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Abstract

This paper presents an improved method to estimate the blur parameters of motion deblur-

ring algorithm for single image restoration based on the point spread function (PSF) in fre-

quency spectrum. We then introduce a modification to the Radon transform in the blur angle

estimation scheme with our proposed difference value vs angle curve. Subsequently, the

auto-correlation matrix is employed to estimate the blur angle by measuring the distance

between the conjugated-correlated troughs. Finally, we evaluate the accuracy, robustness

and time efficiency of our proposed method with the existing algorithms on the public bench-

marks and the natural real motion blurred images. The experimental results demonstrate

that the proposed PSF estimation scheme not only could obtain a higher accuracy for the

blur angle and blur length, but also demonstrate stronger robustness and higher time effi-

ciency under different circumstances.

1 Introduction

Motion blurring is generated inevitably by camera shake during exposure time. As one of the

main causes of image degradation, it seriously affects the performances of computer vision sys-

tem in various fields. So efficient motion deblurring technology is conducive to improving the

reliability of related applications, such as aerospace, medical imaging, traffic monitoring, pub-

lic safety, military search, satellite and space image [1–3].

Some of the latest methods adopt deep learning to predict the probabilistic distribution of

motion blur and recover the degraded images [4–10]. These deep learning approaches can be

classified into two categories. The first kinds of methods rely on multi-frame images, and they

own a complex network structure, so they are time-consuming [7, 9, 10]; the second types of

these approaches only use single image to deblur the degraded image, this kind of method is

simple in network structure and fast in training [4, 5, 11], but they still have some shortcom-

ings: Aizenberg developed a multi-layer neural network (MLMVN) [4] to conduct blur
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identification, however, MLMVN is concentrated almost on horizontal blur [5]. Dash has

developed a Gabor filter and radial basis function neural network (RBFNN) [5] to estimate

the blur parameters in frequency response. Even though Gabor filter and RBFNN work well

on the estimation of PSF parameters, they require sufficient Gabor filter masks in various

orientations to ensure its accuracy [12]. Two kinds of deep learning methods are either time-

consuming to calculate the complex training structure or have special requirements for blur

conditions, both of them are not suitable for single image deblurring. In addition, some

researchers have proposed efficient infrastructures to increase the operational efficiency of

image processing applications, e.g. partial differential equation (PDE), multi-sink distributed

power control algorithm (MSDPC-SRMS), wireless sensor networks, wireless mesh networks

(WMNs), hidden Markov model (HMM) and ALOHA protocol [13–18]. However, these effi-

cient infrastructures are not suitable to the application of image deblurring, since the research

theory of image restoration is different from other image processing areas. A popular way to

tackle motion deblurring of single image is to deconvolute the blurred image with PSF [19].

Intuitively, the motion blurred image can be usually modeled as a convolution of the origi-

nal image with PSF, which can also be named blur kernel. In general, the motion blurred

image restoration techniques are used to eliminate or minimize the impact of PSF from the

degraded image. Early research on motion deblurring are mostly focusing on proposing effec-

tive algorithm to inverse the process of image degradation, i.e., deconvolution of the blurred

image. These researches can be roughly divided into two categories: blind and non-blind

deblurring. The non-blind deconvolution methods are put forwards to conduct image restora-

tion by a predetermined PSF, it is assumed that PSF is already known, such as the non-iterative

Wiener filter [20], Iterative Lucy-Richardson algorithm [21], Bayesian deconvolution [22], and

their corresponding improved methods etc. These well-known algorithms are widely adopted

in deblurring, since most of them could restore the blurred image. The core issues of PSF are

the two motion parameters: angle and length of motion. In the real world circumstances, due

to the unknown motion information of camera and object, the values of blur angle and length

are always unavailable.

Blind image deconvolution is an improved solution for motion blur image restoration,

which firstly estimates two motion parameters from the blurred image and then restores the

original appearance through the detected PSF. This kind of methods is clearly harder than

non-blind counterpart and far more significant in estimating PSF, thus many researchers are

focus on it [4, 23–28]. In order to result in an efficient iterative process, Figueiredo et al. pro-

posed a method based on the fast Fourier transform (FFT) and the discrete wavelet transform

(DWT) to conduct the image restoration [24]. Aizenberg et al. proposed a multi-layer neural

network based on multi-valued neurons (MLMVN) to identify both types and parameters of

the PSF [4]. Besides, Hong et al. proposed an adaptive PSF estimation method based on an-iso-

tropic regularization to improve the precision of the blur kernels, whose method adopts the

estimated blur kernel and the proposed maximum likelihood (ML) estimation deblurring [26].

Most of these algorithms have been proved to be able to estimate very complex blur kernels

accurately and yield impressive results. However, in practical applications, these methods are

complicated in computational framework and time-consuming, since there are often numer-

ous equations needed to be solved in the calculation processes.

Beyond that, some researchers have proposed some other PSF calculation algorithms that

focus on estimating the blur angle and length for blur image restoration. Oliveira and Figuei-

redo et al. proposed a spectrum-based method to estimate the parameters of two types of blurs

(linear-uniform and out-of-focus motions) for blind image restoration [29]. In their method

they introduce two modifications to the Radon transform [30] to estimate the blur parameters,

and the effectiveness of their proposed method is verified on the real natural blurred images.
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Sun and Cho et al. introduced a patch-based strategy for blur kernel estimation, their method

estimates a “trusted” subset of x by imposing a patch prior specifically tailored towards model-

ing the appearance of image edge and corner primitives [31]. Deshpande and Patnaik pro-

posed a modified cepstrum domain approach combined with bit-plane slicing method to

estimate uniform motion blur parameters [32]. Cho et al. incorporated the Radon transform

within the maximum a posteriori (MAP) estimation framework to jointly estimate the blur

kernel and deblur the image, this algorithm performs well on a broader variety of scenes [25].

Aiming at improving the robustness for noisy images, Moghaddam and Jamzad combined the

Radon transform and bi-spectrum modeling to quantify the motion blur parameters [33].

However, the restoration accuracy of this method is weak, especially for the estimation of large

blur length. Wang et al. introduced an improved PSF parameters estimation algorithm which

combined bilateral-piecewise estimation strategy and the sub-pixel level image generated with

bilinear interpolation in different noisy situations [12]. However, it is too hard for this algo-

rithm to explore effective solution under non-linear and non-uniform motion blur. The

Hough-transformation-based method estimates the PSF parameters by means of the log spec-

trum of the blurred images [34]. This method owns an obvious shortcoming that is the choos-

ing of threshold values during image binarization, and therefore the error in angle estimation

will result in erroneous length estimation [12]. Most of the methods are still not able to pro-

duce good precision results especially the spectrum image containing interference stripes (see

the colored lines of dashes in Fig 1), and large blur length estimation. On the whole, the exist-

ing algorithms still can not achieve a satisfactory balance between precision, robustness and

time efficiency.

To address these limitations in single blind image restoration, we propose a novel Radon-

transform-based blur angle estimation scheme which is inspired by the dark and bright stripes

Fig 1. The interference stripes of image. (a) The interference stripes in the original spectrum image; (b) The interference stripes after the adaptive

median filter and binarization on the spectrum image.

https://doi.org/10.1371/journal.pone.0238259.g001
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in frequency domain (see also in Fig 2). Based on this blur angle estimation method we also

propose an accurate auto-correlation-matrix-based approach to detect the blur length. Com-

paring with the traditional stripe-based estimation method, the underlying techniques used in

this paper are different and more advanced.

• We firstly design and conduct a set of preprocessing to filter the original spectrum image by

the adaptive median filter [35], binarization and Sobel edge detection etc.

• Secondly, differently from the previous Radon-transform-based methods [25, 36, 37], we not

only detect the blur angle but also refine it by our proposed tri-Radon transform method.

• Thirdly, in the second and third Radon transform, we constructed a Difference value vs

Angle curve to estimate the angle.

• Fourthly, during the blur angle estimation, our own designed minimum-based filtering algo-

rithm is employed to decrease the influence from the interference stripes. Besides, the adap-

tive median filter, binarization and Sobel edge detection in spectrum image preprocessing

are also benefited to weaken the affection from interference stripes.

• Fifthly, we combine the first order differential of image and the auto-correlation matrix to

estimate the blur length accurately and efficiently.

• In addition to the above, our proposed method can deal with the image of arbitrary sizes of

row and column, since the method proposed in [12] can only handle the square image.

2 General motion blur model

The degradation process of blurred image can be approximately simulated as a liner degrada-

tion system, and the blurred image caused by the relative motion between camera and scene

can be described as a two-dimensional convolution model in the linear space translation,

which is modeled as:

gðx; yÞ ¼ f ðx; yÞ � hðx; yÞ þ nðx; yÞ; ð1Þ

where g(x, y),f(x, y) represent the blurred and original image respectively, h(x, y) is the PSF

function or blur kernel, and n(x, y) refers to the additive noise. The notation “�” represents the

convolution operator.

Fig 2. Spectrum image processes. (a) Inputting blurred image; (b) Obtaining spectrum image; (c) Filtering spectrum image; (d)

Conducting binarization of the spectrum image; (e) Carrying on Sobel edge detection.

https://doi.org/10.1371/journal.pone.0238259.g002
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From Eq (1), we can see that the keypoint of deblurring is to determine the PSF function

g(x, y). Assuming that the scene objects move uniformly relative to the camera, we can deduce

that the gray values of any points in the blurred image are related to the gray values of their

corresponding adjacent points in the original image, and the PSF for motion blurring can be

expressed as [12]:

hðx; yÞ ¼

(
1=l; 0 � jxj � l cos ðyÞ; jyj ¼ l sin ðyÞ

0; otherwise
ð2Þ

where l is the length of blur, and θ represents the angle of blur.

3 Blur angle estimation

As mentioned previously, the blur angle can be obtained by measuring the direction of the

approximately linear dark stripes in frequency spectrum. In this section, we adopt a modified

Radon-transform-based method to detect the blur angle. The application of Radon transform

in image processing can be expressed as:

Ryðx0Þ ¼
R þ1
� 1

f ðx0 cosy � y0 sin y; x0 siny � y0 cosyÞdy0

x0

y0

0

@

1

A ¼

cosy sin y

� siny cosy

0

@

1

A
x

y

0

@

1

A
ð3Þ

where Rθ(x0) is the value of Radon transform projection, θ represents the angle of Radon trans-

form, (x, y) and (x0, y0) refer to the coordinates of original image and Radon transformed

image respectively.

Radon transform is regularly used to detect the lines in the image. There are several dark

stripes tilted at a certain angle in the spectrum figure of motion blurred image, and these dark

stripes are parallel and symmetrical. Normally, the blur angle can be obtained by detecting the

peak value with Radon transform for these dark stripes in the spectrum image. Most of the

Radon-transform-based methods do not deal with the spectrum image before using radon trans-

form to detect the blur angle. In practical application, the light and dark stripes in spectrum

image are often ambiguous, especially the blur image with noise, this will lead to large errors in

the estimation of blur angle, and thus will affect the detection of blur length and the deblurring

of degraded image in the following phases of the whole algorithm. To overcome this problem,

our blur angle estimation is based on the diversification processing of spectrum image.

3.1 The spectrum processing

The outline of our spectrum image processing is presented in Fig 2. Here, we take the camera-

man.tif with a blur angle of 45˚ as a sample in the processes. As is shown in Fig 2(b), before

our method starts, the spectrum image is obtained by Fourier transform of blurred image.

Due to the influence from noise, camera and other image acquisition equipment, there

are many interference stripes in the spectrum image, such as the lines of dashes marked wit

red, sky-blue, yellow, dark-blue and green colors in Fig 1(a) and 1(b). To eliminate the dis-

turbances of interference stripes, we adopt adaptive median filter, binaryzation and mini-

mum-based filtering algorithm. The adaptive median filter and binaryzation are carried out

on the spectrum image in this section, and the details of minimum-based filtering algorithm

are presented in the Section 3.2. According to the above analysis, we then use the adaptive

median filter on the spectrum image, so as to eliminate the interference from the noise (see

PLOS ONE Improved estimation of motion blur parameters for restoration from a single image

PLOS ONE | https://doi.org/10.1371/journal.pone.0238259 September 1, 2020 5 / 21

https://doi.org/10.1371/journal.pone.0238259


also Fig 2(c)). Following the experiments experience, the appropriate size of adaptive median

filter should be 3. After that, in the process of Fig 2(d), we binarize the filtered spectrum

image with a threshold τb.
When we get the binarization result for the filtered spectrum image, we consider whether

to conduct the edge detection for the spectrum image by a threshold τe, and the Sobel operator

is adopted in the edge detection algorithm (see also in Fig 2(e)). Based on the whole experi-

ments experience, the suitable value for threshold τb and τe should be 0.35 and 0.47.

Then the Radon transform is made on the binarization spectrum image to detect the blur

angle.

3.2 Tri-Radon transforms

When the binary spectrum image is obtained, the next step is to estimate the blur angle by

Radon transform. In the whole algorithm, we totally adopt Radon transform projection three

times to detect the blur angle, which we named “Tri-Radon” transforms.

In the first Radon transform process, we firstly detect the blur angle by the two-dimensional

color map of Radon transform projection roughly (see also in Fig 3(a)). In the color map of

Radon transform projection, the horizontal coordinates θ (from 0˚ to 180˚) represent the

angle of Radon transform projection, the vertical coordinates x0 (from -250 to 250) refer to the

distance from a straight line to the origin in the binaryzation spectrum, and this line is perpen-

dicular to a straight line with a such angle (the horizontal coordinates’ value), the color bar at

the right part of color map means the value of Radon transform projection Rθ(x0). For better

understanding, here we take the coordinates value (45˚, -27, 238.7) in the color map as an

example, where 45˚ is the value of horizontal coordinates θ, -27 is the value of vertical coordi-

nates x0, and 238.7 is the value of Radon transform projection Rθ(x0), this means that there is a

straight line passing through the origin with a slope of 45˚, and there also exists a straight line

B perpendicular to A and 27 distances away from the origin in the binarization spectrum,

since the value of Radon transform projection at this position is 238.7. When we comprehend

the meaning of Radon transform projection’s color map, we can observe that there are many

local maximum and minimum values of Radon transform projection on straight lines with a

slope of 45˚ in Fig 3(a), especially the neighborhood of origin (vertical coordinate 0) in spec-

trum image. From this observation, it can be judged that the blur angle θpsf is about θ1 = 45˚:

ypsf ¼ y1 ð4Þ

After the rough estimation of blur angle by the two-dimensional color map of Radon trans-

form projection for spectrum image, the next step is to conduct the blur angle detection

through the second Radon transform.

As is shown in Fig 3(b), in the second Radon transform projection for the binary spectrum

image, we set the angles θ2p of projection from 0˚ to 180˚ and step width to 1˚. After the value

of Radon transform projection for each angle is obtained, we firstly calculate the summations

of local maximums and local minimums respectively, then we calculate the difference between

these two summations:

Dy ¼
Xm

1

ðMaxy1 þMaxy2 þ � � � þMaxymÞ

�
Xn

1

ðMiny1 þMiny2 þ � � � þMinynÞ

ð5Þ
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where Maxθm and Minθn represent the local maximum of Radon transform projection on spec-

trum image with angle θ, and Dθ is the difference between the summation of local maximums

and the summation of local minimums. Based on the data of Dθ and θ, the Difference value vs

Angle curve can be obtained (see also in Fig 3(b) and 3(d)). Through this curve, we can obtain

the rough estimation of blur angle θ2 by searching the corresponding angle of the projection

value’s local maximum:

8jy2p � y2j � 10;9Dy2
> Dy2p

) ypsf ¼ y2 ð6Þ

Through the experiments experience, we can find that in all the Difference value vs Angle

curves, there are two additional angles (2˚, 92˚) detected except the true blur angle (46˚), since

the binarization spectrum is affected by the two tiny stripes in the direction of 2˚ (red arrow

marked) and 92˚ (green arrow tagged) in Fig 3(c). Through all experiments’ Difference value

vs Angle curves, we can observe that there is a minimum in the neighborhood angle of false

Fig 3. Blur angle detection by double Radon transforms. (a) The two-dimensional color map of Radon transform projection for spectrum image

(first Radon transform); (b) The second rough detection of blur angle (second Radon transform); (c) The affected binarization spectrum with

interference stripes in the directions of 2˚ and 92˚. (d) The final precise detection of blur angle (third Radon transform).

https://doi.org/10.1371/journal.pone.0238259.g003
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positive (FP) results:

9yi 2 ½y2 � 5; y2 þ 5�; 8jyj � yij � 5;9Dyi
< Dyj

) ypsf 6¼ y2

ð7Þ

So, to eliminate the interference from the noisy stripes, we adopt our proposed minimum-

based filtering algorithm as following:

1. Firstly, we’ll search more than three largest maximums of Dθ in the Difference value vs

Angle curves of angle from 0˚ to 180˚;

2. After that, we will judge whether there is a minimum in the neighborhood angle of each

maximum value’s corresponding angle, then we delete the elements with minimum values;

3. The remaining maximum’s corresponding angle identified as the blur angle θ2 of second

estimation.

Based on the second rough blur angle estimation results, we conduct the third Radon trans-

form projections for the binary spectrum image. This time the angles of projection are set

from θ2 − 3˚ to θ2 + 3˚, and the step width is set to 0.5˚ (see also Fig 3(c)). Then we repeat the

steps of the second blur angle estimation. Through the Projection value vs angle curve of the

third Radon transform projections, we can get the precise blur angle estimation results θ3, and

we update θ3 as the ultimate blur angle:

8jy3q � y3j � 2; 9Dy3
> Dy3p

) ypsf ¼ y3 ð8Þ

All the above estimations of blur angle are for square images, if the sizes of image’s row and

column are not consistent, the blur angle can obtained as following:

tgy ¼ � ctgY �
N
M
; ð9Þ

where Θ is the angle estimation from the rectangle image, θ represents the blur angle, M and N
refer to the sizes of image’s row and column respectively.

4 Blur length estimation

The precondition of our blur length estimation is to firstly measure the blur angle and then

rotate the blurred image clockwise with the detected blur angle (see also in Fig 4(a)), thus the

motion becomes in horizontal direction, and we can obtain the rotated blurred image Z(x, y)

in Fig 4(b). Firstly, the first order differential of image Z(x, y) in horizontal direction is given

by:

Z0ðx; yÞ ¼
dZðx; yÞ

dx
; ð10Þ

where Z0(x, y) is the first order differential of Z(x, y). Then we calculate the auto-correlation

matrix of Z0(x, y) in horizontal direction as follows:

Sðx; yÞ ¼
XM� 1

p¼0

Z0ðx; pÞZ0ðx; pþ yÞ ð11Þ

where M is the size of Z0(x, y)’s row, which equals to the size of image Z(x, y)’s row, and S(x, y)

refers to the auto-correlation matrix of Z0(x, y) in horizontal direction. According to the auto-
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correlation matrix S(x, y), we can calculate the summations of each column elements in S(x, y):

S0ðyÞ ¼
XM� 1

x¼0

Sðx; yÞ ð12Þ

where the size of S0(y) is 1 × N. The goal of S0(y)’s calculation is to reduce the influence from

noise and improve the accuracy of blur length estimation. The blur length can be estimated

through the S0(y) vs y curve in Fig 4(c) and 4(d), where the horizontal coordinate is the data

of y, and the vertical coordinate is the corresponding S0(y). We need to search a pair of conju-

gated-correlated troughs (tagged with green arrows) on the right and left sides of central crest

(marked with red arrow) in the S0(y) vs y curve, the half l of the distance D between these two

conjugated-correlated troughs is the estimated blur length. Here we take an experiment result

as the sample in Fig 4(d), we can see that the horizontal values of these two conjugated-corre-

lated troughs are 339 and 369, and the distance D between these two troughs is 30, so we can

estimate the blur length is 1

2
� 30 ¼ 15. In summary, our blur length estimation is proposed as

follows:

Fig 4. Blur length estimation processes. (a) The original blurred image; (b) The rotated blurred image Z(x, y); (c) The S0(y) vs y curve; (d) The

enlarged version of S0(y) vs y curve.

https://doi.org/10.1371/journal.pone.0238259.g004
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1. We rotate the blurred image g(x, y) clockwise to the horizontal motion direction by the

detected blur angle, thus we can obtain the rotated blurred image Z(x, y).

2. Calculating the first order differential Z0(x, y) of Z(x, y) in horizontal direction.

3. Then calculating the auto-correlation matrix S(x, y) of Z0(x, y).

4. Computing the summations of each column elements in S(x, y) to get S0(y).

5. Estimating the blur length by searching a pair of conjugated-correlated troughs in the S0(y)

vs y curve.

With the blur parameters estimation algorithms mentioned in Section 3 and Section 4, we

can construct the PSF function by Eq 2. Then we can restore the blurred image by the non-

blind filter method.

5 Experiments

In this section we conduct a series of comparisons between our approach and the state-of-the-

art methods (Moghaddam [33], traditional Radon-transform-based method [25], deep learn-

ing approach (RBFNN) [5] and Wang [12] are carried out in this section). A total of 18625

images including VOC2012 dataset [38] and real-life images are used to evaluate our approach

in Section 5.1, 5.2 and 5.3.

5.1 Performance of the parameters estimation approaches

In this subsection, we evaluate our proposed parameters estimation approaches by the degraded

images with various blur angles and lengths, and the blurred images which are generated by

varying the blur angle from 0˚ to 180˚ and the blur length from 0 to 100 pixels respectively.

First of all, the absolute errors for two blur parameter estimations using the five methods

are shown in Table 1. From this table, we can get several observations:

1. During the whole experiments, all the methods tend to almost no error for min absolute

errors of blur angle θ and blur length L.

2. No matter which cases, Wang’s approach and our proposed method are obviously superior

to the first three methods. Moghaddam’s approach obtains the worst performances for the

max absolute errors of θ and L among the five methods, but it could produce comparative

mean absolute error with traditional Radon-based and Dash’s methods for θ.

3. In sharp contrast, our method achieves the best estimation accuracy for both θ and L with

the least mean absolute errors of 0.11˚ and 0.14 pixels. Moreover, the max absolute errors

of these two parameters generated by our approach are less than 0.22˚ and 0.28 pixels

respectively, significantly smaller than those generate by the other four approaches.

Besides, by varying L from 0 to 100 pixels with a step of 5 pixels at the blur angle of 0˚, 30˚,

45˚, 60˚ and 90˚ respectively, the absolute error with respect to the blur length L is observed,

Table 1. Estimation accuracy comparison between five methods for two blur parameters.

Method Moghaddam [33] Traditional Radon [25] RBFNN [5] Wang [12] Our method

Para θ(˚) L (pixel) θ(˚) L (pixel) θ(˚) L (pixel) θ(˚) L (pixel) θ(˚) L (pixel)

Min.absolute error 0 0 0 0 0 0 0 0 0 0

Max.absolute error 2.01 2.21 0.99 1.26 0.89 1.03 0.26 0.32 0.22 0.28

Mean.absolute error 0.63 1.17 0.60 0.97 0.58 0.89 0.12 0.18 0.11 0.14

https://doi.org/10.1371/journal.pone.0238259.t001
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the experiment results are shown in Fig 5. Obviously, the absolute error curve fluctuates greatly

with a lower value when L is small, and then the error increases slowly when L is larger than 30

pixels. This can be owing to the fact that the interference stripes are generated in the spectrum

image when the blur length is large (see also in Figs 1 and 3(c)). Under these circumstances,

it may lead to the increasing estimation error of the distance between a pair of conjugated-cor-

related troughs in Fig 4. Furthermore, our proposed blur length estimation method achieves

the best performance of near 0 pixels absolute error with L = 0 pixels & θ = {0˚, 30˚, 45˚, 60˚,

90˚}, L = 5 pixels & θ = {45˚, 90˚}, L = 10 pixels & θ = 0˚, L = 20 pixels & θ = 90˚. Under any

instances, the absolute error of L is less than 0.28 pixels no matter how L and θ varies in the

range (0� L� 100, θ = {0˚, 30˚, 45˚, 60˚, 90˚}), which shows that the performance is very

good.

Similar to the experiment for blur length L, the absolute error in terms of the blur angle is

observed. Moghhadam’s [33], Traditional-Radon-based [25], Dash’s [5] and Wang’s [12]

methods are adopted in blur angle estimation experiments to evaluate and validate the superi-

ority of our proposed method. Meanwhile, the Gaussian noise with standard deviation σ =

0.0001 is also added into the degraded images to demonstrate the good performance of our

method. The experiment results are presented in Fig 6. From Fig 6, we can find that our

approach achieves the best accuracy results among the five methods. Besides, we also conduct

additional Friedman and Nemenyi tests of blur angle’s absolute errors to compare our method

with these algorithms, the critical difference diagram results generated by Friedman and

Nemenyi tests are presented in Fig 7. Through Fig 7, we can observe that our proposed method

obtain the best results on blur angle accuracy. On the one hand, by introducing the adaptive

median filter, binarization and Sobel edge detection to weaken the affection from the interfer-

ence stripes in Figs 1 and 3(c). On the other hand, our own designed minimum-based filtering

algorithm is employed to decrease the influence from the interference stripes. These two mea-

sures both contributed to the smaller absolute error comparing with other four methods.

All these observations confirm the high accuracy estimation for blur parameters of our pro-

posed methods.

Fig 5. Absolute error of blur length L from our proposed method.

https://doi.org/10.1371/journal.pone.0238259.g005
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5.2 Performance of deblurring on noise-free images

The previous subsection shows that our blur parameter estimation approach obtains good

results under different circumstances. In this subsection, based on the constructed PSF with

the estimated θ and L from Section 5.1, we use regularized filter to deblur the degraded image,

Fig 7. Friedman and Nemenyi tests of blur angle θ’s absolute errors.

https://doi.org/10.1371/journal.pone.0238259.g007

Fig 6. Absolute error comparison of blur angle θ.

https://doi.org/10.1371/journal.pone.0238259.g006
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so as to demonstrate that our method could yield better performance of deblurring than

state-of-the-art approaches intuitively. For this purpose, we will carry out experiments on

the VOC2012 dataset [38] and real-life blurred images, and compare our method against the

Moghhadam’s [33], Traditional-Radon-based [25], Dash’s [5] and Wang’s [12] methods etc.

The degraded images and restoration results produced by the five approaches in VOC2012

dataset are illustrated in Fig 8. From these figures we can observe that our method obtain the

most satisfactory results and demonstrates a good robustness under different circumstances.

In all the experiments, Moghaddam, Traditional-Radon-based and Dash’s methods fail to

completely remove the blurring effects in the deblurred images. Wang’s approach can only

obtain acceptable results in the first three rows of images.

Fig 8. Samples of deblurring results with different methods on VOC2012 dataset. (a) degraded image, (b) Moghaddam’s results, (c)

Traditional-Radon-based results, (d) RBFNN’s results, (e) Wang’s results, (f) our results.

https://doi.org/10.1371/journal.pone.0238259.g008
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Moreover, we adopt the peak signal-to-noise ratio (PSNR) and the running time as the eval-

uation criterion to quantitatively assess all methods’ performance. PSNR are defined as:

MSE ¼
1

MN

XM

x¼1

XN

y¼1

ðf ðx; yÞ � f̂ ðx; yÞÞ2 ð13Þ

PSNR ¼ 10 log 10

2552

MSE

� �

ð14Þ

where MSE is the mean square error, f(x, y) and f̂ ðx; yÞ are the intensity of pixel (x, y) in the

image before and after motion deblurring respectively, and M and N represent the size of

image. Besides, in order to make the experimental comparison more accurate, we also use

structural similarity index (SSIM) [39] to evaluate the deblurring quality of each method:

SSIM ðf ; f̂ Þ ¼
ð2mfmf̂ þ C1Þð2sf f̂ þ C2Þ

ðm2
f þ m

2

f̂
þ C1Þðs

2
f þ s

2

f̂
þ C2Þ

ð15Þ

where μf, mf̂ , σf, sf̂ and sf f̂ represent the local means, standard deviations and cross-covariance

for images f and f̂ respectively, C1 and C2 are two constants to avoid formula division by 0.

Usually, the larger PSNR and SSIM, the higher restoration quality. That is, an optimal PSNR is

infinity, and an ideal SSIM has value 1.

We experiment on the VOC2012 database to calculate each method’s PSNR, SSIM and the

running time, the comparison of sample pictures and overall results are presented in Table 2.

We can see clearly that our method works well on almost all sample pictures, and we obtain

the largest PSNR on each image except 2008_007430.jpg, this is approximately consistent with

the result in Fig 8. Wang’s approach barely has a slight advantage in obtaining better results on

2008_007430.jpg than our method. Compared with Wang and our approaches, traditional

Radon-based, Moghddam’s methods and RBFNN are very time-consuming. Furthermore, our

proposed method’s calculation efficiency is higher than other four approaches. In addition, we

also generate the critical difference diagram results of Friedman and Nemenyi tests for PSNR,

SSIM and the running time of these five methods on VOC2012 noise-free circumstance in Fig

9. It can be observed clearly that our method is quite different from other five methods, and

we still obtain the best results on VOC2012 noise-free circumstances. In total, our method per-

forms best among the five approaches, as we have the best results in 95.91% of the VOC2012

database on the image restoration quality and computing efficiency.

Additionally, we also conduct the experiments for all methods on the real captured blurred

images, the experiments results are visualized in Fig 10 (car, scenery and bridge images). The

car and scenery images are obtained with a hand-held camera, and the bridge image is cap-

tured in a moving car on the motorway. Based on the detection results of blur angle and blur

length, the blind deconvolution is adopted to filter and deblur the degraded images. Through

the Fig 10, we can also observe the similar superiority of our proposed method presented in

Fig 8 and Table 2. Specifically, we can see the five Chinese characters on the horizontal beam

of bridge clearly by our method through the bridge images’ enlarged version of last line in

Fig 10.

5.3 Performance of deblurring in noisy circumstances

Apart from parameters estimation tests and experiments on noise-free images, we also conduct

a set of experiments on noisy images and measure the PSNR and SSIM of the deblurred
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pictures to validate the robustness of our method. Similar to what we did in the Section 5.2, the

images of VOC2012 dataset are blurred with different PSFs, and additive Gaussian noise with

standard deviation σ = 0.0001 is added to produce noisy-blurred images (see also in Fig 12(a)).

For fair comparison, blind deconvolution is used to deblur the degraded images by the

detected PSFs with different methods. The visualization results for five methods are shown

in Fig 12, and the PSNR and SSIM of the deblurred images with different approaches are

expressed in Table 3 and Fig 11. From Fig 12, it can be observed that the deblurred images

with Wang and our method exhibit better results than other three methods. Furthermore,

through the PSNR and SSIM of the deblurred images produced by different methods in

Table 3 and Fig 11, it can be seen that our method yields the largest PSNR and SSIM on

VOC2012 database, since we ranked first in 96.76% of the VOC2012 dataset. These results

demonstrate that the robustness of our method is superior to the other four methods in noisy

circumstances.

Table 2. PSNR (dB) and SSIM of the deblurred images, and the algorithms’ running time (in seconds) on VOC2012 database.

Method Moghaddam [33] Traditional Radon [25] RBFNN [5] Wang [12] Our method

Criterion PSNR

(dB)

SSIM Time(s) PSNR

(dB)

SSIM Time(s) PSNR

(dB)

SSIM Time(s) PSNR

(dB)

SSIM Time(s) PSNR

(dB)

SSIM Time(s)

2007_000027.

jpg

65.87 0.8214 55.34 66.38 0.9043 60.25 67.86 0.9271 53.38 78.45 0.9692 12.87 79.04 0.9697 10.07

2007_001733.

jpg

71.79 0.9131 56.25 71.37 0.9549 59.02 70.57 0.9656 62.09 84.97 0.9858 12.80 85.71 0.9861 10.62

2007_005264.

jpg

61.49 0.8760 48.46 61.37 0.9332 60.69 63.01 0.9484 60.55 78.47 0.9785 11.32 79.14 0.9788 11.05

2008_001454.

jpg

63.45 0.8765 56.33 65.46 0.9299 57.65 64.18 0.9441 56.02 76.79 0.9738 11.19 78.43 0.9740 10.33

2008_001676.

jpg

64.55 0.9220 53.52 66.71 0.9577 51.45 67.47 0.9671 63.61 84.67 0.9865 12.33 85.57 0.9867 11.20

2008_003974.

jpg

63.23 0.9503 48.17 65.50 0.9720 59.59 66.75 0.9774 52.62 79.61 0.9890 13.71 79.96 0.9892 10.52

2008_004088.

jpg

59.13 0.7457 49.98 57.25 0.8460 60.43 58.87 0.8756 57.47 70.45 0.9398 11.86 71.11 0.9409 11.30

2008_006397.

jpg

62.24 0.9556 52.66 61.20 0.9724 57.88 57.08 0.9777 56.79 80.37 0.9904 12.59 81.25 0.9905 11.37

2008_007430.

jpg

61.87 0.8778 56.77 63.64 0.9365 58.67 65.28 0.9501 61.40 75.48 0.9738 11.51 75.22 0.9740 11.49

2009_001117.

jpg

62.99 0.6904 56.84 56.89 0.8419 58.53 60.60 0.8801 61.75 75.41 0.9447 13.09 75.66 0.9454 10.90

2009_003551.

jpg

65.77 0.9632 48.77 63.35 0.9793 55.02 63.44 0.9836 54.45 81.17 0.9937 11.60 81.94 0.9938 10.16

2010_000109.

jpg

63.62 0.9253 56.90 63.47 0.9620 57.65 66.71 0.9704 58.09 77.61 0.9854 12.35 78.24 0.9856 10.45

2011_001159.

jpg

61.08 0.7765 56.77 60.19 0.8847 52.81 60.67 0.9113 57.56 76.38 0.9593 12.93 76.89 0.9598 11.82

2012_000279.

jpg

61.44 0.6607 52.05 61.28 0.8215 58.16 62.46 0.8704 59.97 72.03 0.9436 13.51 72.85 0.9444 10.30

2012_002956.

jpg

59.67 0.6341 55.20 65.72 0.7865 51.41 66.15 0.8334 60.72 72.77 0.9258 13.71 72.97 0.9269 11.65

2012_003170.

jpg

62.17 0.8419 48.61 59.87 0.9136 53.86 62.66 0.9330 61.27 78.63 0.9712 12.48 79.21 0.9716 10.15

2012_004086.

jpg

61.28 0.8643 51.41 66.18 0.9243 51.56 64.82 0.9393 55.52 74.51 0.9693 11.25 76.56 0.9697 11.99

Overall 63.14 0.8413 53.12 63.31 0.9124 57.81 63.95 0.9331 58.35 75.71 0.9577 12.48 78.31 0.9711 10.87

https://doi.org/10.1371/journal.pone.0238259.t002
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Fig 9. Friedman and Nemenyi tests of PSNR, SSIM and time on VOC2012 noise-free circumstances.

https://doi.org/10.1371/journal.pone.0238259.g009

Fig 10. Deblurring results with different methods on real natural blurred images. (a) degraded image, (b) Moghaddam’s results, (c)

Traditional-Radon-based results, (d) Dash’s results, (e) Wang’s results, (f) our results.

https://doi.org/10.1371/journal.pone.0238259.g010
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5.4 Summary: Experiments on our method

5.4.1 High precision of blur parameters. Throughout the whole experiments, our

method could achieve the best blur parameter estimation accuracy for both blur angle and

blur length with the least mean absolute errors of 0.11˚ and 0.14 pixels.

Fig 12. Deblurring results with different methods on VOC2012 dataset in noisy circumstances. (a) degraded

image, (b) Moghaddam’s results, (c) Traditional-Radon-based results, (d) Dash’s results, (e) Wang’s results, (f) our

results.

https://doi.org/10.1371/journal.pone.0238259.g012

Fig 11. Friedman and Nemenyi tests of PSNR and SSIM on VOC2012 noise circumstances.

https://doi.org/10.1371/journal.pone.0238259.g011
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5.4.2 High quality of restoration. In the deblurring on noise-free images, we have the

best results in 95.91% of the VOC2012 database on computational efficiency and deblurring

quality, whereas in the noisy images we could achieve 96.76% best results in VOC2012

database.

All in all, one can see that the proposed method could estimate the blur parameters accu-

rately and eliminate the influence from the linear motion effectively in the whole experiments.

6 Conclusions

An improved point spread function estimation approach for blind motion deblurring from

the spectrum of a single image which is altered due to motion blur, noise and interference

stripes was proposed in this research. To solve these problems in single blind image restora-

tion, we propose a novel tri-Radon transforms blur angle estimation scheme which is inspired

by the dark and bright stripes in frequency domain (spectrum). Based on this blur angle esti-

mation approach the first order differential of image and auto-correlation matrix were com-

bined to detect the blur length accurately. We performed a set of experiments on VOC2012

dataset and naturally motion blurred images to compare our proposed method against several

state-of-the-art methods through the qualitative and quantitative assessments. The results of

these experiments show that our method perform best with respect to different blur parame-

ters and is proved to obtain satisfying deblurred images, since we could produce impressive

accuracies for both blur angle and length with errors of only 0.11˚ and 0.14 pixels in the whole

experiment respectively.

As there is almost no perfect linear motion between the camera and the scene in practical

application, so it is worth to explore an effective solution for the nonlinear and nonuniform

motion blur problem. In the future research we plan to improve our method work on nonlin-

ear and nonuniform motion blurred images and extend our method to other datasets.

Table 3. PSNR (dB) and SSIM of the deblurred images in noisy circumstances on VOC2012 database.

Method Moghaddam [33] Traditional Radon [25] RBFNN [5] Wang [12] Our method

Criterion PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

2007_000027.jpg 67.75 0.5889 68.96 0.6367 69.13 0.6428 69.84 0.6690 70.13 0.6832

2007_001733.jpg 69.61 0.5310 70.28 0.5627 70.39 0.5675 70.90 0.5891 71.25 0.6047

2007_005264.jpg 67.79 0.6435 69.01 0.6896 69.18 0.6960 69.88 0.7214 70.15 0.7348

2008_001454.jpg 68.45 0.3882 69.73 0.4339 69.93 0.4413 70.77 0.4744 71.14 0.4931

2008_001676.jpg 69.32 0.3807 70.10 0.4119 70.24 0.4177 70.83 0.4437 71.20 0.4627

2008_003974.jpg 68.77 0.7462 69.65 0.7723 69.77 0.7762 70.29 0.7916 70.60 0.8016

2008_004088.jpg 65.65 0.4244 67.30 0.5006 67.50 0.5099 68.22 0.5459 68.40 0.5588

2008_006397.jpg 67.59 0.4720 69.33 0.5439 69.59 0.5545 70.56 0.5956 70.91 0.6135

2008_007430.jpg 67.59 0.6328 68.83 0.6862 69.00 0.6928 69.67 0.7158 69.93 0.7269

2009_001117.jpg 66.89 0.5695 68.07 0.6407 68.24 0.6488 68.89 0.6767 69.11 0.6860

2009_003551.jpg 68.78 0.6646 69.79 0.7107 69.91 0.7164 70.48 0.7401 70.75 0.7503

2010_000109.jpg 68.79 0.7087 69.70 0.7408 69.83 0.7451 70.40 0.7620 70.70 0.7712

2011_001159.jpg 67.13 0.4843 68.48 0.5437 68.66 0.5518 69.37 0.5835 69.60 0.5954

2012_000279.jpg 66.13 0.5486 67.28 0.6085 67.41 0.6144 67.94 0.6388 68.08 0.6465

2012_002956.jpg 65.99 0.3825 67.34 0.4619 67.50 0.4709 68.15 0.5051 68.32 0.5165

2012_003170.jpg 68.01 0.5879 69.17 0.6511 69.34 0.6593 70.03 0.6913 70.32 0.7044

2012_004086.jpg 68.45 0.5184 69.57 0.5595 69.74 0.5660 70.48 0.5939 70.81 0.6092

Overall 67.83 0.5579 66.31 0.5867 69.25 0.6062 69.91 0.6305 70.56 0.6571

https://doi.org/10.1371/journal.pone.0238259.t003
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