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 A B S T R A C T

As a UNESCO World Heritage Site, the Terracotta Warriors face degradation from natural erosion. Traditional 
restoration is time-consuming, while computer-aided methods provide efficient digital solutions. We propose 
a Two-stage Resampling and Residual Shifting framework using Diffusion Models (TRRS-DM) for texture 
inpainting. The ResampleDiff module enhances details via perception-weighted learning and lightweight 
diffusion. The RefineDiff module refines results in latent space by removing noise. Experiments demonstrate 
that TRRS-DM achieves faster computation, surpasses existing methods in visual quality, and effectively restores 
damaged artifacts. This approach advances digital heritage restoration and providing scalable supports for 
archaeological conservation. Our code is available at https://github.com/Emwew/TRRS-DM.
1. Introduction

The Qin Shi Huang Mausoleum and Terracotta Warriors, designated 
as a UNESCO World Heritage Site in 1987 and hailed as the ‘‘Eighth 
Wonder of the World’’, showcase the Qin Dynasty’s military and cul-
tural traits [1]. Environmental factors have resulted in significant dam-
age and loss, thereby complicating archaeological research and exhibi-
tions. Conventional restoration techniques can be labor-intensive and 
may pose risks to the artifacts, while computer-assisted restoration 
presents accurate and non-invasive alternatives. In the restoration of 
the Terracotta Warriors, two-dimensional restoration technology was 
employed to reconstruct missing or damaged components. This technol-
ogy improves the resemblance of the affected areas by analyzing their 
characteristics, thus facilitating physical repair efforts. Furthermore, 
digital restoration not only supports the physical preservation of arti-
facts but also enhances public engagement through virtual experiences, 
thereby playing a crucial role in raising awareness and safeguarding 
cultural heritage [2].

Traditional image processing methodologies, including interpola-
tion [3] and block matching [4], exhibit limited efficacy when address-
ing large or complex lesions, often resulting in unnatural outcomes 
and a loss of detail. The advent of deep learning [5] has ushered 
in significant advancements in image repair, particularly through the 
application of convolutional neural networks (CNN) [6,7] and gener-
ative adversarial networks (GAN) [8,9]. CNNs are particularly adept 
at capturing local features and facilitating precise restoration, while 
GANs enhance the naturalness of generated images through adver-
sarial training mechanisms. Additionally, autoregressive models that 
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utilize variational autoencoders and transformers can reconstruct vari-
ous types of missing data on a pixel-by-pixel basis [10,11]. Despite the 
advantages offered by deep learning techniques in overcoming many of 
the limitations associated with traditional methods, they also introduce 
new challenges, including the instability of GAN training, substantial 
data requirements, and the demand for significant computational re-
sources. Furthermore, in extreme or specialized scenarios, the quality 
of the repairs may still be constrained.

Recently, diffusion-based methods such as Repaint [12] and La-
tentPaint [13] have adopted a step-by-step noise removal approach to 
restore images, demonstrating excellence in repairing complex struc-
tures and textures. This brings new opportunities to the field of image 
inpainting. The rich prior knowledge inherent in diffusion models 
enables superior performance in detail restoration. However, these 
models come with significantly higher computational costs compared 
to GAN-based approaches [14]. Moreover, in the context of the dig-
ital restoration of cultural artifacts, challenges such as limited data 
availability, complex textures, and the necessity to adhere to historical 
and cultural contexts pose additional hurdles. As a result, the effective-
ness of diffusion methods in this particular application remains to be 
validated.

In response to the challenges associated with elevated model train-
ing expenses and prolonged inference durations, we introduce a two-
stage image inpainting technique grounded in diffusion models, re-
ferred to as TRRS-DM. This methodology is fundamentally composed 
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Fig. 1. In the digital restoration of the Terracotta Warriors, (Left) demonstrates the inpainting results of our method on different datasets, achieving efficient and high-fidelity 
image restoration. (Right) shows the collection of point cloud and image data using a high-definition camera on a robotic arm platform for the digital restoration of the Terracotta 
Warriors.
of two principal components: ResampleDiff and RefineDiff. The Re-
sampleDiff module initially conducts a preliminary restoration of the 
image, thereby expediting the generation of a foundational yet precise 
outcome. The RefineDiff module further mitigates noise and blurriness, 
enhancing the image’s detailed information. Ultimately, this two-stage 
diffusion process culminates in high-quality image restoration. Empiri-
cal findings indicate that our approach significantly diminishes both the 
parameter count and inference time, while simultaneously achieving 
superior restoration performance across various datasets (as shown in 
Fig.  1). This presents a novel and effective strategy for the digital 
restoration of the Terracotta Warriors.

The main contributions of our paper are as follows:

• We propose a two-stage image restoration method based on dif-
fusion models, referred to as TRRS-DM. This approach integrates 
ResampleDiff in the pixel space with RefineDiff in the latent 
space, aiming to achieve high-quality image restoration.

• We employ a lightweight diffusion model, a signal-to-noise ratio 
(SNR) loss function, DDIM acceleration, and latent space residual 
shift diffusion techniques to reduce computational costs while 
ensuring high-quality restoration.

• Our method shows remarkable performance in texture restoration 
compared to leading techniques. It effectively recovers texture de-
tails, yielding realistic and natural results with minimal parameter 
overhead.

2. Related work

2.1. Image inpainting

Image inpainting is a complex low-level visual task that seeks to 
reconstruct absent regions of an image by utilizing information from 
intact pixels. Traditional methods [15], such as gradient interpola-
tion [3], partial differential equations [16], and patch-based filling [4], 
are capable of generating locally smooth results or filling small areas 
of missing data. While these methods can effectively complete small 
missing areas, they face challenges in accurately reconstructing more 
complex scenes due to limited global understanding of the image.

Compared to traditional methods, deep learning-based image in-
painting has achieved tremendous success [17]. Architectures like 
encoder–decoder [18] and GANs have been proposed, with many novel 
methods focusing on image inpainting. To ensure that the restored im-
ages have semantically reasonable context, researchers have introduced 
techniques such as dilated convolutions [19] to increase the receptive 
field, Partial convolutions [7] which guide convolutional kernels ac-
cording to a mask, improved learnable convolution kernels to generate 
dynamic soft masks [20], and Fourier-based convolution encoders [21] 
for image inpainting to avoid generating invalid features within missing 
2 
regions. Further research focuses on more refined inpainting, using 
edge guidance with EdgeConnect [22], PEN-Net’s [23] pyramid layer-
by-layer restoration, DSI [11] based on VQ-VAE diversity inpainting, 
and CTSDG’s [24] dual-stream network architecture combining image 
texture structure priors. With the success of transformers in natu-
ral language processing, ICT [25] and MAT [26] have also applied 
transformers to image restoration. Spatial self-attention based on this 
approach can incur high computational costs. To reduce computation, 
some approaches downsample input images to lower resolutions [27]. 
Others compute spatial attention after encoding the input image into 
low-resolution features [28]. RestFormer [29] proposes channel self-
attention for image reconstruction in multi-scale representations with 
linear complexity. These strategies aim to explore how to extract 
useful information from known areas for hole-filling effectively. These 
methods, which rely on specific masks during training, exhibit weak 
generalization to new mask types. Free mask repair within diffusion 
models represents a promising direction for further research.

2.2. Diffusion inpainting

Diffusion models have achieved significant advancements in image 
generation, capable of producing high-quality images through an itera-
tive probabilistic process that introduces novel opportunities for image 
inpainting [30]. The fundamental Denoising Diffusion Probabilistic 
Model (DDPM) [31,32] executes the transformation of noise into an 
image through a two-stage process, which includes forward denoising 
and backward denoising diffusion.

To use the diffusion model for image inpainting, RePaint [12] 
utilizes a pre-trained DDPM as a generative prior, managing the re-
verse diffusion iterations by sampling exclusively from unoccluded 
regions, thereby achieving high-quality and diverse image restorations. 
LatentPaint [13] addresses the challenge of high computational costs 
associated with conventional techniques by employing latent space con-
ditioning and explicit propagation methods. StrDiffusion [33] recon-
ceptualizes texture denoising through structural guidance and time-
dependent sparsity, optimizing the denoising process to reduce seman-
tic discrepancies between occluded and unoccluded areas. M2S [34] 
introduces a coarse-to-fine sampling strategy to decrease the number 
of denoising steps and expedite inference. And some guided inpainting 
methods: SmartBrush [35] employs shape guidance, Paint by Exam-
ple [36] uses reference images for guidance, and BrushNet [37] and 
Imagen Editor [38] leverage text-guided image generation to modulate 
the input and achieve semantically coherent and meaningful results. 
Additionally, various adaptable diffusion strategies have been devel-
oped, including a zero-shot framework for linear image recovery [39], 
the unsupervised posterior sampling technique DDRM [40], the fu-
sion of forward and reverse diffusion for enhanced efficiency [41], 
and non-Markovian diffusion acceleration [42]. Despite its promising 
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Fig. 2. An overview of the framework. TRRS-DM is structured around a two-tier architecture that comprises a resampling diffusion module and a latent spatial enhancement 
module.
Table 1
Symbols and Description.
 Symbols Description  
 𝑥0 Raw data sample (without added noise)  
 𝑥𝑡 The data sample at time step 𝑡 (with added noise) 
 𝛽𝑡 Noise coefficient during diffusion process  
 𝛼̄𝑡 = ∏𝑡

𝑠=1
(

1 − 𝛽𝑠
)

Accumulated denoising factor  
 𝜇𝜃 (𝑥𝑡 , 𝑡), 𝛴𝜃 (𝑥𝑡 , 𝑡) Mean & variance predicted in the reverse process  
 𝑚 Mask, distinguish known and unknown regions  
 ⊙ Element-wise multiplication  
 𝜖𝜃 (𝑥𝑡 , 𝑡) Noise predicted by the model at time step 𝑡  
 {𝜂𝑡}𝑇𝑡=1 Monotonically increasing displacement sequence  
 𝛼𝑡 Increment in the displacement sequence  
 𝑓𝜃 (𝑥𝑡 , 𝑦0 , 𝑡) Deep Neural network predicting 𝑥0 with 𝜃  

potential, diffusion-based restoration is computationally intensive and 
time-consuming. Therefore, accelerating these models is crucial. This 
study investigates applying diffusion restoration technology to the dig-
ital preservation of the Terracotta Warriors, aiming to maintain high-
quality cultural heritage conservation while enhancing computational 
efficiency.

3. Methods

3.1. Preliminary

For the convenience of understanding, the main Symbols and their 
Description are explained in Table  1.

3.2. Overall architecture

To facilitate the application of diffusion model image restoration 
techniques to the conservation of the Terra Cotta Warriors’ cultural 
artifacts, we aim to enhance the efficiency of the restoration process 
while preserving high-quality outcomes. We introduce the Two-stage
Resampling and Residual Shifting using Diffusion Models (TRRS-DM). 
This two-stage method incorporates resampling and residual shifting 
utilizing diffusion models for two-dimensional texture inpainting, as 
shown in Fig.  2. TRRS-DM consists of a resampling diffusion module 
and a latent space enhancement module, which collectively enhance 
restoration quality through a two-stage processing approach. The Re-
sampleDiff module executes resampling diffusion within the pixel space 
to initially address the missing areas of the image, producing inter-
mediate results. Subsequently, the RefineDiff module further refines 
these intermediate outputs, ensuring that the final restoration results 
are clear and natural.

In the ResampleDiff module, we use a lightweight diffusion network 
to input the mask and the image 𝑥0 to be repaired, and combine 
it with the mask to add noise information to the image to generate 
𝑥𝑡. Subsequently, a resampling strategy was adopted for denoising, 
and the preliminary result 𝑥′0 was obtained as a reference for the 
subsequent enhancement stage. We also integrate the denoising diffu-
sion implicit model (DDIM) and perceptual prior weighting strategy to 
ensure efficient and high-quality output.
3 
In the RefineDiff module, the intermediate result 𝑥′0 is input into the 
RefineDiff enhancement module. Here, a pre-trained encoder encodes 
this result into latent space, where the residual switching enhance-
ment diffusion method is employed to facilitate the transformation 
into higher-quality encoded information. The diffusion outcome is then 
decoded to produce a superior quality repair result, 𝑦0. Our approach 
leverages latent spatial diffusion to minimize computational expenses 
while achieving enhanced quality in image conversion.

3.3. ResampleDiff moudle

Our two-stage diffusion inpainting involves the basic diffusion pro-
cess, forward denoising and backward denoising. The diffusion process 
in DDPM incrementally adds Gaussian noise to the data at each time 
step 𝑡, described by a Markov chain (see Eqs.  (1) and (2)). Using the 
reparameterization trick, it allows sampling 𝐱𝑡 at any given timestep 𝑡
in closed form: 
𝑞(𝐱𝑡|𝐱𝑡−1) =  (𝐱𝑡;

√

1 − 𝛽𝑡𝐱𝑡−1, 𝛽𝑡𝐈) (1)

𝑞(𝐱𝑡|𝐱0) =  (𝐱𝑡;
√

𝛼̄𝑡𝐱0, (1 − 𝛼̄𝑡)𝐈) (2)

Reverse Process: The aim is to reconstruct the original data distribu-
tion from pure noise. In inference, starting from a sample 𝐱𝑇 ∼  (0, 𝐈), 
we sequentially sample 𝐱𝑡−1 until recovering the original image 𝐱0. This 
is modeled as a Markov chain with conditional distributions: 
𝑝𝜃(𝐱𝑡−1|𝐱𝑡) =  (𝐱𝑡−1;𝜇𝜃(𝐱𝑡, 𝑡), 𝛴𝜃(𝐱𝑡, 𝑡)) (3)

For the diffusion-based resampling image inpainting technique, we 
employed a lightweight pre-trained unconditional DDPM [43] and 
introduced the masked input image into the reverse diffusion process 
for conditional generation (see Fig.  3). For known regions, it directly 
utilizes information from the original image, by Eq. (2), 𝑥𝑡−1known ∼


(

√

𝛼̄𝑡𝑥0, (1 − 𝛼̄𝑡)𝐈
)

. For unknown regions, the model generates new 
content to fill in the gaps, by Eq. (3), 𝑥𝑡−1unknown ∼ 

(

𝜇𝜃(𝑥𝑡, 𝑡), 𝛴𝜃(𝑥𝑡, 𝑡)
)

. 
The two components are then combined using a mask operation, as 
shown in Eq. (4). This result is used as input for the next denoising step, 
ensuring that the generated content blends harmoniously with existing 
content, thereby improving the quality and coherence of the inpainted 
image. 
𝐱𝑡−1 = 𝐦⊙ 𝐱𝑡−1known + (1 −𝐦)⊙ 𝐱𝑡−1unknown (4)

However, a single harmonization resampling step may not ade-
quately incorporate semantic information throughout the denoising 
process, meaning that the integration between newly generated image 
parts and the surrounding environment might be insufficient, leading 
to less natural or coherent results. To better propagate contextual 
information while avoiding over-processing and enhancing efficiency, 
we introduce a resampling strategy with parameters such as the number 
of resampling iterations, jump length, and interval. Fig.  4 presents the 
specific sampling strategies.

In our method, reducing the diffusion model parameters can ac-
celerate the inference process. However, directly reducing parameters 
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Fig. 3. Schematic of the ResampleDiff Module. This module completes unknown regions by applying diffusion resampling to the input image and mask.
Fig. 4. The resampling process schedule for diffusion inpainting. Blue represents DDPM, orange represents DDIM, and each point in the small image represents a diffusion step. 
Time 𝑇  is set to 250, and the number of resampling times, jump length, and jump interval are all set to 10, DDIM=5. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
may impair the model’s performance. Inspired by [34,43], perceptual 
priority (P2) weighting aims to prioritize learning from more important 
noise levels. Unnecessary cleaning stages are assigned the minimum 
weight, thereby assigning relatively higher weights to the remaining 
stages. We modify the loss function during the training process to 
compensate for the parameter reduction.

Diffusion models are trained by optimizing the variational lower 
bound (VLB), which is the sum of denoising score-matching losses: 
𝐿vlb =

∑

𝑡 𝐿𝑡. Each step 𝑡 matching loss 𝐿𝑡 measures the distance 
between two Gaussian distributions and can be rewritten in terms of 
the noise predictor 𝜖𝜃 as follows:
𝐿𝑡 = 𝐷𝐾𝐿

(

𝑞
(

𝑥𝑡−1 | 𝑥𝑡, 𝑥0
)

∥ 𝑝𝜃
(

𝑥𝑡−1 | 𝑥𝑡
))

= E𝑥0 ,𝜖

[

𝛽𝑡
(1 − 𝛽𝑡)(1 − 𝛼𝑡)

‖

‖

𝜖 − 𝜖𝜃(𝑥𝑡, 𝑡)‖‖
2
]

(5)

Within the VLB framework, the objective can be expressed as: 
𝐿simple =

∑

𝑡 𝜆𝑡𝐿𝑡, with a weighting scheme 𝜆𝑡 = (1−𝛽𝑡)(1−𝛼̄𝑡)
𝛽𝑡

. We intro-
duced perception-prioritized weighting into the modified loss function 
to emphasize context learning: 
𝜆′𝑡 = 𝜆𝑡𝑘 + SNR(𝑡)𝛾 , (6)

Where the original weight 𝜆𝑡 is replaced by 𝜆′𝑡. The parameter 𝛾 con-
trols the strength of down-weighting, and 𝑘 prevents weight explosion 
while determining the sharpness of the weighting scheme. The SNR 
is defined as: SNR(𝑡) = 𝛼̄𝑡 . The overall loss function becomes: 𝐿 =
1−𝛼̄𝑡

4 
∑

𝑡 𝜆
′
𝑡𝐿𝑡. This modification ensures the model focuses on perceptually 

rich context during training, leading to richer and more natural results.
Finally, we incorporated the DDIM accelerated sampling strategy 

into our model [42]. By using a non-Markovian inference process, we 
obtain denoised result 𝐱𝑡−𝑗known more efficiently: 

𝐱𝑡−𝑗unknown =
√

𝛼̄𝑡−𝑗𝐱𝑡−1 −
√

𝛼̄𝑡 ⋅ 𝜖𝜃(𝐱𝑡, 𝑡)+
√

1 − 𝛼̄𝑡−𝑗 − 𝜎2𝑡 ⋅ 𝜖𝜃(𝐱𝑡, 𝑡)+𝜎𝑡𝜖𝑡, (7)

where 𝜖𝑡 ∼  (0, 𝐈) represents independent standard Gaussian noise 
relative to 𝐱𝑡. When 𝜎𝑡 = 0, DDIM sampling becomes a special case. 
We then diffuse the input image according to Eq. (2) to align known 
information with 𝐱𝑡−𝑗unknown. Finally, we concatenate the generated infor-
mation 𝐱𝑡−𝑗unknown with the conditional information 𝐱𝑡−𝑟known as per Eq. (4), 
ensuring effective integration of conditional information throughout 
the denoising process. This enhances the consistency and semantic cor-
rectness of the inpainted regions with the surrounding image. Finally, 
the overall algorithm of the RefineDiff module is shown in Algorithm 
1.

3.4. RefineDiff moudle

In the RefineDiff section, as shown in Fig.  5, the original image is 
first compressed four times using VQGAN [44] and encoded into latent 
space. Then, a Markov chain is constructed to convert high-quality 
and low-quality images. By controlling the conversion speed and noise 
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Fig. 5. Schematic of the RefineDiff Module. This module refines low-quality input images by encoding them into a latent space to reduce resource requirements, and then applies 
residual diffusion methods to achieve higher clarity and accuracy in the results.
Algorithm 1: Inpainting Using ResampleDiff Approach
Input: Image 𝑥 and Mask 𝑚

1 Initialize the noisy image 𝑥𝑇 ∼  (0, 𝐼).
2 Set 𝑟sample (number of iterations), 𝑗sample (jump length), and 

𝑗interval (jump interval), Resample = [0, 0, 1,… , 0], where 𝑅 = 1
for resampling and 𝑅 = 0 for jumping, determined by 𝑗.

3 for 𝑡 = 𝑇 ,… , 1 do
4 Sample 𝜖 ∼  (0, 𝐼) if 𝑡 > 1, otherwise set 𝜖 = 0,
5 𝑥𝑡−1known =

√

𝛼̄𝑡𝑥0 + (1 − 𝛼̄𝑡)𝜖;
6 Sample 𝑧 ∼  (0, 𝐼) if 𝑡 > 1, otherwise set 𝑧 = 0,
7 𝑥𝑡−1unknown =

1
√

𝛼𝑡

[

𝑥𝑡 − 𝛽𝑡
(

√

1 − 𝛼̄𝑡
)

𝜖𝜃(𝑥𝑡, 𝑡)
]

+ 𝜎𝑡𝑧, use DDIM;
8 Update image: 𝑥𝑡−1 = 𝑚 ⊙ 𝑥𝑡−1known + (1 − 𝑚)⊙ 𝑥𝑡−1unknown.
9 if Resample (when 𝑇 mod 𝑗interval = 0) then
10 for 𝑖 = 1,… , 𝑟sample do
11 if 𝑟 < 𝑟sample and 𝑡 > 1 then
12 Sample 𝑥𝑡 ∼ 

(√

1 − 𝛽𝑡−𝑗−1𝑥𝑡−𝑟, 𝛽𝑡−𝑗−1𝐼
)

;
13 Iterate 𝑗sample times Single step inpaint(4-8).
14 end 
15 end 
16 end 
17 end 
Output: Inpainted Image 𝑥0

intensity during the diffusion process, the Markov chain is used for 
reverse sampling to enhance low-quality images, thereby reducing the 
computational cost during training and achieving high-quality images.

Specifically, a residual 𝑒0 = 𝑦0 − 𝑥0 is defined between the high-
quality image 𝑦0 and the low-quality image 𝑥0, from which a Markov 
chain of length 𝑇  is constructed to migrate from 𝑥0 to 𝑦0 gradually. 
For this purpose, we introduce a monotonically increasing displacement 
sequence {𝜂𝑡}𝑇𝑡=1 satisfying 𝜂1 → 0 and 𝜂𝑇 → 1. Based on this sequence, 
the transition distribution is defined as Eq. (8), where 𝛼𝑡 = 𝜂𝑡−𝜂𝑡−1, and 
𝑘 is a hyperparameter controlling the noise variance. It can be further 
simplified into Eq. (9). 
𝑞(𝐱𝑡|𝐱𝑡−1, 𝑦0) =  (𝐱𝑡; 𝐱𝑡−1 + 𝛼𝑡𝑒0, 𝑘

2𝛼𝑡𝐈), 𝑡 = 1, 2,… , 𝑇 (8)

𝑞(𝐱𝑡|𝐱0, 𝑦0) =  (𝐱𝑡; 𝐱0 + 𝜂𝑡𝑒0, 𝑘
2𝜂𝑡𝐈), 𝑡 = 1, 2,… , 𝑇 (9)

The transition distribution design adheres to two primary principles: 
smooth transition and mean parameterization. Smooth transition en-
sures smooth changes between 𝐱𝑡 and 𝐱𝑡−1, introducing design flexibility 
by setting the hyperparameter 𝑘 when the image data is within the [0, 1]
interval. The expected distance between 𝐱𝑡 and 𝐱𝑡−1 can be bounded by 
√

𝛼𝑡. The mean parameter 𝐱0 + 𝛼𝑡𝑒0 derives the marginal distribution 
as described in Eq. (9). Moreover, the marginal distributions of 𝐱1
and 𝐱𝑇  converge to 𝛿𝐱0 (⋅) and  (⋅; 𝑦0, 𝑘2𝐈), similar to high-quality and 
low-quality distributions.

The goal of the reverse process is to estimate the posterior distribu-
tion 𝑝(𝑥0|𝑦0): 

𝑝(𝑥0|𝑦0) = 𝑝(𝑥𝑇 |𝑦0)
𝑇
∏

𝑝𝜃(𝑥𝑡−1|𝑥𝑡, 𝑦0)𝑑𝑥1∶𝑇 (10)

𝑡=1

5 
where 𝑝(𝑥𝑇 |𝑦0) ≈  (𝑥𝑇 |𝑦0, 𝑘2𝐈), and 𝑝𝜃(𝑥𝑇−1|𝑥𝑇 , 𝑦0) is the inverse 
transition kernel from 𝑥𝑇  to 𝑥𝑇−1 with parameters 𝜃. Optimization of 𝜃
is achieved by minimizing the negative evidence lower bound: 

min
𝜃

∑

𝑡
𝐷KL(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0, 𝑦0) ∥ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡, 𝑦0)) (11)

where 𝐷KL[⋅ ∥ ⋅] denotes the KL divergence. Combining Eq. (8) and 
(9), the target distribution 𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0, 𝑦0) becomes tractable and can 
be expressed as: 

𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0, 𝑦0) = 
(

𝑥𝑡−1;
𝜂𝑡−1
𝜂𝑡

𝑥𝑡 +
𝛼𝑡
𝜂𝑡
𝑥0, 𝜅

2 𝜂𝑡−1
𝜂𝑡

𝛼𝑡𝐈
)

(12)

Considering the variance parameter independence from 𝐱𝑡 and 
𝑦0, we set 𝛴𝜃(𝐱𝑡, 𝑦0, 𝑡) = 𝑘2 𝜂𝑡−1

𝜂𝑡
𝛼𝑡𝐈. For the mean parameter, we set 

𝜇𝜃(𝐱𝑡, 𝑦0, 𝑡) = 𝜂𝑡−1
𝜂𝑡

𝐱𝑡 +
𝛼𝑡
𝜂𝑡
𝑓𝜃(𝐱𝑡, 𝑦0, 𝑡), where 𝑓𝜃 is a deep neural net-

work with parameters 𝜃 predicting 𝐱0. The objective function can be 
simplified as Eq. (13). 

min
𝜃

∑

𝑡
𝑤𝑡‖𝑓𝜃(𝐱𝑡, 𝑦0, 𝑡) − 𝐱0‖22 (13)

To determine the noise schedule during the diffusion process, we 
adopt hyperparameters 𝑘 and the shift sequence {𝜂𝑡}𝑇𝑡=1. For the initial 
state, the noise level under state 𝐱𝑡 is proportional to 

√

𝜂𝑡 with a 
proportionality factor 𝑘. Given the constraint 𝜂1 → 0, we set 𝜂1 = 0.001. 
For the final state, at the last step 𝑇 , 𝜂𝑇  is set to 0.999 to ensure 
𝜂𝑇 → 1. For intermediate states, for 𝑡 ∈ [2, 𝑇 −1], we take a non-uniform 
geometric scheduling for √𝜂𝑡: 

𝜂𝑡 = 𝜂1 × 𝑏𝛽𝑡0 , 𝑡 = 2,… , 𝑇 − 1 (14)

𝛽𝑡 =
( 𝑡 − 1
𝑇 − 1

)𝑝
× (𝑇 − 1), 𝑏0 = exp

(

1
2(𝑇 − 1)

log
𝜂𝑇
𝜂1

)

(15)

Assumptions are made that 𝛽1 = 0, 𝛽𝑇 = 𝑇 − 1, and √𝜂𝑇 =
√

𝜂1 × 𝑏𝑇−10 . The parameter 𝑝 controls the growth rate of √𝜂𝑡. By 
flexibly scheduling noise, setting appropriate 𝑘 to limit the amplitude 
of noise, and controlling the speed of noise addition with 𝑝, the final 
state converges to around low-quality images, shortening the length of 
the Markov chain and improving inference efficiency.

4. Experiments and results

4.1. Datasets

We conducted extensive comparative experiments using three pub-
lic image datasets: Places2 [45], CelebA-HQ [46], and ImageNet [47], 
along with a specially designed mask dataset [7]. Additionally, to 
demonstrate practical application effects, we performed restoration 
tests on real images of the Terracotta Warriors. The detailed descrip-
tions are provided in Table  2. Details of the Terracotta Warriors data 
are in Appendix  A.1.
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Table 2
Dataset Examples and Descriptions.
Dataset Image Data Description Experiment Description

Places2 Complex scene-level inpainting from 
Paris street scenes

Trained on 180,000 images from 100 categories 
of Places2-Standard; tested on 10,000 images

CelebA-HQ High-quality dataset for face inpainting Trained on 28,000 images; tested on 2000 images

ImageNet Diverse object inpainting Trained on 120,000 images from 100 categories; 
tested on 10,000 images

Mask Dataset Irregular mask dataset Tested on 12,000 irregular masked images

Terracotta Warriors Terracotta Warrior images, including 
4,170 intact and 4000 damaged

Trained on 4000 intact images; tested on 170 
intact and 4000 damaged images
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

s
t
r

4

5
o
f
(
V
t
o
d
t

4

4

o

4.2. Baseline

In this work, we compared our method with four relevant and 
currently relatively advanced restoration methods:

DF-v2 [20]: Utilizes gated convolution to effectively handle free-
form missing regions, allowing for precise and natural inpainting.

DSI [11]: Generates diverse and plausible structural information 
through a hierarchical VQ-VAE, enhancing the realism of the inpainted 
areas.

CTSDG [24]: Ensures global and local consistency in inpainted re-
gions using conditional texture and structure dual generators, achieving 
coherent results.

RePaint [12]: Implements high-quality image inpainting based on 
denoising diffusion probabilistic models, offering iterative refinement 
and strong controllability.

The results of these comparison methods in the experimental ta-
ble are derived from the results we reproduced using the optimal 
checkpoint they provided.

4.3. Evaluation metric

In the experiment, we used the peak signal-to-noise ratio (PSNR), 
structural similarity index (SSIM), and perceptual similarity (LPIPS) to 
measure the objective quality and similarity of images from different 
perspectives. PSNR is a commonly used method for measuring image 
quality, SSIM is an image quality assessment method based on the 
human visual system that considers the similarity of brightness, con-
trast, and structure, and LPIPS is a deep learning based image quality 
assessment method aimed at simulating the human visual system’s 
perception of image differences. The formulas for these indicators are 
as follows: 

PSNR = 10 ⋅ log10

(

MAX2
MSE

)

(16)

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝑐1)(𝜎2𝑥 + 𝜎2𝑦 + 𝑐2)
(17)

A higher PSNR value indicates less image quality loss, while SSIM 
ranges from −1 to 1, with higher values showing greater similarity 
in structure, brightness, and contrast. Lower LPIPS scores mean the 
images are more perceptually similar. For real-world applications like 
the Terracotta Warriors restoration, where original images are unavail-
able, we use no-reference metrics — BRISQUE, NIQE, and PI — to 
assess naturalness and overall perceptual quality. BRISQUE predicts 
quality via natural statistics, NIQE estimates naturalness based on scene 
i

6 
Table 3
Quantitative comparison of five methods on datasets Places2, CelebA HQ, and Im-
ageNet, where ‘‘↑’’ indicates that the larger, the better, and ‘‘↓’’ indicates that the 
smaller, the better.
 Metrics PSNR ↑ SSIM ↑ LPIPS ↓
Methods 0-20 20-40 40-60 0-20 20-40 40-60 0-20 20-40 40-60 

Pl
ac
es
2

DF-v2 30.297 24.725 18.756 0.956 0.857 0.674 0.045 0.136 0.289 
DSI 31.418 24.199 19.295 0.952 0.858 0.684 0.042 0.135 0.260 
CTSDG 32.145 25.707 20.642 0.963 0.883 0.725 0.033 0.118 0.257 
RePaint 32.445 25.091 20.664 0.965 0.894 0.775 0.031 0.108 0.212 
Ours 32.466 25.103 20.662 0.968 0.885 0.764 0.030 0.110 0.243 

Ce
le
bA
-H
Q DF-v2 32.074 27.330 22.694 0.953 0.866 0.796 0.034 0.106 0.244 

DSI 31.752 26.643 22.540 0.949 0.893 0.785 0.037 0.178 0.262 
CTSDG 32.170 28.480 23.208 0.958 0.902 0.847 0.035 0.082 0.218 
RePaint 32.653 29.850 23.534 0.963 0.925 0.861 0.026 0.089 0.192 
Ours 32.734 29.641 23.940 0.968 0.926 0.858 0.025 0.085 0.181 

Im
ag
eN
et

DF-v2 31.458 24.428 19.536 0.955 0.861 0.714 0.047 0.146 0.278 
DSI 31.902 23.647 20.019 0.961 0.853 0.734 0.043 0.145 0.236 
CTSDG 32.667 25.127 20.640 0.953 0.893 0.725 0.030 0.128 0.273 
RePaint 32.713 28.192 20.494 0.960 0.898 0.818 0.034 0.093 0.171 
Ours 32.821 28.973 20.679 0.962 0.902 0.813 0.031 0.095 0.176 

tatistics, and PI evaluates comprehensive perceptual quality. For all 
hree metrics, lower scores indicate better image quality and closer 
esemblance to natural images.

.4. Implementation details

Both diffusion models utilized in our methodology underwent
00,000 training iterations, commencing with an initial learning rate 
f 2 × 10−5. For the ReampleDiff model, the parameters were set as 
ollows: 𝑇 = 1000, 𝛼 = 0.5, 𝑘 = 1, and an exponential moving average 
EMA) rate of 0.999. In the case of the RefineDiff model, a pre-trained 
QGAN model was employed as the encoder–decoder module, with 
he parameters configured to 𝑇 = 4, 𝑝 = 0.3, and 𝑘 = 2. During 
ur experimental procedures, both images and masks were resized to 
imensions of 256 × 256 pixels. The entire model was developed using 
he PyTorch 2.5.0 framework and trained on an NVIDIA® A6000 GPU.

.5. Main results

.5.1. Quantitative comparisons
To ensure the reliability and consistency of our findings, we carried 

ut three independent tests on different repair masks and diverse 
mage data, thereby effectively eliminating the potential influence of 
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Fig. 6. Qualitative comparisons of five methods on three datasets show the results on Places2, CelebA-HQ, and ImageNet, as well as the details of the repair results. The last 
column represents GruondTruth.
randomness. We then assessed the repair outcomes using PSNR, SSIM, 
and LPIPS metrics to obtain quantitative indicators across three distinct 
datasets and various mask intervals. An analysis of the overall results 
presented in Table  3 reveals that our proposed method achieves the 
highest PSNR and SSIM values while demonstrating the lowest LPIPS 
score among the evaluated methods. Our approach showcases superior 
repair efficacy and adaptability across multiple masks and datasets. 
Although the performance of our method in restoring large masks on 
the Places2 dataset is relatively lower than that of RePaint, this can 
likely be ascribed to the inherent complexity of the scene restoration 
content. Nevertheless, our method significantly improves the efficiency 
of diffusion computations while maintaining a competitive edge. This 
highlights the effectiveness of our two-stage progressive diffusion repair 
technique in achieving high-quality structural and textural restoration 
results.

4.5.2. Qualitative comparisons
Fig.  6 presents examples of both overall and localized inpainting 

outcomes achieved through five different methodologies applied to 
the Places2 (scene images), CelebA HQ (facial images), and ImageNet 
(natural images) datasets. The observations depicted in the figure indi-
cate that the visual quality of the DF-v2, DSI, and CTSDG methods is 
relatively subpar, which aligns with the findings from the quantitative 
assessments. In contrast, our proposed approach demonstrates superior 
capabilities in restoring structural integrity and intricate details. For 
instance, the mesh structure of the bridge illustrated in the first row 
exhibits more defined textures, the facial restoration in the second row 
appears more aesthetically pleasing and harmonious, and the depiction 
of the dog’s teeth in the third row retains an overall aesthetic appeal 
while maintaining a reasonable structural representation.

Furthermore, Fig.  7 shows the inpainting results associated with two 
asymptotic inpainting processes. By implementing additional denoising 
and deblurring techniques on the initial inpainting outputs, the image 
quality is significantly improved, thereby underscoring the efficacy 
of the asymptotic inpainting method and the RefineDiff module. In 
conclusion, these qualitative comparisons substantiate the effectiveness 
of our methodology across various mask configurations and datasets.
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Table 4
Ablation Study of SNR Loss on Places2.
 Loss (𝛾) PSNR ↑ SSIM ↑ LPIPS ↓ 
 SNR-0 19.654 0.814 0.145  
 SNR-1 20.313 0.795 0.161  
 SNR-0.5 20.239 0.816 0.116  

4.6. Ablation studies

This section analyzes the effectiveness of quality improvement 
methods and accelerated inference strategies in two-stage diffusion 
inpainting. By comparing different SNR loss functions and RefineDiff 
control parameters, we verify the impact of parameters on repair 
quality. By comparing different sampling methods of ResampleDiff, 
combining jump parameters with RefineDiff, and analyzing the impact 
of acceleration strategies on the results, we aim to obtain a more 
efficient sampling strategy.

4.6.1. SNR loss function
To assess the efficacy of the signal-to-noise ratio (SNR) loss function, 

we performed comparative experiments utilizing various gamma (𝛾) 
parameters within a lightweight diffusion model implemented in the 
ResampleDiff module. The parameter 𝛾 modulates the extent of weight 
reduction, thereby enhancing the emphasis on the inpainting of regions 
with high noise levels. We compared the SNR loss against the effects 
of parameters 𝛾 = 0, 𝛾 = 1, and 𝛾 = 0.5 on the inpainting outcomes. 
Specifically, 𝛾 = 0 corresponds to the mean squared error (MSE) loss. 
Table  4 and Fig.  8 illustrate that the optimal results were achieved with 
𝛾 = 0.5 across all three evaluation metrics. In contrast, 𝛾 = 1 diminished 
the weight allocated to the latter portion of the data, resulting in 
pronounced noise artifacts in the outcomes. The SNR loss function 
prioritizes the learning of initial details by recalibrating the train-
ing weight distribution, which subsequently enhances the inpainting 
quality of our lightweight model.
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Fig. 7. Visualization of diffusion in the painting process. Figures A to D show the gradual denoising process of the first stage, and the output shows the result after enhancement 
in the second stage.
Fig. 8. Qualitative Comparison of SNR Loss on Places2 (Panels A, B, and C show the inpainting results for 𝛾=0, 1, and 0.5).
Table 5
Comparison of Different RefineDiff Configurations on ImageNet.
 𝑃 𝑘 PSNR ↑ SSIM ↑ LPIPS ↓ 
 0.3 1 19.987 0.656 0.348  
 0.3 2 22.031 0.838 0.110  
 0.5 2 19.978 0.764 0.284  
 1.0 2 19.767 0.742 0.216  

4.6.2. RefineDiff Residual Control Parameters
To improve the conversion of initially repaired images into higher-

quality images, comparative experiments focused on various param-
eters related to noise intensity and conversion speed within the Re-
fineDiff module. Specifically, within the diffusion step range denoted as 
𝑇 , the parameter 𝑘 regulates the final state noise intensity, facilitating 
convergence towards the low-quality image spectrum. In contrast, the 
parameter 𝑝 allows for precise modulation of the noise conversion 
speed. As illustrated in Table  5 and Fig.  9, which pertain to the case 
when 𝑇 = 4, enhancing the initially repaired image A yielded superior 
results for image C when 𝑝 was set to 0.3 and 𝑘 to 2. Conversely, using 
𝑘 = 1 with a larger 𝑝-value resulted in a blurred output. When 𝑘 was set 
to 2, the noise intensity approximated that of the initial repair outcome. 
Furthermore, with 𝑝 at 0.3, the conversion speed was deemed optimal, 
thereby significantly improving the quality of the resultant image.

4.6.3. ResampleDiff schedule parameters
To enhance the integration of the two components of diffusion 

repair and to examine the effects of various accelerated repair processes 
within a single stage on the final outcomes, a comparative experiment 
was conducted focusing on the resampling parameters while utilizing 
the same RefineDiff module enhancement. Typically, more resampling 
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Table 6
Comparison of Different Resampling Configurations on CelebA-HQ.
 𝑅sample 𝐽interval PSNR ↑ SSIM ↑ LPIPS ↓ Time (s) 
 5 10 29.147 0.932 0.049 21.49  
 10 10 29.060 0.934 0.048 26.29  
 15 10 30.395 0.939 0.047 32.64  
 10 5 29.651 0.941 0.048 40.50  
 10 15 30.243 0.931 0.047 18.51  

steps and reduced intervals yield superior preliminary repair results. 
By setting the jump length to 10, we analyzed the influence of varying 
resampling frequencies and jump intervals on both quality and effi-
ciency. As illustrated in Table  6 and Fig.  10, the findings indicate that 
a resampling frequency of 𝑟 = 10 and a jump interval of 𝑗 = 15 resulted 
in the most rapid repair speed alongside high-quality outcomes. This 
demonstrates that an effective combination of the two components can 
improve performance and enhance visual quality.

4.7. Efficiency comparison

In this section, we assess the computational complexity of the TRRS-
DM model by analyzing the architectural configurations, parameter 
counts, and average inference times associated with various repair 
methodologies. As illustrated in Table  7, the diffusion-based model 
generally demonstrates a greater number of parameters and extended 
inference times when juxtaposed with the GAN-based model. This 
discrepancy arises from the necessity of numerous sampling steps in the 
denoising process of the diffusion model to attain high-quality image 
generation. Nevertheless, in contrast to the diffusion-based RePaint 
method, our approach markedly decreases the parameter count by 
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Fig. 9. Qualitative Comparison of Different RefineDiff Configurations on ImageNet (Panel A shows coarse inpainting results; Panels B, C comparep = 0.3, k=1, 2; Panels C, D, E 
compare k=2,p = 0.3, 0.5, 1).
Fig. 10. Qualitative Comparison of Different Resampling Configurations on CelebA-HQ (Panels A, B, C compare j=10, r=5, 10, 15; Panels B, D, E compare (r=10, j=10, 5, 15).
Fig. 11. Restricted inpainting example on Places2 Dataset.
Table 7
Comparison of Complexity and Efficiency Among Different Methods.
 Methods Architecture Params Inference time (s) 
 DF-v2 GAN 4M 0.65  
 DSI GAN 76M 1.14  
 CTSDG GAN 52M 2.23  
 RePaint Diffusion 552M 492.04  
 Ours Diffusion 191M 19.52  

two-thirds and reduces the inference time to one-twentieth of what 
is required by RePaint. Furthermore, the modular design of our two 
components allows for independent training, which further alleviates 
computational demands during the training phase and facilitates a more 
efficient process for diffusion-based image inpainting.

4.8. Limitation and discussion

Limitations: As shown in Fig.  11, the complexity of large-area 
masks, combined with the relatively small proportion of sample cat-
egories, makes it difficult to adequately generate images that perform 
9 
well in terms of both structural texture and semantic coherence. This 
phenomenon is prevalent among various image inpainting techniques 
and is also a problem faced in the restoration of the Terracotta War-
riors. The possible reasons for this include the limited available infor-
mation in the damaged images and the insufficient representativeness 
of sample categories in the training dataset.

Discussion: In order to improve the quality of image inpainting, 
it is advisable to investigate the integration of some supplementary 
reference information or guiding methods. Adopting high-quality data 
for pre-training and implementing data augmentation on small datasets 
can enhance the data quality and optimize the performance of diffu-
sion models in complex scenarios. Furthermore, future research should 
delve deeply into the application of diffusion models in high-resolution 
image inpainting and consider increasing user engagement, so that the 
inpainting results can more effectively meet user requirements.

4.9. Application of terracotta warriors

To better assess the efficacy of our proposed methodology, we con-
ducted a comparative analysis using the authentic Terracotta Warriors 
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Fig. 12. The complete Terracotta Warriors inpainting with reference, the white box focuses on local differences, zoom in for optimal results.
Fig. 13. The damaged Terracotta Warriors inpainting without reference. The white box focuses on local differences, zooming in for optimal results.
Table 8
Comparison of Full-Reference and No-Reference Inpainting Applied to Terracotta 
Warriors.
 Method Full-Reference No-Reference

 PSNR ↑ SSIM ↑ LPIPS ↓ BRISQUE ↓ NIQE ↓ PI ↓  
 DF-v2 26.096 0.857 0.114 15.505 5.568 3.603 
 CTSDG 24.824 0.848 0.111 18.543 6.202 4.015 
 RePaint 26.250 0.900 0.069 14.532 5.957 3.636 
 Ours 29.211 0.929 0.048 11.141 3.511 2.895 

dataset. The inpainting of complete Terracotta Warriors with reference 
is illustrated in Fig.  12, while the inpainting of damaged Terracotta 
Warriors without reference is depicted in Fig.  13. The corresponding 
performance metrics are presented in Table  8. Our approach demon-
strated superior performance, achieving the highest scores in reference 
metrics such as PSNR, SSIM, and LPIPS, as well as in non-reference 
metrics including BRISQUE, NIQE, and PI. Additionally, it is evident 
from the figures that both DF-v2 and CTSDG exhibit texture-blurring 
artifacts. In contrast, our method effectively restores intricate features 
and textures, yielding more precise and more coherent results than 
RePaint’s. This experiment underscores the potential of our approach in 
effectively restoring significant cultural heritage, thereby contributing 
to the preservation and appreciation of historical artifacts.
10 
5. Conclusion

The two-stage diffusion inpainting method (TRRS-DM) introduced 
in this study integrates pixel-spatial resampling (ResampleDiff) and 
latent-spatial refinement (RefineDiff). This approach adopts lightweight 
acceleration techniques and latent-spatial diffusion methods. While 
minimizing computational requirements, it incorporates signal-to-noise 
ratio weighting and secondary enhancement to maintain restoration 
quality. As a result, TRRS-DM can achieve high-fidelity image restora-
tion under various occlusion scenarios. Evaluations on multiple public 
datasets indicate that TRRS-DM outperforms existing advanced meth-
ods in several performance metrics. Specifically, it demonstrates out-
standing performance and enhanced visual quality, especially in restor-
ing damaged Terracotta Warrior images.

In conclusion, TRRS-DM presents a novel strategy for diffusion-
based image inpainting, demonstrating its ability to achieve high-
quality restoration with fewer computational resources. This method 
holds great potential for applications in cultural heritage conserva-
tion. For future Terracotta Warriors restoration, we are overcoming 
more challenges by integrating 3D point cloud and 2D image restora-
tion/registration, using new ATR methods like learning from good and 
bad samples, and combining damage recognition and classification to 
advance intelligent 3D restoration. It is expected that TRRS-DM will 
promote the development of digital restoration techniques applicable to 
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Fig. 14. Multi-view 2D images obtained from 3D scanned Terracotta Warriors for dataset collection and preprocessing, in preparation for the restoration work.
Fig. 15. Restoration results of damaged Terracotta Warriors, showcasing both front and backside restoration. Zoom in for a detailed view.
the Terracotta Warriors, thus providing essential resources for archae-
ologists and restoration specialists and making significant contributions 
to the broader field of cultural heritage conservation.
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Appendix

A.1. Dataset of TerraCotta Warriors

The Terracotta Warriors dataset is provided by the National and 
Local Joint Engineering Research Center for the Digitalization of Cul-
tural Heritage at Northwest University. During the digital protection 
project, the center deploys an advanced 3D robotic arm to conduct com-
prehensive scans of the Terracotta Warriors, precisely acquiring their 
3D information. Subsequently, multi-view 2D images with a resolution 
of 4096 × 4096 are generated from the 3D models using professional 
software (multiple perspectives are shown in Fig.  14).

Strict adherence to cultural heritage protection norms is maintained 
throughout the scanning process. Rigorous control is exercised over 
lighting conditions, angles, and scanning duration. A meticulous multi-
angled scan of 70 distinct Terracotta Warrior individuals is carried out, 
amassing a substantial volume of original images. Once the raw data is 
obtained, screening is promptly initiated based on clarity and integrity 
criteria. Images that do not meet the requirements are discarded. The 
remaining images are then cropped in line with experimental needs, 
and their resolution is adjusted to 256 × 256. Eventually, a usable 
dataset can be acquired, comprising 4,170 intact and 4000 damaged 
images.

A.2. More comparative examples

See Figs.  15–17.
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Fig. 16. Restoration of Terracotta Warriors with extensive damage and large missing parts. Zoom in to observe the meticulous restoration work.
Fig. 17. Additional restoration results of various types of Terracotta Warriors in full 
body. Explore more detailed restoration effects by zooming in.
12 
Data availability

Data will be made available on request.
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