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As a UNESCO World Heritage Site, the Terracotta Warriors face degradation from natural erosion. Traditional
restoration is time-consuming, while computer-aided methods provide efficient digital solutions. We propose
a Two-stage Resampling and Residual Shifting framework using Diffusion Models (TRRS-DM) for texture
inpainting. The ResampleDiff module enhances details via perception-weighted learning and lightweight
diffusion. The RefineDiff module refines results in latent space by removing noise. Experiments demonstrate

that TRRS-DM achieves faster computation, surpasses existing methods in visual quality, and effectively restores
damaged artifacts. This approach advances digital heritage restoration and providing scalable supports for
archaeological conservation. Our code is available at https://github.com/Emwew/TRRS-DM.

1. Introduction

The Qin Shi Huang Mausoleum and Terracotta Warriors, designated
as a UNESCO World Heritage Site in 1987 and hailed as the “Eighth
Wonder of the World”, showcase the Qin Dynasty’s military and cul-
tural traits [1]. Environmental factors have resulted in significant dam-
age and loss, thereby complicating archaeological research and exhibi-
tions. Conventional restoration techniques can be labor-intensive and
may pose risks to the artifacts, while computer-assisted restoration
presents accurate and non-invasive alternatives. In the restoration of
the Terracotta Warriors, two-dimensional restoration technology was
employed to reconstruct missing or damaged components. This technol-
ogy improves the resemblance of the affected areas by analyzing their
characteristics, thus facilitating physical repair efforts. Furthermore,
digital restoration not only supports the physical preservation of arti-
facts but also enhances public engagement through virtual experiences,
thereby playing a crucial role in raising awareness and safeguarding
cultural heritage [2].

Traditional image processing methodologies, including interpola-
tion [3] and block matching [4], exhibit limited efficacy when address-
ing large or complex lesions, often resulting in unnatural outcomes
and a loss of detail. The advent of deep learning [5] has ushered
in significant advancements in image repair, particularly through the
application of convolutional neural networks (CNN) [6,7] and gener-
ative adversarial networks (GAN) [8,9]. CNNs are particularly adept
at capturing local features and facilitating precise restoration, while
GANs enhance the naturalness of generated images through adver-
sarial training mechanisms. Additionally, autoregressive models that
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utilize variational autoencoders and transformers can reconstruct vari-
ous types of missing data on a pixel-by-pixel basis [10,11]. Despite the
advantages offered by deep learning techniques in overcoming many of
the limitations associated with traditional methods, they also introduce
new challenges, including the instability of GAN training, substantial
data requirements, and the demand for significant computational re-
sources. Furthermore, in extreme or specialized scenarios, the quality
of the repairs may still be constrained.

Recently, diffusion-based methods such as Repaint [12] and La-
tentPaint [13] have adopted a step-by-step noise removal approach to
restore images, demonstrating excellence in repairing complex struc-
tures and textures. This brings new opportunities to the field of image
inpainting. The rich prior knowledge inherent in diffusion models
enables superior performance in detail restoration. However, these
models come with significantly higher computational costs compared
to GAN-based approaches [14]. Moreover, in the context of the dig-
ital restoration of cultural artifacts, challenges such as limited data
availability, complex textures, and the necessity to adhere to historical
and cultural contexts pose additional hurdles. As a result, the effective-
ness of diffusion methods in this particular application remains to be
validated.

In response to the challenges associated with elevated model train-
ing expenses and prolonged inference durations, we introduce a two-
stage image inpainting technique grounded in diffusion models, re-
ferred to as TRRS-DM. This methodology is fundamentally composed
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Fig. 1. In the digital restoration of the Terracotta Warriors, (Left) demonstrates the inpainting results of our method on different datasets, achieving efficient and high-fidelity
image restoration. (Right) shows the collection of point cloud and image data using a high-definition camera on a robotic arm platform for the digital restoration of the Terracotta

Warriors.

of two principal components: ResampleDiff and RefineDiff. The Re-
sampleDiff module initially conducts a preliminary restoration of the
image, thereby expediting the generation of a foundational yet precise
outcome. The RefineDiff module further mitigates noise and blurriness,
enhancing the image’s detailed information. Ultimately, this two-stage
diffusion process culminates in high-quality image restoration. Empiri-
cal findings indicate that our approach significantly diminishes both the
parameter count and inference time, while simultaneously achieving
superior restoration performance across various datasets (as shown in
Fig. 1). This presents a novel and effective strategy for the digital
restoration of the Terracotta Warriors.
The main contributions of our paper are as follows:

+ We propose a two-stage image restoration method based on dif-
fusion models, referred to as TRRS-DM. This approach integrates
ResampleDiff in the pixel space with RefineDiff in the latent
space, aiming to achieve high-quality image restoration.

We employ a lightweight diffusion model, a signal-to-noise ratio
(SNR) loss function, DDIM acceleration, and latent space residual
shift diffusion techniques to reduce computational costs while
ensuring high-quality restoration.

Our method shows remarkable performance in texture restoration
compared to leading techniques. It effectively recovers texture de-
tails, yielding realistic and natural results with minimal parameter
overhead.

2. Related work
2.1. Image inpainting

Image inpainting is a complex low-level visual task that seeks to
reconstruct absent regions of an image by utilizing information from
intact pixels. Traditional methods [15], such as gradient interpola-
tion [3], partial differential equations [16], and patch-based filling [4],
are capable of generating locally smooth results or filling small areas
of missing data. While these methods can effectively complete small
missing areas, they face challenges in accurately reconstructing more
complex scenes due to limited global understanding of the image.

Compared to traditional methods, deep learning-based image in-
painting has achieved tremendous success [17]. Architectures like
encoder—-decoder [18] and GANs have been proposed, with many novel
methods focusing on image inpainting. To ensure that the restored im-
ages have semantically reasonable context, researchers have introduced
techniques such as dilated convolutions [19] to increase the receptive
field, Partial convolutions [7] which guide convolutional kernels ac-
cording to a mask, improved learnable convolution kernels to generate
dynamic soft masks [20], and Fourier-based convolution encoders [21]
for image inpainting to avoid generating invalid features within missing

regions. Further research focuses on more refined inpainting, using
edge guidance with EdgeConnect [22], PEN-Net’s [23] pyramid layer-
by-layer restoration, DSI [11] based on VQ-VAE diversity inpainting,
and CTSDG’s [24] dual-stream network architecture combining image
texture structure priors. With the success of transformers in natu-
ral language processing, ICT [25] and MAT [26] have also applied
transformers to image restoration. Spatial self-attention based on this
approach can incur high computational costs. To reduce computation,
some approaches downsample input images to lower resolutions [27].
Others compute spatial attention after encoding the input image into
low-resolution features [28]. RestFormer [29] proposes channel self-
attention for image reconstruction in multi-scale representations with
linear complexity. These strategies aim to explore how to extract
useful information from known areas for hole-filling effectively. These
methods, which rely on specific masks during training, exhibit weak
generalization to new mask types. Free mask repair within diffusion
models represents a promising direction for further research.

2.2. Diffusion inpainting

Diffusion models have achieved significant advancements in image
generation, capable of producing high-quality images through an itera-
tive probabilistic process that introduces novel opportunities for image
inpainting [30]. The fundamental Denoising Diffusion Probabilistic
Model (DDPM) [31,32] executes the transformation of noise into an
image through a two-stage process, which includes forward denoising
and backward denoising diffusion.

To use the diffusion model for image inpainting, RePaint [12]
utilizes a pre-trained DDPM as a generative prior, managing the re-
verse diffusion iterations by sampling exclusively from unoccluded
regions, thereby achieving high-quality and diverse image restorations.
LatentPaint [13] addresses the challenge of high computational costs
associated with conventional techniques by employing latent space con-
ditioning and explicit propagation methods. StrDiffusion [33] recon-
ceptualizes texture denoising through structural guidance and time-
dependent sparsity, optimizing the denoising process to reduce seman-
tic discrepancies between occluded and unoccluded areas. M2S [34]
introduces a coarse-to-fine sampling strategy to decrease the number
of denoising steps and expedite inference. And some guided inpainting
methods: SmartBrush [35] employs shape guidance, Paint by Exam-
ple [36] uses reference images for guidance, and BrushNet [37] and
Imagen Editor [38] leverage text-guided image generation to modulate
the input and achieve semantically coherent and meaningful results.
Additionally, various adaptable diffusion strategies have been devel-
oped, including a zero-shot framework for linear image recovery [39],
the unsupervised posterior sampling technique DDRM [40], the fu-
sion of forward and reverse diffusion for enhanced efficiency [41],
and non-Markovian diffusion acceleration [42]. Despite its promising
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Fig. 2. An overview of the framework. TRRS-DM is structured around a two-tier architecture that comprises a resampling diffusion module and a latent spatial enhancement

module.

Table 1

Symbols and Description.
Symbols Description
Xo Raw data sample (without added noise)
X, The data sample at time step ¢ (with added noise)
B, Noise coefficient during diffusion process
a =TI (1-5) Accumulated denoising factor
Ho(x,,1), Zp(x,, 1) Mean & variance predicted in the reverse process
m Mask, distinguish known and unknown regions
o} Element-wise multiplication

€9(x,,1) Noise predicted by the model at time step ¢

[UALS Monotonically increasing displacement sequence
a, Increment in the displacement sequence
So(x;, ¥, 1) Deep Neural network predicting x, with 6

potential, diffusion-based restoration is computationally intensive and
time-consuming. Therefore, accelerating these models is crucial. This
study investigates applying diffusion restoration technology to the dig-
ital preservation of the Terracotta Warriors, aiming to maintain high-
quality cultural heritage conservation while enhancing computational
efficiency.

3. Methods
3.1. Preliminary

For the convenience of understanding, the main Symbols and their
Description are explained in Table 1.

3.2. Overadll architecture

To facilitate the application of diffusion model image restoration
techniques to the conservation of the Terra Cotta Warriors’ cultural
artifacts, we aim to enhance the efficiency of the restoration process
while preserving high-quality outcomes. We introduce the Two-stage
Resampling and Residual Shifting using Diffusion Models (TRRS-DM).
This two-stage method incorporates resampling and residual shifting
utilizing diffusion models for two-dimensional texture inpainting, as
shown in Fig. 2. TRRS-DM consists of a resampling diffusion module
and a latent space enhancement module, which collectively enhance
restoration quality through a two-stage processing approach. The Re-
sampleDiff module executes resampling diffusion within the pixel space
to initially address the missing areas of the image, producing inter-
mediate results. Subsequently, the RefineDiff module further refines
these intermediate outputs, ensuring that the final restoration results
are clear and natural.

In the ResampleDiff module, we use a lightweight diffusion network
to input the mask and the image x, to be repaired, and combine
it with the mask to add noise information to the image to generate
x;. Subsequently, a resampling strategy was adopted for denoising,
and the preliminary result x; was obtained as a reference for the
subsequent enhancement stage. We also integrate the denoising diffu-
sion implicit model (DDIM) and perceptual prior weighting strategy to
ensure efficient and high-quality output.

In the RefineDiff module, the intermediate result x;, is input into the
RefineDiff enhancement module. Here, a pre-trained encoder encodes
this result into latent space, where the residual switching enhance-
ment diffusion method is employed to facilitate the transformation
into higher-quality encoded information. The diffusion outcome is then
decoded to produce a superior quality repair result, y,. Our approach
leverages latent spatial diffusion to minimize computational expenses
while achieving enhanced quality in image conversion.

3.3. ResampleDiff moudle

Our two-stage diffusion inpainting involves the basic diffusion pro-
cess, forward denoising and backward denoising. The diffusion process
in DDPM incrementally adds Gaussian noise to the data at each time
step ¢, described by a Markov chain (see Egs. (1) and (2)). Using the
reparameterization trick, it allows sampling x, at any given timestep ¢
in closed form:

ax1X,_) = N (x5 V1 = Bix,_1, D) (€)]
a(x,1%9) = N (X5 /&g, (1 = @)D 2

Reverse Process: The aim is to reconstruct the original data distribu-
tion from pure noise. In inference, starting from a sample x; ~ N'(0,I),
we sequentially sample x,_; until recovering the original image x,. This
is modeled as a Markov chain with conditional distributions:

PoXi_11X) = N (X,_1; o (X, 1), Zp(X,,1)) 3)

For the diffusion-based resampling image inpainting technique, we
employed a lightweight pre-trained unconditional DDPM [43] and
introduced the masked input image into the reverse diffusion process
for conditional generation (see Fig. 3). For known regions, it directly
utilizes information from the original image, by Eq. (2), xi{;l)wn
N (\/&_,xo,(l - &,)I). For unknown regions, the model generates new

content to fill in the gaps, by Eq. (3), x:;nimown ~ N (G, 1), Zp(x,, ).
The two components are then combined using a mask operation, as
shown in Eq. (4). This result is used as input for the next denoising step,
ensuring that the generated content blends harmoniously with existing
content, thereby improving the quality and coherence of the inpainted
image.

XlT=mox! +1-mox! 4)

known unknown

However, a single harmonization resampling step may not ade-
quately incorporate semantic information throughout the denoising
process, meaning that the integration between newly generated image
parts and the surrounding environment might be insufficient, leading
to less natural or coherent results. To better propagate contextual
information while avoiding over-processing and enhancing efficiency,
we introduce a resampling strategy with parameters such as the number
of resampling iterations, jump length, and interval. Fig. 4 presents the
specific sampling strategies.

In our method, reducing the diffusion model parameters can ac-
celerate the inference process. However, directly reducing parameters
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Fig. 3. Schematic of the ResampleDiff Module. This module completes unknown regions by applying diffusion resampling to the input image and mask.
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Fig. 4. The resampling process schedule for diffusion inpainting. Blue represents DDPM, orange represents DDIM, and each point in the small image represents a diffusion step.
Time T is set to 250, and the number of resampling times, jump length, and jump interval are all set to 10, DDIM=5. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

may impair the model’s performance. Inspired by [34,43], perceptual
priority (P2) weighting aims to prioritize learning from more important
noise levels. Unnecessary cleaning stages are assigned the minimum
weight, thereby assigning relatively higher weights to the remaining
stages. We modify the loss function during the training process to
compensate for the parameter reduction.

Diffusion models are trained by optimizing the variational lower
bound (VLB), which is the sum of denoising score-matching losses:
Ly, = Y,L, Each step ¢+ matching loss L, measures the distance
between two Gaussian distributions and can be rewritten in terms of
the noise predictor ¢, as follows:

L, =Dy (q (x| x%0) Il g (%=1 | %,))
B,

- _ 2
=B | T —ap I oG ®

Within the VLB framework, the objective can be expressed as:
Lgimple = X, 4L;, with a weighting scheme 4, = A=AAZ8)  We intro-
duced perception-prioritized weighting into the modified loss function

to emphasize context learning:
A = Ak + SNR(tY, (6)

Where the original weight 4, is replaced by 4. The parameter y con-
trols the strength of down-weighting, and k prevents weight explosion
while determining the sharpness of the weighting scheme. The SNR

is defined as: SNR(t) = ]“’& . The overall loss function becomes: L =
a4

Y. A4/L,. This modification ensures the model focuses on perceptually
rich context during training, leading to richer and more natural results.

Finally, we incorporated the DDIM accelerated sampling strategy
into our model [42]. By using a non-Markovian inference process, we
obtain denoised result x;{) o more efficiently:

—j — — -
X en = A E Xt = V& €K )+ /1 = & — 67 €4(X,, D) + 0,6, (7)

where ¢, ~ N(0,I) represents independent standard Gaussian noise
relative to x,. When ¢, = 0, DDIM sampling becomes a special case.
We then diffuse the input image according to Eq. (2) to align known
information with x’_’k . Finally, we concatenate the generated infor-
. t—j unknown .. . . I—

mation x with the conditional information x’~" as per Eq. (4),

. unknown "7 : Lo known

ensuring effective integration of conditional information throughout
the denoising process. This enhances the consistency and semantic cor-
rectness of the inpainted regions with the surrounding image. Finally,
the overall algorithm of the RefineDiff module is shown in Algorithm

1.
3.4. RefineDiff moudle

In the RefineDiff section, as shown in Fig. 5, the original image is
first compressed four times using VQGAN [44] and encoded into latent
space. Then, a Markov chain is constructed to convert high-quality
and low-quality images. By controlling the conversion speed and noise
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Fig. 5. Schematic of the RefineDiff Module. This module refines low-quality input images by encoding them into a latent space to reduce resource requirements, and then applies

residual diffusion methods to achieve higher clarity and accuracy in the results.

Algorithm 1: Inpainting Using ResampleDiff Approach

Input: Image x and Mask m

1 Initialize the noisy image x; ~ N'(0, I).

2 Set rgppe (Mumber of iterations), jmpe (ump length), and
Jinterval Gump interval), Resample = [0,0, 1, ..., 0], where R =1
for resampling and R = 0 for jumping, determined by ;.

s forr=T,...,1do

4 Sample ¢ ~ N'(0, 1) if t > 1, otherwise set € = 0,

5 xf(’ml)wn = \/5’_:"0 + (1 —ae;

6 Sample z ~ N(0, 1) if t > 1, otherwise set z = 0,

- 1 — .
7| X = 7 [xt - B, (\/1 - a,) ER t)] + 0,2, use DDIM,;

8 Update image: x"! =mox~! +(1-m)ox'"!

known unknown”
9 if Resample (when T mod jiperva = 0) then
10 fori=1,...,rgmpe do
1 if r < rgmpe and t > 1 then
12 Sample x, ~ N (\/T=B,_;_X,_. B ;1 I);
13 Iterate jg,mple times Single step inpaint(4-8).
14 end
15 end
16 end
17 end

Output: Inpainted Image x,

intensity during the diffusion process, the Markov chain is used for
reverse sampling to enhance low-quality images, thereby reducing the
computational cost during training and achieving high-quality images.

Specifically, a residual ¢, = y, — x, is defined between the high-
quality image y, and the low-quality image x,, from which a Markov
chain of length T is constructed to migrate from x, to y, gradually.
For this purpose, we introduce a monotonically increasing displacement
sequence {;1,}tT:1 satisfying n, — 0 and 5 — 1. Based on this sequence,
the transition distribution is defined as Eq. (8), where «, = n,—#,_;, and
k is a hyperparameter controlling the noise variance. It can be further
simplified into Eq. (9).

4%, 1X,_1,¥0) = N (X3 X,_; + a,eq, K2 )), t=1,2,...,T 8)

a(x, X, ¥o) = N'(X;3Xg + mpeq, K2, t=1,2,...,T 9

The transition distribution design adheres to two primary principles:
smooth transition and mean parameterization. Smooth transition en-
sures smooth changes between x, and x,_, introducing design flexibility
by setting the hyperparameter k when the image data is within the [0, 1]
interval. The expected distance between x, and x,_; can be bounded by

«,. The mean parameter x, + o,¢, derives the marginal distribution
as described in Eq. (9). Moreover, the marginal distributions of x;
and x; converge to 05, () and N'(-; yy, k*T), similar to high-quality and
low-quality distributions.

The goal of the reverse process is to estimate the posterior distribu-
tion p(xg|yp):

T
plxolyg) = P(XT|yO)HP9(x;_| [x;, yo)dxy.1 10$)

t=1

where p(xrlyy) ~ N(xrlyy, k2D, and py(xr_;|xr,yy) is the inverse
transition kernel from x; to x;_; with parameters . Optimization of ¢
is achieved by minimizing the negative evidence lower bound:

min 3 Dia(4(x 11, X0 ¥0) | PoCGxi11x1: 30)) an
t

where Dy [- || -] denotes the KL divergence. Combining Eq. (8) and
(9), the target distribution q(x,_;|x,, x, yy) becomes tractable and can
be expressed as:

q(x,_1 x4, X0, ¥9) = N (x,,l; nt—_]x, + ﬁxO, sz—_la,l> 12)
n; Ny n;

Considering the variance parameter independence from x, and
¥o, We set Zy(X,, yp,1) = kz'z;‘atl. For the mean parameter, we set
He(Xp v, D) = =bx, + :—:fg(x,:yo,t), where f, is a deep neural net-
work with parameters 6 predicting x,. The objective function can be
simplified as Eq. (13).

meing wll fo (X, yo.1) = %12 (13)

To determine the noise schedule during the diffusion process, we
adopt hyperparameters k and the shift sequence {7, :T= - For the initial
state, the noise level under state x, is proportional to \/;1_, with a
proportionality factor k. Given the constraint ; — 0, we set n; = 0.001.
For the final state, at the last step T, n; is set to 0.999 to ensure
nr — 1. For intermediate states, for ¢ € [2, T—1], we take a non-uniform
geometric scheduling for /7;:

"It=7’11><bgl, t=2,...,T -1 (14)
t—1\° 1 nr

=\ T-1), b= —log — 15

b (T—l) x( ) bo exp<2(T_1) Ogn]> (15)

Assumptions are made that g, = 0, fr = T — 1, and \/ﬁ =
\/n x bi~'. The parameter p controls the growth rate of y/7,. By
flexibly scheduling noise, setting appropriate k to limit the amplitude
of noise, and controlling the speed of noise addition with p, the final
state converges to around low-quality images, shortening the length of
the Markov chain and improving inference efficiency.

4. Experiments and results
4.1. Datasets

We conducted extensive comparative experiments using three pub-
lic image datasets: Places2 [45], CelebA-HQ [46], and ImageNet [47],
along with a specially designed mask dataset [7]. Additionally, to
demonstrate practical application effects, we performed restoration
tests on real images of the Terracotta Warriors. The detailed descrip-
tions are provided in Table 2. Details of the Terracotta Warriors data
are in Appendix A.1.
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Dataset Image Data Description

Experiment Description

Places2 Complex scene-level inpainting from  Trained on 180,000 images from 100 categories
Paris street scenes of Places2-Standard; tested on 10,000 images

CelebA-HQ High-quality dataset for face inpainting Trained on 28,000 images; tested on 2000 images

ImageNet Diverse object inpainting Trained on 120,000 images from 100 categories;

tested on 10,000 images

Mask Dataset

Irregular mask dataset

Tested on 12,000 irregular masked images

Terracotta Warriors

Terracotta Warrior images, including
4,170 intact and 4000 damaged

Trained on 4000 intact images; tested on 170
intact and 4000 damaged images

4.2. Baseline

In this work, we compared our method with four relevant and
currently relatively advanced restoration methods:

DF-v2 [20]: Utilizes gated convolution to effectively handle free-
form missing regions, allowing for precise and natural inpainting.

DSI [11]: Generates diverse and plausible structural information
through a hierarchical VQ-VAE, enhancing the realism of the inpainted
areas.

CTSDG [24]: Ensures global and local consistency in inpainted re-
gions using conditional texture and structure dual generators, achieving
coherent results.

RePaint [12]: Implements high-quality image inpainting based on
denoising diffusion probabilistic models, offering iterative refinement
and strong controllability.

The results of these comparison methods in the experimental ta-
ble are derived from the results we reproduced using the optimal
checkpoint they provided.

4.3. Evaluation metric

In the experiment, we used the peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM), and perceptual similarity (LPIPS) to
measure the objective quality and similarity of images from different
perspectives. PSNR is a commonly used method for measuring image
quality, SSIM is an image quality assessment method based on the
human visual system that considers the similarity of brightness, con-
trast, and structure, and LPIPS is a deep learning based image quality
assessment method aimed at simulating the human visual system’s
perception of image differences. The formulas for these indicators are
as follows:

2
PSNR = 10 - logy <1\1/\[/?_S)]§Z> (16)
(2/4ny + cl)(20'xy +c)

a7)
W2+ 12+ )02 + 02 +¢3)

SSIM(x, ) =

A higher PSNR value indicates less image quality loss, while SSIM
ranges from —1 to 1, with higher values showing greater similarity
in structure, brightness, and contrast. Lower LPIPS scores mean the
images are more perceptually similar. For real-world applications like
the Terracotta Warriors restoration, where original images are unavail-
able, we use no-reference metrics — BRISQUE, NIQE, and PI — to
assess naturalness and overall perceptual quality. BRISQUE predicts
quality via natural statistics, NIQE estimates naturalness based on scene

Table 3

Quantitative comparison of five methods on datasets Places2, CelebA HQ, and Im-
ageNet, where “1” indicates that the larger, the better, and “|” indicates that the
smaller, the better.

Metrics PSNR 1 SSIM 1t LPIPS |

Methods 0-20 20-40 40-60 0-20 20-40 40-60 0-20 20-40 40-60

DF-v2  30.297 24.725 18.756 0.956 0.857 0.674 0.045 0.136 0.289
DSI 31.418 24.199 19.295 0.952 0.858 0.684 0.042 0.135 0.260
CTSDG 32.145 25.707 20.642 0.963 0.883 0.725 0.033 0.118 0.257
RePaint 32.445 25.091 20.664 0.965 0.894 0.775 0.031 0.108 0.212
Ours 32.466 25.103 20.662 0.968 0.885 0.764 0.030 0.110 0.243

Places2

DF-v2  32.074 27.330 22.694 0.953 0.866 0.796 0.034 0.106 0.244
DSI 31.752 26.643 22.540 0.949 0.893 0.785 0.037 0.178 0.262
CTSDG 32.170 28.480 23.208 0.958 0.902 0.847 0.035 0.082 0.218
RePaint 32.653 29.850 23.534 0.963 0.925 0.861 0.026 0.089 0.192
Ours 32.734 29.641 23.940 0.968 0.926 0.858 0.025 0.085 0.181

CelebA-HQ

DF-v2  31.458 24.428 19.536 0.955 0.861 0.714 0.047 0.146 0.278
DSI 31.902 23.647 20.019 0.961 0.853 0.734 0.043 0.145 0.236
CTSDG 32.667 25.127 20.640 0.953 0.893 0.725 0.030 0.128 0.273
RePaint 32.713 28.192 20.494 0.960 0.898 0.818 0.034 0.093 0.171
Ours 32.821 28.973 20.679 0.962 0.902 0.813 0.031 0.095 0.176

ImageNet

statistics, and PI evaluates comprehensive perceptual quality. For all
three metrics, lower scores indicate better image quality and closer
resemblance to natural images.

4.4. Implementation details

Both diffusion models utilized in our methodology underwent
500,000 training iterations, commencing with an initial learning rate
of 2 x 107>, For the ReampleDiff model, the parameters were set as
follows: T = 1000, « = 0.5, k = 1, and an exponential moving average
(EMA) rate of 0.999. In the case of the RefineDiff model, a pre-trained
VQGAN model was employed as the encoder—decoder module, with
the parameters configured to T = 4, p = 0.3, and k = 2. During
our experimental procedures, both images and masks were resized to
dimensions of 256 x 256 pixels. The entire model was developed using
the PyTorch 2.5.0 framework and trained on an NVIDIA® A6000 GPU.

4.5. Main results

4.5.1. Quantitative comparisons

To ensure the reliability and consistency of our findings, we carried
out three independent tests on different repair masks and diverse
image data, thereby effectively eliminating the potential influence of
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RePaint Ours Groundtruth

Fig. 6. Qualitative comparisons of five methods on three datasets show the results on Places2, CelebA-HQ, and ImageNet, as well as the details of the repair results. The last

column represents GruondTruth.

randomness. We then assessed the repair outcomes using PSNR, SSIM,
and LPIPS metrics to obtain quantitative indicators across three distinct
datasets and various mask intervals. An analysis of the overall results
presented in Table 3 reveals that our proposed method achieves the
highest PSNR and SSIM values while demonstrating the lowest LPIPS
score among the evaluated methods. Our approach showcases superior
repair efficacy and adaptability across multiple masks and datasets.
Although the performance of our method in restoring large masks on
the Places2 dataset is relatively lower than that of RePaint, this can
likely be ascribed to the inherent complexity of the scene restoration
content. Nevertheless, our method significantly improves the efficiency
of diffusion computations while maintaining a competitive edge. This
highlights the effectiveness of our two-stage progressive diffusion repair
technique in achieving high-quality structural and textural restoration
results.

4.5.2. Qualitative comparisons

Fig. 6 presents examples of both overall and localized inpainting
outcomes achieved through five different methodologies applied to
the Places2 (scene images), CelebA HQ (facial images), and ImageNet
(natural images) datasets. The observations depicted in the figure indi-
cate that the visual quality of the DF-v2, DSI, and CTSDG methods is
relatively subpar, which aligns with the findings from the quantitative
assessments. In contrast, our proposed approach demonstrates superior
capabilities in restoring structural integrity and intricate details. For
instance, the mesh structure of the bridge illustrated in the first row
exhibits more defined textures, the facial restoration in the second row
appears more aesthetically pleasing and harmonious, and the depiction
of the dog’s teeth in the third row retains an overall aesthetic appeal
while maintaining a reasonable structural representation.

Furthermore, Fig. 7 shows the inpainting results associated with two
asymptotic inpainting processes. By implementing additional denoising
and deblurring techniques on the initial inpainting outputs, the image
quality is significantly improved, thereby underscoring the efficacy
of the asymptotic inpainting method and the RefineDiff module. In
conclusion, these qualitative comparisons substantiate the effectiveness
of our methodology across various mask configurations and datasets.

Table 4

Ablation Study of SNR Loss on Places2.
Loss (y) PSNR 1 SSIM 1 LPIPS |
SNR-0 19.654 0.814 0.145
SNR-1 20.313 0.795 0.161
SNR-0.5 20.239 0.816 0.116

4.6. Ablation studies

This section analyzes the effectiveness of quality improvement
methods and accelerated inference strategies in two-stage diffusion
inpainting. By comparing different SNR loss functions and RefineDiff
control parameters, we verify the impact of parameters on repair
quality. By comparing different sampling methods of ResampleDiff,
combining jump parameters with RefineDiff, and analyzing the impact
of acceleration strategies on the results, we aim to obtain a more
efficient sampling strategy.

4.6.1. SNR loss function

To assess the efficacy of the signal-to-noise ratio (SNR) loss function,
we performed comparative experiments utilizing various gamma (y)
parameters within a lightweight diffusion model implemented in the
ResampleDiff module. The parameter y modulates the extent of weight
reduction, thereby enhancing the emphasis on the inpainting of regions
with high noise levels. We compared the SNR loss against the effects
of parameters y = 0, y = 1, and y = 0.5 on the inpainting outcomes.
Specifically, y = 0 corresponds to the mean squared error (MSE) loss.
Table 4 and Fig. 8 illustrate that the optimal results were achieved with
y = 0.5 across all three evaluation metrics. In contrast, y = 1 diminished
the weight allocated to the latter portion of the data, resulting in
pronounced noise artifacts in the outcomes. The SNR loss function
prioritizes the learning of initial details by recalibrating the train-
ing weight distribution, which subsequently enhances the inpainting
quality of our lightweight model.
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Fig. 7. Visualization of diffusion in the painting process. Figures A to D show the gradual denoising process of the first stage, and the output shows the result after enhancement

in the second stage.
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Groundtruth Input
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B (y=1)

C (y=0.5)

Fig. 8. Qualitative Comparison of SNR Loss on Places2 (Panels A, B, and C show the inpainting results for y=0, 1, and 0.5).

Table 5

Comparison of Different RefineDiff Configurations on ImageNet.
P k PSNR 1 SSIM 1 LPIPS |
0.3 1 19.987 0.656 0.348
0.3 2 22.031 0.838 0.110
0.5 2 19.978 0.764 0.284
1.0 2 19.767 0.742 0.216

4.6.2. RefineDiff Residual Control Parameters

To improve the conversion of initially repaired images into higher-
quality images, comparative experiments focused on various param-
eters related to noise intensity and conversion speed within the Re-
fineDiff module. Specifically, within the diffusion step range denoted as
T, the parameter k regulates the final state noise intensity, facilitating
convergence towards the low-quality image spectrum. In contrast, the
parameter p allows for precise modulation of the noise conversion
speed. As illustrated in Table 5 and Fig. 9, which pertain to the case
when T = 4, enhancing the initially repaired image A yielded superior
results for image C when p was set to 0.3 and & to 2. Conversely, using
k = 1 with a larger p-value resulted in a blurred output. When k was set
to 2, the noise intensity approximated that of the initial repair outcome.
Furthermore, with p at 0.3, the conversion speed was deemed optimal,
thereby significantly improving the quality of the resultant image.

4.6.3. ResampleDiff schedule parameters

To enhance the integration of the two components of diffusion
repair and to examine the effects of various accelerated repair processes
within a single stage on the final outcomes, a comparative experiment
was conducted focusing on the resampling parameters while utilizing
the same RefineDiff module enhancement. Typically, more resampling

Table 6

Comparison of Different Resampling Configurations on CelebA-HQ.
Rymple Jinterval PSNR 1 SSIM 1 LPIPS | Time (s)
5 10 29.147 0.932 0.049 21.49
10 10 29.060 0.934 0.048 26.29
15 10 30.395 0.939 0.047 32.64
10 5 29.651 0.941 0.048 40.50
10 15 30.243 0.931 0.047 18.51

steps and reduced intervals yield superior preliminary repair results.
By setting the jump length to 10, we analyzed the influence of varying
resampling frequencies and jump intervals on both quality and effi-
ciency. As illustrated in Table 6 and Fig. 10, the findings indicate that
a resampling frequency of r = 10 and a jump interval of j = 15 resulted
in the most rapid repair speed alongside high-quality outcomes. This
demonstrates that an effective combination of the two components can
improve performance and enhance visual quality.

4.7. Efficiency comparison

In this section, we assess the computational complexity of the TRRS-
DM model by analyzing the architectural configurations, parameter
counts, and average inference times associated with various repair
methodologies. As illustrated in Table 7, the diffusion-based model
generally demonstrates a greater number of parameters and extended
inference times when juxtaposed with the GAN-based model. This
discrepancy arises from the necessity of numerous sampling steps in the
denoising process of the diffusion model to attain high-quality image
generation. Nevertheless, in contrast to the diffusion-based RePaint
method, our approach markedly decreases the parameter count by
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Fig. 9. Qualitative Comparison of Different RefineDiff Configurations on ImageNet (Panel A shows coarse inpainting results; Panels B, C comparep = 0.3, k=1, 2; Panels C, D, E

compare k=2,p = 0.3, 0.5, 1).

Groundtruth Input A(5, 10)

B(10,10)

C(15, 10) D(10, 5) E(10, 15)

Fig. 10. Qualitative Comparison of Different Resampling Configurations on CelebA-HQ (Panels A, B, C compare j=10, r=5, 10, 15; Panels B, D, E compare (r=10, j=10, 5, 15).

Groundtruth

Zoom-Input

Output

Zoom-Output

Fig. 11. Restricted inpainting example on Places2 Dataset.

Table 7

Comparison of Complexity and Efficiency Among Different Methods.
Methods Architecture Params Inference time (s)
DF-v2 GAN 4M 0.65
DSI GAN 76M 1.14
CTSDG GAN 52M 2.23
RePaint Diffusion 552M 492.04
Ours Diffusion 191M 19.52

two-thirds and reduces the inference time to one-twentieth of what
is required by RePaint. Furthermore, the modular design of our two
components allows for independent training, which further alleviates
computational demands during the training phase and facilitates a more
efficient process for diffusion-based image inpainting.

4.8. Limitation and discussion
Limitations: As shown in Fig. 11, the complexity of large-area

masks, combined with the relatively small proportion of sample cat-
egories, makes it difficult to adequately generate images that perform

well in terms of both structural texture and semantic coherence. This
phenomenon is prevalent among various image inpainting techniques
and is also a problem faced in the restoration of the Terracotta War-
riors. The possible reasons for this include the limited available infor-
mation in the damaged images and the insufficient representativeness
of sample categories in the training dataset.

Discussion: In order to improve the quality of image inpainting,
it is advisable to investigate the integration of some supplementary
reference information or guiding methods. Adopting high-quality data
for pre-training and implementing data augmentation on small datasets
can enhance the data quality and optimize the performance of diffu-
sion models in complex scenarios. Furthermore, future research should
delve deeply into the application of diffusion models in high-resolution
image inpainting and consider increasing user engagement, so that the
inpainting results can more effectively meet user requirements.

4.9. Application of terracotta warriors

To better assess the efficacy of our proposed methodology, we con-
ducted a comparative analysis using the authentic Terracotta Warriors
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Groundtruth Input DF-v2

CTSDG RePaint Ours

Fig. 12. The complete Terracotta Warriors inpainting with reference, the white box focuses on local differences, zoom in for optimal results.

DF-v2

Damaged Input

CTSDG RePaint Ours

Fig. 13. The damaged Terracotta Warriors inpainting without reference. The white box focuses on local differences, zooming in for optimal results.

Table 8
Comparison of Full-Reference and No-Reference Inpainting Applied to Terracotta
Warriors.

Method Full-Reference No-Reference

PSNR 1 SSIM 1t LPIPS | BRISQUE | NIQE | PI |
DF-v2 26.096 0.857 0.114 15.505 5.568 3.603
CTSDG 24.824 0.848 0.111 18.543 6.202 4.015
RePaint 26.250 0.900 0.069 14.532 5.957 3.636
Ours 29.211 0.929 0.048 11.141 3.511 2.895

dataset. The inpainting of complete Terracotta Warriors with reference
is illustrated in Fig. 12, while the inpainting of damaged Terracotta
Warriors without reference is depicted in Fig. 13. The corresponding
performance metrics are presented in Table 8. Our approach demon-
strated superior performance, achieving the highest scores in reference
metrics such as PSNR, SSIM, and LPIPS, as well as in non-reference
metrics including BRISQUE, NIQE, and PI. Additionally, it is evident
from the figures that both DF-v2 and CTSDG exhibit texture-blurring
artifacts. In contrast, our method effectively restores intricate features
and textures, yielding more precise and more coherent results than
RePaint’s. This experiment underscores the potential of our approach in
effectively restoring significant cultural heritage, thereby contributing
to the preservation and appreciation of historical artifacts.

10

5. Conclusion

The two-stage diffusion inpainting method (TRRS-DM) introduced
in this study integrates pixel-spatial resampling (ResampleDiff) and
latent-spatial refinement (RefineDiff). This approach adopts lightweight
acceleration techniques and latent-spatial diffusion methods. While
minimizing computational requirements, it incorporates signal-to-noise
ratio weighting and secondary enhancement to maintain restoration
quality. As a result, TRRS-DM can achieve high-fidelity image restora-
tion under various occlusion scenarios. Evaluations on multiple public
datasets indicate that TRRS-DM outperforms existing advanced meth-
ods in several performance metrics. Specifically, it demonstrates out-
standing performance and enhanced visual quality, especially in restor-
ing damaged Terracotta Warrior images.

In conclusion, TRRS-DM presents a novel strategy for diffusion-
based image inpainting, demonstrating its ability to achieve high-
quality restoration with fewer computational resources. This method
holds great potential for applications in cultural heritage conserva-
tion. For future Terracotta Warriors restoration, we are overcoming
more challenges by integrating 3D point cloud and 2D image restora-
tion/registration, using new ATR methods like learning from good and
bad samples, and combining damage recognition and classification to
advance intelligent 3D restoration. It is expected that TRRS-DM will
promote the development of digital restoration techniques applicable to
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Groundtruth Input Output

Fig. 15. Restoration results of damaged Terracotta Warriors, showcasing both front and backside restoration. Zoom in for a detailed view.

the Terracotta Warriors, thus providing essential resources for archae-
ologists and restoration specialists and making significant contributions
to the broader field of cultural heritage conservation.

CRediT authorship contribution statement

Xin Cao: Writing — original draft, Project administration, Methodol-
ogy, Formal analysis, Data curation, Conceptualization. Peiyuan Quan:
Writing - review & editing, Writing — original draft, Visualization,
Validation, Supervision, Resources, Project administration, Methodol-
ogy, Investigation. Yuzhu Mao: Validation, Supervision, Project ad-
ministration, Methodology, Data curation. Rui Cao: Writing — review
& editing, Validation, Supervision, Project administration, Methodol-
ogy, Data curation, Conceptualization. Linzhi Su: Funding acquisition,
Formal analysis, Data curation, Conceptualization. Kang Li: Funding
acquisition, Formal analysis, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by the Youth Fund of the National
Natural Science Foundation of China (No. 62406247), in part by the
National Natural Science Foundation of China (No. 61701403, No.
61806164), and in part by the Key R&D Program of Shaanxi Province
(No. 2024SF-YBXM-681, No. 2019GY215, No. 2021ZDLSF06-04).

11

Appendix

A.1. Dataset of TerraCotta Warriors

The Terracotta Warriors dataset is provided by the National and
Local Joint Engineering Research Center for the Digitalization of Cul-
tural Heritage at Northwest University. During the digital protection
project, the center deploys an advanced 3D robotic arm to conduct com-
prehensive scans of the Terracotta Warriors, precisely acquiring their
3D information. Subsequently, multi-view 2D images with a resolution
of 4096 x 4096 are generated from the 3D models using professional
software (multiple perspectives are shown in Fig. 14).

Strict adherence to cultural heritage protection norms is maintained
throughout the scanning process. Rigorous control is exercised over
lighting conditions, angles, and scanning duration. A meticulous multi-
angled scan of 70 distinct Terracotta Warrior individuals is carried out,
amassing a substantial volume of original images. Once the raw data is
obtained, screening is promptly initiated based on clarity and integrity
criteria. Images that do not meet the requirements are discarded. The
remaining images are then cropped in line with experimental needs,
and their resolution is adjusted to 256 x 256. Eventually, a usable
dataset can be acquired, comprising 4,170 intact and 4000 damaged
images.

A.2. More comparative examples

See Figs. 15-17.
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Fig. 16. Restoration of Terracotta Warriors with extensive damage and large missing parts. Zoom in to observe the meticulous restoration work.
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Fig. 17. Additional restoration results of various types of Terracotta Warriors in full
body. Explore more detailed restoration effects by zooming in.
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Data availability

Data will be made available on request.
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