guided lymph node imaging (2011). Kinsella et al applied XLCT to breast cancer tumor imaging
(2011). These studies have effectively promoted the clinical transformation of XLCT. XLCT system has three
main categories: pencil-beam XLCT, cone-beam XLCT, and narrow-beam XLCT (Chen et al 2015).
Compared with the others, Cone-beam x-ray luminescence computed tomography (CB-XLCT) utilizes the
cone-beam geometric shape to cover the entire imaging object. This simplifies the scanning process and is
more conducive to rapid biomedical imaging (Liu et al 2018).

© 2024 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, Al training, and similar technologies, are
reserved.
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Accurate reconstruction in XLCT is contingent upon two pivotal factors: a precise photon transmission
model and an adept reconstruction algorithm. Given the inherent low absorption and high scattering of
light, XLCT is fraught with the challenges of a severely ill-posed inverse problem, which can significantly
degrade reconstruction quality (Liu et al 2021). To address this, various strategies have been explored to
refine the reconstruction process. Some researchers have integrated structural information and PSR into
their reconstruction algorithms to improve the specificity and accuracy of the reconstruction. This approach
leverages prior knowledge about the sample’s structure, which can guide the reconstruction process and
reduce ambiguity (Hu et al 2012, Ding et al 2014, Guo et al 2018). Regularization has emerged as a dominant
strategy to mitigate the ill-posedness of XLCT. Guo et al proposed a non-convex sparse regularization
algorithm, which enhances the algorithm’s capacity to resolve multiple sources by specifically targeting sparse
solutions (2017). In addition, the L;-norm, acting as a convex surrogate for the Ly-norm, is instrumental in
promoting sparsity in the solution space (Zhang ef al 2011). Based on the L;-norm, Gao et al introduced the
restarted primal-dual Newton conjugate gradient method, which employs a restarted strategy to counteract
the ill-posedness of CB-XLCT more effectively (2020). In an effort to harness the strengths of different
regularization techniques, hybrid methods have been developed. Liu et al combined L, and total-variation
regularization, which not only improves image resolution but also introduces a measure of smoothness to the
reconstruction, thereby enhancing the visual quality of the images (Liu et al 2019). Zhao et al combined L,
and L, regularization in proposing the Elastic Net-L, L, method to enhance the sparsity and suppress the
smoothness of specific solutions (2021). While regularization methods have made strides in enhancing
reconstruction quality, they often grapple with the challenge of parameter determination. Improper
parameter selection can severely impact the fidelity of the reconstruction results. The dictionary
learning-based algorithms are well-suited for tackling inverse problem, however, they face a significant
challenge in the substantial computational resources they require. Moreover, the optimization and tuning of
hyperparameters within these algorithms are notably intricate processes, often demanding a high level of
expertise and extensive computational effort.

Different from the above methods, some algorithms based on the Bayesian framework are less difficult in
parameter selection and are well suited to solving inverse problems. The Bayesian method based on the
Gaussian Markov random field achieves reconstruction with high image contrast and low localization error
(Zhang et al 2018). Yin et al gave a Gaussian prior information on the distribution of light sources to improve
the quality of reconstruction (2021). In comparison, the Laplace prior is more suitable for the sparsity of the
NPs distribution (Zhang et al 2017). Wu et al used the weighted Laplace prior for lung respiratory monitoring
with Electrical Impedance Tomography (2023). The Laplace prior and some deformations are widely used to
solve sparse data (Bai and Sun 2023). Bayesian learning algorithms, on the other hand, have demonstrated an
aptitude for integrating sparsity more effectively, offering a promising avenue for future research.

In the sparse Bayesian learning (SBL) framework, the major challenge lies in the excessively high
computational complexity (Fang et al 2016). To overcome the drawback, the E-step in SBL is replaced by
Vector Approximate Message Passing with the variance auto-tuning, thus reducing the number of iterations
(Ruan et al 2023). Under certain conditions, the likelihood function is replaced by a surrogate function to
avoid the matrix inversion process (Zhang and Dai 2022). The space alternating approach can also be
employed to reduce computational complexity (Bai et al 2022).

In this paper, we introduce an innovative SBL approach for the reconstruction of CB-XLCT, known as
SBL-LCGL, which is designed to tackle the issue of high computational complexity while achieving
satisfactory reconstruction quality. Our method breaks through the limitations of traditional approaches by
incorporating a Laplace prior to capture the sparse distribution characteristic of the light source relative to
the entire imaging object. Although the Laplace distribution is not a conjugate prior to the likelihood
function’s prior information, typically assumed to be Gaussian distribution (Glaubitz 2023), we have
ingeniously addressed this non-conjugate issue, significantly reducing the computational burden. Within the
SBL framework, the primary challenge we faced was the high computational complexity due to matrix
inversion operations. By replacing the quadratic term in the light source distribution likelihood function, we
have not only demonstrated a reduction in complexity but also, through the introduction of a Taylor series
expansion, transformed the originally non-convex problem into a convex optimization problem, which
simplifies the process of solving for hyperparameters (Sun et al 2017). Ultimately, the experimental results
have proven the significant effectiveness of our proposed method in improving the quality of reconstruction,
as well as highlighting its superior performance in practical applications.

The remaining structure of the article is described as follows: In section 2, we introduced the photon
propagation model of CB-XLCT and the SBL-LCGL method. In section 3, numerical simulations and in vivo
experiment were conducted to demonstrate the effectiveness of the proposed approach. Section 4 provides a
discussion and summary of this paper.



10P Publishing

Phys. Med. Biol. 69 (2024) 175020 Y Wang et al

2. Methods

During the CB-XLCT imaging process, x-ray emitted from cone-beam incoherent x-ray sources traverse
through the tissues of biological organisms, and the NPs distributed in the imaging object can emit visible or
NIR light. The x-ray intensity at position r X (r) and the energy density of these lights S () can be calculated
using the following formula (Liu et al 2015):

r

X(r)=X(ro) exp —/,ut(T)dT

o

§(r) = pX(r) nc(r) (1)

where X (o) is the x-ray intensity at the initial position ry, p;(7) denotes the x-ray attenuation coefficient at
position 7. p represents the light yield of nanoparticles, and n. (r) is the NPs concentration at position r.
Typically, the Radiative Transfer Equation (RTE) model (Zhang ef al 2011) is used to characterize the
propagation of light. However, due to the high complexity in solving the RTE model and the characteristics
of high light scattering and low absorption in optical processes, the following steady-state diffusion equation
model with Robin-type boundary conditions is adopted for modeling (Klose et al 2010).

=VID(r) Ve (1] + pa(r) @ (r)=S(r), reQ
X® (r)+2eD(r)[v(r)- VO (r)] =0, r € 00 (2)

where €2 is the domain of the imaged object and 0f2 is the boundary of 2. The diffusion coefficient, denoted
as D (r), can be calculated using D (r) = 1/3 (ua (r) + p’,(r)), where p, (r) is the optical absorption
coefficient and p/ (r) is the reduced scattering coefficient at the position r. £ and v () are the mismatch factor
and the outward unit normal vector on the boundary 052, respectively. ® (r) represents the photon fluence
rate at position r.

Using the finite element method on the aforementioned photon propagation model (Wang et al 2006), a
linear relationship can be obtained between the light source vector on the object surface and the NPs density
to be reconstructed:

K® = Fx (3)

with

Kj= [ (DO) Vo)V 0)+ maVoi () Vs 0) dr 5 [ 6500 9 (0)dr
o0

Q

Fy— / B (1) (1) (1) dr )

Q

where x is the N X 1 NPs density to be reconstructed. Kj; and F;; are the elements of matrix K and F,
respectively.

t; and 9 ; denote the corresponding elements of the function. Since the K'is positive definite, the linear
relationship can be rewritten as

b = Ax. (5)

Taking into account the biases present in data measurement and processing (Gao et al 2018), the final
linear relationship is derived as follows:

P =Ax+n (6)

where A is the system weight matrix with size of M x N. The known vector @ is the light source on the object
surface and 7 represents the sum of measurement errors and noise.

3
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2.1. SBL-LCGL model

In XLCT, the NP in biological tissues is usually unevenly distributed, which means that the image is
somewhat sparse. Sparse Bayesian frameworks can effectively take advantage of this sparsity to reconstruct an
image by learning a small number of non-zero elements. At the same time, the sparse Bayesian framework
allows the prior knowledge to be integrated into the model, and the prior knowledge of the biological
organization structure can be used to guide the reconstruction process.

In the sparse Bayesian framework, all unknown parameters and hyperparameters are treated as stochastic
variables with specified probability distributions based on the characteristics of the data (Bai 2023). The
entire process of sparse Bayesian inference is based on formula (4). The Bayesian theorem allows us to
combine prior information with newly observed data, leading to more accurate maximum a posteriori
estimation (Wu et al 2023).

p(Px)p(x)

(@) 7)

p(x[®) =

where p (x) represents the prior probability, typically specified based on the characteristics of the data and
p (@) is the likelihood function of observing the data and the sum of measurement errors and noise.
p (x|®) denotes the posterior probability of the unknown parameters given the observed data. The
denominator p (P ) serves as the marginal likelihood.

Due to the fact that the Laplace distribution is more suitable for sparse data (Tang et al 2022),
such as the NPs distribution that needs to be reconstructed, we adopt the Laplace distribution as prior
information. However, the Laplace distribution is not conjugate to the Gaussian distribution assumed for the
likelihood function mentioned later, and a tractable Bayesian inference is not allowed, thereby increasing
computational complexity. To address this challenge, a hierarchical model is employed here and assumes the
vectors in x are independently and identically distributed.

p0=TTpt) =TT [ptelnp (i) o ®

where w; is a hyperparameter and p (w;) is its distribution and we define the hyperparameter set
w = (w,wy,...wWN)-

Specifically, to ensure that p (x) follows a Laplace distribution, it is common to model p (x;|w;) as a
Gaussian distribution with zero mean and variance w;, that is p (x;|w;) ~ N (x;]0,w;). The distribution p (w;)
is typically assumed to follow a gamma distribution, that is p (w;) ~ I'(w;|1,/2). The inference proceeds as
follows:

N N
1 xlg « awj . oz 1
p(x)zll_ll/\/me}(p{_zwi}'2eXp{_ 2 }dw"_ N P <_a Zl_ x")' ©)

Then the sum of measurement errors and noise 7 is assumed to be the Gaussian distribution with zero
mean and variance equal to 37", that is p (1) ~ A (0,37"). Assuming the hyperprior for 3 follows a gamma
distribution: p (3) ~ I'(8|ag, bg). Based on equation (6), the likelihood function of observed data follows
the following distribution:

: T
p<<1>|x76)=(2w/8‘1)Zexp{—”@mAfH}- (10)

It is evident that p (® |x, 3) follows a Gaussian distribution, that is p (®|x, 3) ~ N (Ax, 37"). However, a
challenge arises as the resulting update formulas involve the process of matrix inversion, which can be
computationally disadvantageous in terms of speed (Shutin et al 2011). Inspired by (Nesterov 2013), the
Lipschitz continuous gradient condition is incorporated into the sparse Bayesian framework.

The Lipschitz continuous gradient refers to a condition where the gradient of a function remains
Lipschitz continuous throughout its entire domain and there exists a Lipschitz constant L, for any ¢,d € R”
the norm of the gradient of the function satisfies the following inequality:

IVf(e) = Vf@d) || <L|c—d|, Ve,d (11)



10P Publishing

Phys. Med. Biol. 69 (2024) 175020 Y Wang et al

where Vf(c) represents the gradient of the function fat point c and ||-|| denotes the norm of a vector. In the
quadratic term f(x) = ||® — Ax||, which satisfies the Lipschitz continuous gradient condition, the following
inequality is adopted as a replacement function.

L
) < f(2) + Vfiz) (x—2) + Sl =2, v,z (12)
For any x,z € R”, substituting the function fand simplifying, we obtain:
L
[® — Ax|> < ||® — Az|* +2(x —2) AT (Az— @) + EHx—sz. (13)

It is noted that the equation holds if and only if x = z, thereby let Z(x,z) = ||® — Az|*+
2(x—2) AT (Az— @) + Lx— z||* and the likelihood function can be represented as:

)

Due to the difficulty in maximizing the operation for p (® |x, 8;z), a suggested approach is to set a fixed
value for z, that is z,. Then we can get the strict lower bound for p (®|x, 3), and the posterior probability can
then be solved using the following equation:

_ . 2
P(x|P, B,w) ~ p(q)lx’ﬂ’z")p(xwdx - <2w2x>‘iexp{—(x_“")} (15)

p (@ |x,8) = maxp (®x, 5:2) = max (27 3~) * exp{ (14)

T Jp (2l Bi2) p(xl) 25
with
Y= m, ) = diag(w)
2
_ B(%prATAszrAT(I)). 16)
According to sparse Bayesian inference, the value of the NPs distribution in each iteration should be
chosen to maximize the posterior probability.
Xiter = [x- (17)

Subsequently, the Expectation-Maximization algorithm can be used to determine the hyperparameters
B,w,z by maximizing the probability density function excluding x. Starting with p (®,x, 5,w):

p(@,5w) = [ maxp (@, 5:2)p (ko) p () p () . (18)
For the sake of facilitating subsequent calculations, the maximization operation is positioned after the

integration operation. Through the derivation, when ATA = L/2, the difference of the resulting substitution
is zero. The solution for hyperparameters is accomplished by the following expression:

(8..2) = argmax [ (@, 5:2)p(sko) p(9)p ) . (19

Continuing with the treatment of the integration operation, it can be observed that:

[p@lsap e ()p @ =p(Bp(e) (55 )l en] —jHGwa @0
with
H(B,w,z) =7 <|<I> —Az||* —27"AT (Az— @) + ngz) — S (21)

By substituting X, and y, and applying —2In (-) operation to the above expression, the cost function is
obtained:

C(B.w,2.%) = Cay + 3 awi — 2In (%) ~ Conalnf T + A (Z(x,2)+265)+ > (22)

i=1 i=1 '

5
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Algorithm 1. SBL-LCGL method for CB-XLCT Reconstruction.

Input: The system matrix A and the measured surface photon ®

Initialization: The hyperparameters: 3 © @ 2 and the constants: ag,bg, a, ert,itermax
Step1: Compute fixed values:ATA, AT®

Step2:

While itercyrrent (it€rmaxoOr (D) _ )

Xiter ~ Xiter

Yerr do
2

(1): Maximize the posterior probability stage:

Update the mean of the posterior probability and set xi(l’;l)
(2): Minimize the loss function stage:

Update the values of hyperparameters to minimize the loss function, according to the equation (24).
(3): iteTeurrent = iteTeurrent + 1

End while

Output: x = P

iter

equal to that value, according to the equation (17).

where Ceonst = N+2 — M — 2ag, C(ﬁ,w,v) = Zf\rzl In (ﬁ_l + %wi).

However, the cost function is not convex and one may encounter local optima. To address this issue, it is
advisable to transform it into a convex function and then seek the minimum value. Specifically, for the
fourth term in the cost function, assuming 0 < ag < (N — M+ 2) /2, this term is convex. The non-convexity
of the cost function primarily arises from the first term C(g ). Therefore, the commonly employed
first-order Taylor expansion, widely used in fields such as signal processing, communications, and machine
learning, is utilized for approximation.

The final approximation of the cost function is denoted by C,pp,, in the following expression.

Cappr(b’,w,zx)=g(ﬁ,w)—|—](ﬂ,w,z,x) (23)

where J (8,w,z,x) = Zg\;l aw; —2In (£) — CeonsdnB™" + B (Z(x,2) + 2bg) + Z,N:1 2—2
Due to the separability of the cost function and the sparsity nature of the reconstruction problem, the
Coordinate Descent algorithm is employed to iteratively update the hyperparameters until convergence

(Parikh 2014).

i _ (49— ATAZ0) 4 ATD)

iter
1 L
(Q(f),@(i) + 5)

(i+1) _ (i+1)
z *xiter

2 (510 + )

ﬂ(i-H) —
, —1
Ceonst + \/cmf +a, (57190 +2a®)  (J|l@ — A0 | + 25, )
-1
L
(i+1) _ (i+1)‘ 3
w Xiter a+ ﬁfl(i) n %w(i) (24)

3. Experiments and results

In this section, the performance of SBL-LCGL is evaluated through a series of numerical simulations and in
vivo experiment. Specifically, SBL-LCGL is compared with three existing algorithms: Fast-Laplace, the fast
iterative shrinkage thresholding algorithm (FISTA) and the incomplete variables truncated conjugate
gradient (IVTCG), focusing primarily on four aspects: positioning accuracy, shape recovery, robustness, and
in vivo practicability. All experiments and programs are performed on a desktop computer equipped with
Inter(R) Core™15-13490F CPU(2.50 GHz) and 32GB RAM.

3.1. Evaluation metrics

To comprehensively evaluate the performance of the proposed method in CB-XLCT reconstruction,
particularly in terms of reconstruction quality and accuracy, five primary quantitative evaluation metrics are
employed: location error (LE), dice similarity coefficient (DICE), mean squared error (MSE), structural
similarity (SSIM), and volume ratio (VR).
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The LE is an index to evaluate spatial positioning accuracy by calculating the Euclidean distance between
the central coordinates of the reconstructed region L, (x;,y,,z,) and the actual regional central coordinates
L (x¢, ¥+, 2:). The definition is as follows:

LE=||L,— L. (25)

The DICE offers a quantitative measure to assess spatial SSIM between the reconstructed target S, and
the actual target S;. The DICE value ranges between 0 and 1, with a value closer to 1 indicating a higher
degree of similarity between the reconstructed and actual targets, consequently the better shape recovery.
The calculation formula for DICE is as follows:

1SSy
DICE = 2>~ 1 (26)
1Se| =+ IS¢

The VR is a metrics used to assess the shape and size between the true light source tetrahedron Ve and
the reconstructed light source tetrahedron Viecon :

VR = e (27)

The VR close to 1 indicates that the volume of the reconstructed light source is very close to that of the
true light source.

The MSE is widely used to measure the gap between predicted values and actual values and it provides a
quantitative measure of the model’s prediction accuracy by calculating the average of the sum of squared
errors. The definition of MSE is as follows:

MSE = & (x —%)" (x — %) (28)

where x represents the distribution of reconstructed NPs and X represents the distribution of actual NPs. And
the closer the value of MSE is to zero, the higher the reconstruction fidelity.
The definition of SSIM is as follows:

2 c1)(20 C

SSIM (R7A) - (/L(ﬁiftgizi)((aﬁfﬂg-f-)cz) (29)
where pir is the average value of the reconstructed light source intensity, p4 is the average value of the actual
light source intensity, o is the standard deviation of the reconstructed light source intensity, o4 is the
standard deviation of the actual light source intensity, ora is the covariance between the actual light source
and the reconstructed light source intensity, and the two parameters ¢; and ¢, represent constants related to
the dynamic range of the light source values.

3.2. Numerical simulations

To evaluate the performance of the proposed method, a non-uniform cylindrical phantom with a height of
30 mm and a radius of 10 mm was employed as the model and simulated five major organs: heart, bone,
liver, lungs, and muscle, as shown in figure 1(A). The optical properties of these tissues are detailed in table 1
(Jacques 2013). A small spherical radiative source with a diameter of 1 mm is embedded in the model to
simulate the location of a tumor. To ensure effective photon penetration, 650 nm was selected as the
wavelength for the photons. In the simulation experiments, the cylindrical phantom was rotated 360° with
light emission images collected every 90° for reconstruction, resulting in a total of four different projection
angles. The x-ray attenuation coefficient was set at 0.0535 mm ™!, and the operational parameters of the
cone-beam x-ray source were set at 48°kV and 0.8 mA. During the reconstruction process, the COMSOL
Multiphysics 5.6 (COMSOL, Inc., Burlington, Massachusetts) software (Parvitte et al 2013) was used to
transform the model into a unified tetrahedral mesh consisting of 4,626 nodes and 25 840 tetrahedral
elements, as shown in figure 1(B). Using the Molecular Optical Simulation Environment (MOSE, Version
2.3) software (Ren et al 2013), the Monte Carlo method was implemented to successfully obtain forward
simulation results, which are displayed in figure 1(C).

3.2.1. Reconstruction result of the single light source simulation

In the single light source reconstruction experiment, a sphere was implanted to simulate the actual light
source, with its central coordinates at (—6, —4, 6) mm. The results of the single light source reconstruction
are presented in figure 2, where the first row exhibits the 3D views reconstructed by the four methods, and
the second row shows the sectional insights at z = 6.00 mm. The black circle in these sections indicates the
actual location of the light source. Table 2 lists the quantitative results of the single light source

7
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Figure 1. (A) The 3D view of the main organs of the single light source cylinder model. (B) Finite element tetrahedral mesh

obtained after discretizing the model. (C) Forward simulation result using MOSE software. (D) The 3D view of the main organs
of the dual light source cylinder model.

Table 1. Optical properties of tissues in the heterogeneous cylindrical phantom at 650 nm.

Tissues ax (mm_l) ,u,s',c (mm_l) Lbam (mm_l) [sm (mm_l) g

Heart 0.0504 0.9437 0.0331 0.8203 0.90
Bone 0.0521 2.4415 0.0326 2.114 0.93
Liver 0.3016 0.6676 0.1921 0.6023 0.93
Lungs 0.1681 2.1569 0.1045 2.0477 0.93
Muscle 0.0745 0.4115 0.0474 0.3122 0.97
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Figure 2. The 3D view of the reconstruction results from four methods. The respective sectional insights at z = 6.00 mm.

Table 2. Quantitative results in single light source simulation reconstruction.

Method True center position ~ Reconstructed center position ~LE(mm) DICE MSE SSIM VR
Fast-Laplace  (—6.00, —4.00, 6.00)  (—6.49, —4.53,7.36) 1.55 0.18 0.00562  0.792  0.31
FISTA (—6.00, —4.00, 6.00)  (—6.41, —4.51,5.62) 0.76 0.31 0.00475 0.833  0.29
IVICG (—6.00, —4.00, 6.00)  (—5.30, —3.78, 5.81) 0.75 0.62 0.00259 0.859 1.61
SBL-LCGL (—6.00, —4.00, 6.00)  (—5.64, —3.84, 6.04) 0.38 0.75 0.00172  0.906  1.05

reconstruction. The results indicate that the SBL-LCGL method achieves a smaller LE compared to the
Fast-Laplace, FISTA, and IVTCG methods, suggesting that the reconstructed coordinates are closer to the
true light source coordinates. Furthermore, the SBL-LCGL method yields a higher DICE coefficient, reaching
0.75, which means a high degree of overlap between the reconstructed and actual light sources. Additionally,
the results indicate that the method we proposed obtained the smallest MSE and the SSIM closest to 1, which
proves that our method has high prediction accuracy. The VR coefficient is closer to 1, indicating that the
shape and size of the reconstruction is recovered more accurately. Collectively, these results validate the
effectiveness of the proposed method.

3.2.2. Reconstruction result of the dual light source simulation

In the dual light source experiment, we placed two small spheres to simulate the real light source, and the
central coordinates were (—5.00, —3.00, 3.00) mm and (—5.00, —3.00, 19.00) mm, respectively. Figure 3
shows the reconstruction results of the four methods. The first row is the 3D view and the second row is the
cross section at ¥ = — 3.00 mm. Table 3 gives a quantitative analysis of the reconstruction results. The
proposed method has the smallest LE coefficient and outperforms other methods in both DICE coefficient,
MSE coefficient, SSIM coefficient and VR coefficient. This confirms that this method has good light source
positioning capabilities and excellent structural recovery capabilities.

3.2.3. Anti-noise experiment

To test the robustness of the SBL-LCGL method to noise, we introduced different proportions of Gaussian
noise to the measurement data based on the original single-light source simulation reconstruction
experiment. These proportions are 5%, 10%, 15%, 20%, and 25% respectively. According to the results
shown in figure 4, even as the proportion of Gaussian noise increases, the reconstruction performance of the
SBL-LCGL method does not deteriorate, but improves in some cases. This experimental result fully proves
that this method exhibits excellent robustness in the face of data noise.
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Figure 3. The 3D view of the reconstruction results for dual light sources. The respective sectional insights at y = —3.00 mm.
Table 3. Quantitative results in dual light source simulation reconstruction.
Method True center position Reconstructed center position ~LE(mm) DICE MSE SSIM VR
Fast-Laplace  (—5.00, —3.00, 3.00) (—4.87, —1.84, 1.54) 1.86 0.16  0.00689 0.782 0.22
(—5.00, —3.00, 19.00)  (—4.30, —3.40, 18.63) 0.88 0.11 0.00766  0.815  0.58
FISTA (—5.00, —3.00, 3.00) (—4.75, —2.71, 3.36) 0.52 0.50  0.00436 0.832 0.42
(—5.00, —3.00, 19.00)  (—4.51, —3.35, 18.87) 0.61 0.24  0.00561 0.816 0.79
IVICG (—5.00, —3.00, 3.00) (—4.65, —2.99, 3.27) 0.46 0.66  0.00243 0.853 1.21
(—5.00, —3.00, 19.00)  (—4.34, —2.98, 19.09) 0.66 0.53  0.00339 0.841 1.18
SBL-LCGL (—5.00, —3.00, 3.00) (—4.85, —2.73,3.22) 0.37 0.85  0.00153 0.883 1.25
(—5.00, —3.00, 19.00)  (—5.42, —3.32, 19.05) 0.53 0.71 0.00181 0.867 1.09
.l 'y l y
0.8 1 0.8
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504 - 204
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Figure 4. The Results of anti-noise experiments.

3.3. In vivo experiment and result

To further verify the effectiveness of our proposed method, in vivo mouse experiment was performed. The
experiment followed strict guidelines and approval of the Animal Ethics Committee of Northwestern China
University. Specifically, a 6-week-old adult BALB/C mouse was anesthetized during the experiment and we
implanted a transparent glass tube (1 mm in diameter) filled with Gd,0,S:Eu®* NPs to simulate the early
tumor. The coordinates of the implanted ball were (14.50, 9.50, 13.60) mm. The imaging system used in the
experiment is designed as shown in figure 5. The system consists of a cone beam x-ray source (L9181-02,
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Figure 5. The imaging system used in the in vivo experiment.
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Figure 6. Reconstruction results of the in vivo experiment.

Hamamatsu Photonics, Hamamatsu, Japan), an x-ray detector panel (C7921CA-02, Hamamatsu, Japan), a
CCD camera (iXon Ultra DU-897; Andor, UK), and a rotation platform. In detail, the voltage and current of
the cone beam x-ray source were set to 48kV and 0.8 mA, respectively. The x-ray detector panel is used to
detect x-ray transmitted through the mouse to generate high-resolution computed tomography (CT) images.
In addition, we use the CCD camera to collect optical data at a wavelength of 650 nm. The exposure time and
binning of CCD were set to 2 s and 1 x 1, respectively. In the course of the experiment, the mouse was
rotated 1°each time by the turntable to obtain the corresponding CT images and x-ray projection data, thus
ensuring the comprehensiveness and precision of the imaging data.

The results of the in vivo reconstruction are shown in figure 6, which shows a three-dimensional view
and a two-dimensional cross-sectional view of the z = 13.60 mm. The results of quantitative analysis are
shown in table 4, from which it can be seen that the LE coefficient of the SBL-LCGL method is 0.4 mm,
which is equal to half of the reconstruction error of the IVTCG and Fast-Laplace methods, indicating that
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Table 4. Quantitative results in the in vivo experiment.
Reconstructed

True center  center posi-

Method position tion LE(mm) DICE MSE SSIM VR

Fast-Laplace  (14.50,9.50, (14.13,9.35, 0.86 0.36 0.00389 0.809 1.39
13.60) 14.36)

FISTA (14.50,9.50, (13.89, 2.07 0.05 0.00973 0.793 1.12
13.60) 11.32, 14.38)

IVTCG (14.50,9.50, (14.40, 8.92, 0.71 0.46 0.00296 0.837 0.91
13.60) 14.02)

SBL-LCGL (14.50,9.50, (14.40, 9.89, 0.40 0.75 0.00167 0.859 0.81
13.60) 13.59)

this method has great advantages in reconstruction accuracy. At the same time, the DICE coefficient reaches
0.75, which is also better than the other three methods. The MSE coefficient is 0.00167 and the SSIM is 0.859,
which also confirms that the proposed method is superior to other methods. The VR coefficient of the
IVTCG method is 0.91, but the VR coefficient of our method can also reach 0.81. There is not much
difference. At the same time, in vivo experiments show that the performance of FISTA algorithm is not as
good as that in the simulation of single light source experiments, which further confirms the limitations of
FISTA algorithm in terms of robustness. It is proved that the proposed method is also very effective in living
biological imaging, with high precision reconstruction accuracy and accurate morphological recovery ability.

4, Discussion and conclusion

CB-XLCT is an efficient hybrid optical molecular imaging technology that reconstructs the distribution of
NPs sources in the body based on the light flux on biological surfaces. However, the reconstruction problem
is essentially an inverse problem with ill-posedness, which will lead to low quality of the reconstructed image.
We proposed an algorithm based on the sparse Bayesian framework to overcome the ill-posedness of the
reconstruction problem. In the algorithm, the Laplace distribution is given as prior information on the light
source distribution, and the hierarchical model is used to solve the problem of non-conjugation. This
effectively combines sparsity and improves the accuracy of reconstruction. At the same time, the Lipschitz
continuous gradient condition is used to replace the quadratic term of the likelihood function, and the
conventional matrix inversion is transformed into a diagonal matrix inversion, thereby reducing the
complexity of the algorithm. The expansion of the first-order Taylor formula for updating the loss function
of hyperparameters leads to a convex problem that is easy to solve and improves the stability of the algorithm.

To evaluate the performance of the proposed method, three simulation experiments and one in vivo
experiment were conducted, and the results were compared with those of three methods: Fast-Laplace,
FISTA, and IVTCG. In single-light and dual-light experiments, the SBL-LCGL method has the lowest LE
coefficient, the highest DICE coefficient, and the VR coefficient closest to 1. This shows that the proposed
method has good reconstruction accuracy and shape recovery capabilities. In the anti-noise experiment, 5%,
10%, 15%, 20% and 25% Gaussian noise were added, respectively. The indicators obtained show that the
method has strong robustness. In addition, in vivo experiments also confirmed the advantages in various
indicators and verified the effectiveness of our proposed method in in vivo bioimaging.

However, there may be some possible limitations in this study. First, when the CCD camera collects data,
because of the large number of photons, the noise is modeled as Gaussian noise, then in the case of a small
number of photons, the modeling method of noise is not suitable, Poisson noise model can be used. Second,
in deriving the posterior probability, in order to satisfy the simplicity of derivation, we propose some
constraints, although these constraints are confirmed. Finally, there may be some differences in the optical
properties of the reconstructed light source and the real light source and high-quality segmented images will
also improve the reconstruction accuracy of CB-XLCT. Therefore, our future work can consider structural
prior information and allow source area prior information, and analyze the impact of differences in optical
properties on reconstruction quality.

In summary, a method based on SBL framework is proposed to improve the reconstruction quality of
CB-XLCT. This method combines the sparsity of the NPs distribution and avoids complex matrix inversion.
Through a series of simulations and in vivo experiment, it is confirmed that this method is superior to other
typical methods in terms of reconstruction accuracy and shape recovery. We believe that the proposed
method will help improve the quality of CB-XLCT reconstruction and expand its clinical application.
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