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The success of deep neural networks usually relies on massive amounts of manually labeled data, which is both
expensive and difficult to obtain in many real-world datasets. In this paper, a novel unsupervised representation
learning network, UMA-Net, is proposed for the downstream 3D object classification. First, the multi-scale shell-
based encoder is proposed, which is able to extract the local features from different scales in a simple yet effective
manner. Second, an improved angular loss is presented to get a good metric for measuring the similarity between
local features and global representations. Subsequently, the self-reconstruction loss is introduced to ensure the
global representations do not deviate from the input data. Additionally, the output point clouds are generated
by the proposed cross-dim-based decoder. Finally, a linear classifier is trained using the global representations
obtained from the pre-trained model. Furthermore, the performance of this model is evaluated on ModelNet40
and applied to the real-world 3D Terracotta Warriors fragments dataset. Experimental results demonstrate that
our model achieves comparable performance and narrows the gap between unsupervised and supervised learning
approaches in downstream object classification tasks. Moreover, it is the first attempt to apply the unsupervised
representation learning for 3D Terracotta Warriors fragments. We hope this success can provide a new avenue for
the virtual protection of cultural relics. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAA.456153

1. INTRODUCTION

Recently, as an effective representation for the 3D object, point
clouds have attracted noticeable attention. The rapid devel-
opment of laser scanner technology makes the acquisition of
point clouds more simple and convenient. Furthermore, point
clouds are widely used for autonomous driving [1], human–
computer interactions [2], and robotics [3]. The great success
in point cloud classification, part segmentation, and object
detection applying deep neural networks has inspired us to
explore their comprehensive capabilities in a wide variety of
computer vision tasks. Currently, PointNet is used as the domi-
nant framework for point cloud classification and segmentation
[4], while the main limitation of PointNet is the only depen-
dent on the max-pooling layer to learn global representations.
Although PointNet fails to capture local structures, a great
number of variants models [5–10] based on PointNet have
achieved suitable performance, which obtains local features by
constructing neighborhood information to make up for the
shortcomings of PointNet. Wang et al. [6] present a spectral
graph convolution on a local graph to fully exploit the neigh-
boring points’ relative structure and features. The method

requires no pre-computation of the graph Laplacian matrix
and graph coarsening hierarchy. PointWeb [8] explores the
relations between all pairs of points in a local region by densely
constructing a locally fully linked web.

Unfortunately, during the process of training the above-
mentioned deep neural networks, large amounts of labeled
data are typically required to learn sufficient representations
for 3D scene understanding tasks [11], especially for a real-
world dataset, for example, the Terracotta Warriors fragments.
Recently, a considerable number of such tasks have been pro-
posed, such as predicting image rotations [12], image inpainting
[13], solving jigsaw puzzles made from image patches [14], etc.
Furthermore, the unsupervised learning methods for image
feature learning have obtained great success. In recent studies,
there is an increased interest in learning representations in an
unsupervised manner, which addresses point cloud understand-
ing tasks with insufficient labeled data. Among the existing
unsupervised learning methods on point clouds, autoencoders
(AE) [10,15–18], and generative adversarial networks (GAN)
[19,20] are considered representative models. l -GAN [16] sim-
ply produces the point clouds through multilayer perceptrons
(MLPs) from the codewords, and FoldingNet [10] is a kind of

1084-7529/22/061085-10 Journal © 2022Optica PublishingGroup

https://orcid.org/0000-0003-3560-6523
mailto:ghgeng@nwu.edu.cn
mailto:xin_cao@163.com
https://doi.org/10.1364/JOSAA.456153
https://crossmark.crossref.org/dialog/?doi=10.1364/JOSAA.456153&amp;domain=pdf&amp;date_stamp=2022-05-25


1086 Vol. 39, No. 6 / June 2022 / Journal of the Optical Society of America A Research Article

novel AE model that directly folds the entire point set based
on the duplicated global feature instead of the fully connected
decoder. The 3D point cloud data is reconstructed by training
the network, from which the features are obtained, while these
methods are only effective in obtaining structural and low-
level information from point clouds. Liu et al. [17] proposed
a local-to-global autoencoder (L2G-AE) to simultaneously
learn the local and global structure of point clouds through
local-to-global reconstruction for point cloud understanding
in the shape classification. Additionally, several methods cluster
the 3D point cloud features obtained by backbone into different
clusters [21–23]. The overall idea of these methods is very sim-
ple, and the clustering algorithm brings with it the drawbacks of
computational complexity when dealing with point cloud data.
Accordingly, how to make the global feature more representa-
tive of the original point cloud still is a key and difficult issue.
Meanwhile, the quality of the representative directly affects
the downstream tasks, for example, 3D object classification,
segmentation, and detection.

With the transformation of traditional museums into dig-
ital museums, scarce cultural relics can be well exchanged and
shared, and the display of cultural relics will become rich and
diverse. As one of the great discoveries in the history of archae-
ology, Terracotta Warriors have been predominantly found in
fragments due to the natural environment and human factors.
The traditional approaches [24–26] are primarily based on pro-
file features, texture features, or multi-features, which require
the design of accurate feature description operators from experts
and a lot of time. In recent years, some deep learning methods
are also applied to the restoration of cultural relics, such as cul-
tural relic fragments simplification [27], cultural relic fragment
classification, and segmentation [28,29]. Yang et al. [28] pro-
posed a novel method that can directly analyze the point cloud
and texture image of the fragment and output its category. Based
on the multi-scale and self-attention strategy, Liu et al. [29]
presented a novel hierarchical network to enhance the capability
of extracting both low-level and high-level features of the 3D
Terracotta Warrior fragments. However, representation learning
in the above methods relies on a large amount of labeled data for
training. At present, there are few studies based on unsupervised
representation learning for 3D cultural relics.

Motivated by the above analysis, we propose an unsupervised
representation learning network based on multi-scale feature
aggregation, named UMA-Net, for the downstream point cloud
classification task. First, with the inspiration of the multi-scale
strategy and shellconv in [9], we propose a novel encoder based
on a multi-scale shell block to extract the local features from
different scales hierarchically in a simple yet effective manner.
Subsequently, the encoder further aggregates all the informa-
tion extracted from the point cloud into global representations
G (see in Fig. 1). Second, the cross-dim-based decoder is
employed to decode the learned global representations into
3D coordinates in a coarse-to-fine way, which can get a better-
reconstructed point cloud. Third, with the purpose of getting a
good metric for measuring the similarity between local features
and global representations, a compound loss is presented, which
takes angle relationship and distance into account. Finally, a
linear classifier is trained by using the global representations
obtained from the pre-trained model. Additionally, our model
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Fig. 1. Overview of our UMA-Net architecture. T, Tile; +, the
anchor; o, the positive sample;4, the negative sample.

is evaluated on the public dataset (ModelNet40) and the real-
world dataset (3D Terracotta Warriors fragments). To our
knowledge, it is the first attempt to apply the unsupervised
representation learning for 3D Terracotta Warriors fragments.
Experimental results demonstrate that our UMA-Net achieves
comparable performance with other approaches in point
cloud classification. The main contributions of this work are
summarized as follows:

• We propose UMA-Net as a novel deep learning model to
perform unsupervised representation learning for the down-
stream 3D object classification, which is also the first attempt
to apply the unsupervised representation learning for 3D
Terracotta Warriors fragments.

• We introduce a hierarchical multi-scale shell-based
encoder to improve the local feature expression ability of the
model. Meanwhile, a cross-dim-based decoder is proposed to
improve the quality of point cloud generation.

• We present an improved angular loss to get a good metric
for measuring the similarity between local features and global
representations.

• We demonstrate the effectiveness of the learned repre-
sentations: our model achieves comparable results w.r.t prior
unsupervised models and narrows the gap between unsuper-
vised and supervised models in a downstream point cloud
classification task.

The remainder of this paper is organized as follows. The
overview of the proposed network and its sub-modules are given
in Section 2. In Section 3, a benchmark dataset and a real-world
dataset are introduced, and the experimental results are pre-
sented. Finally, the conclusions and future works are illustrated
in Section 4.

2. METHODS

Our goal is to learn rich representations G =µθ (pi ) in an unsu-
pervised manner, in which µθ denotes a deep neural network
with parameters θ , mapping point cloud pi to global features
G . To ensure that the global features G are equipped with the
same semantic and structural information as the raw point cloud
P , we propose to learn features by training networks to accom-
plish both predicting global features from local features and the
reconstruction pretext tasks. The pipeline of our framework is
illustrated in Section 2.A, which includes three main modules,



Research Article Vol. 39, No. 6 / June 2022 / Journal of the Optical Society of America A 1087

namely, the multi-scale shell block (Section 2.B), the cross-dim
block (Section 2.C), and a novel similarity measure between
local features and global features (Section 2.D). In the following
subsections, each cell in the pipeline is introduced in detail.

A. UMA-Net Architecture

Given an unordered sparse point set P = {pi ∈R3, i =
1, 2, · · · , N} with N (N = 1024) points, each point in the
point set is composed of a 3D coordinate (x , y , z). The main
components of the proposed network are multi-scale shell
block, cross-dim block, and improved angular loss in Fig. 1.
Additionally, the encoder trained in the network can be used as
pre-training for object classification tasks.

In the pre-train processing, first, the input P is sent to a hier-
archical structure composed of three multi-scale shell blocks.
In the encoder, we build a hierarchical grouping of points and
progressively expand the receptive field hierarchy. The local
features from the l th level F l and the global features G with 512
dim are obtained. To ensure that a richer representation of the
point cloud can be obtained by the global feature G , similarity
metrics between local features and global features are estab-
lished, which can be regarded as a self-supervised metric learning
problem. The global features of the current object are defined
as the positive example, and the global features of other objects
are defined as the negative examples. Second, different from the
previous deep metric learning (DML) methods that formulate
objectives based on distance, our improved angular loss aims at
constraining the angle at the negative point of triplet triangles.
Combined with the angular loss, more structural information
and semantic information are contained in the global feature.
Third, DML can only guarantee that the local features are close
to the global features, while the global features are not guaran-
teed to be representative, which is crucial for the unsupervised
downstream task of point clouds. To ensure that the global
features do not deviate from the input data, an auxiliary task
(self-reconstruction) is proposed to enable the global features
to capture the more basic structural information of the point
cloud. In the decoder, the advantages of fully connected decod-
ers and folding-based decoders are combined. Finally, after
pre-training the model, the weights of the model are frozen, and
the global features are extracted without any fine-tuning, a linear
classifier is trained on them, and the classification accuracy is
reported.

B. Multi-scale Shell Block

As one step of point cloud classification or segmentation
processing, the performance of feature extraction is crucial.
In this paper, with the inspiration from [9], the shell operator
combined with a multi-scale strategy is proposed as the core cell
of the encoder. The multi-scale shell block is illustrated in Fig. 2.

The structure of the shell block is formed by three layers:
the sampling layer [see Fig. 2(a)], the building multi-
scale spherical shell layer [see Fig. 2(b)], and the shell
feature extraction layer [see Fig. 2(c)]. M centroid points
P m

c = {p
m
c ∈R3,m = 1, 2, · · · , M} are selected from the

input set P by the farthest point sampling (FPS) method in
the sampling layer (M < N). For each sampled point, the
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Fig. 2. Illustration of the multi-scale shell block.

K-nearest-neighbor (kNN) searching is employed to extract
the features of all neighbor points. The proposed encoder
takes three different scales as input, each of them containing
K i (i = 1, 2, 3) points. One scale block is introduced in detail
to easier understand as follows.

In the building spherical shell layer, first, we compute the
distance between the neighbors and the centroid point. Then
the distances are ordered, and the neighbors are distributed into
different shells according to the distance. Each sphere is divided
into different colors [see the left of Fig. 2(d)]. The number of
points in each shell is fixed, and the number of points contained
in each shell can reach a threshold value Nshell. Subsequently, the
sphere continues to expand outward, until the next shell con-
tains another Nshell points, and so on. If the local neighborhood
of the centroid point is composed of X shells, the number of
neighbors Nnei is defined as X × Nshell (here K = Nnei in each
scale). Finally, points with the size M × Nnei × 3 are obtained in
the scale area of local regions.

In the shell feature extraction layer, the input of the con-
volution operation is composed of (Nnei + 1) points. It is not
practical to assign a convolution weight W(q) to each neighbor
point q , because the points are unordered. In this paper, the
features of the points within the shell are integrated into the
layer and assigned the same convolution weight to the features of
the points in the same shell. The new convolution is defined as

F (p)(l) =
∑

X∈B(l)p

WX
(l)F (X )(l−1), (1)

where the superscript (l ) denotes layer l and F (·)(l−1) stands
for features from the previous layer as shown in Fig. 2(e). B p is a
neighbors domain composed of multiple concentric spherical
shells.

The order of the shells is from inner to outer; however, the
points in each shell are still unordered. With the inspiration
from [4], the max-pooling is introduced to aggregate features of
the points in each shell in Eq. (2). Subsequently, 1D convolution
is used to integrate the features of all shells to obtain the features
for the centroid point as Eq. (3).

F (X )= max
q∈BX

F (q), (2)

where BX denotes the region of a shell s.

Fq = ξ(C(F (X i )), i = 1, 2, . . . , s ), (3)

where C denotes concatenation operation, and ξ denotes 1D
convolution.
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C. Coarse-to-Fine Decoder

The decoder is present to generate the output point cloud from
the global features G . The point clouds with fully connected
layers generated usually ignore geometric details in the local
regions. The proposed decoder involves a combination of the
advantages of fully connected decoders [16] and folding-based
decoders [10] in a coarse-to-fine way to solve the above short-
comings. We divide the generation of the output point cloud
into two stages. In Stage1, a coarse output Fco is generated by
passing G through a vanilla folding-based decoder u0 times and
reshaping the output into a three-dimensional matrix (see the
top of Fig. 3). In Stage2, we construct the cross-dim block to
expand the point features (see the bottom of Fig. 3) and generate
more consistent geometric details on the local regions. The
detailed structure of the proposed decoder is illustrated in Fig. 3.

1. Vanilla Folding-BasedDecoder

The folding-based decoder is good at approximating a smooth
surface that represents the local geometry of a shape [10].
Inspired by this idea, we propose the vanilla folding-based
decoder, which aims to fold the 2D grid into 3D space.
Although Stage1 seems simpler than the cross-dim block, it
provides Stage2 with a more expressive input. The detailed
steps of the vanilla folding-based decoder are presented in
Algorithm 1.

2. Cross-DimBlock

In this work, we first expand the features to generate Fex and
reduce them back, and then wecalculate the difference (Fdiff)
between the features before the Expanded unit [see Fig. 3(a)]
and after the Reduced unit [see Fig. 3(b)]. We expand the differ-
ence value to Fdiff2, and then we add Fdiff2 to Fex to self-correct

Algorithm 1. Vanilla Folding-Based Operator

Input: p ∈ P , u0 *Input point, the expand ratio.
Output: Fv1(p) *Output features of cross-dim block of p .

1: Fgt(p)← tile (G(p), u0) *Tile G for u0 times.
2: Fnew(p)← con (Fgt(p), 2Dgrids) *Concatenate Fgt with the

2D grid (16× 16).
3: Fco(p)← reshape(mlp (Fnew(p))) *Reshaped into a coarse

output.
4: Fv1(p)← con (Fco(p), Fgt(p)) *Concatenate Fgt with the 2D

grid.
5: return Fv1(p)

Algorithm 2. Cross-Dim Operator

Input: p ∈ P , u1 *Input point, the expand ratio.
Output: Fout(p) *Output features of cross-dim block of p .

Expanded unit *Fv1 and Fex as the input and output of the
expanded unit, expand the point features u1 times.

1: Fv2(p)← tile (Fv1(p), u1) *Tile Fv1 for u1 times.
2: Fnew2(p)← con (Fv2(p), 2Dgrids) *Concatenate Fv2 with

the 2D grid (32× 32)
3: Fex(p)←mlp (selfattention(Fnew2(p))) *A self-attention

module with MLPs to establish the inner links between features of
Fnew2.

Reduced unit *Reduce the expanded features.
4: Fre(p)← reshape(mlp (Fex(p))) *Reshaped Fex obtained

from the expanded unit.
5: Freduce(p)←mlp (Fre(p)) *Passed through a set of MLPs to

make it into the original features.
6: Fdiff(p)← Fv1(p)− Freduce(p) *Compute the difference

between the features before the Expanded unit and after the Reduced
unit.

7: Fdiff2(p)← expand unit(Fdiff(p)) *Expand the difference value
Fdiff to Fdiff2.

8: Fout(p)← Fex(p)+ Fdiff2(p) *Add Fdiff2 to Fex.
9: return Fout(p)

Fig. 4. Illustration of self-attention.

the expanded features. The detailed steps of the Cross-Dim
Operator are presented in Algorithm 2.

3. Self-AttentionUnit

The self-attention module is used to establish the inner links
between features so that similar features can be selectively aggre-
gated together. The overall process of global features aggregated
based on general self-attention is illustrated in Fig. 4. Given the
i th point feature Fi , the output feature can be defined as

y i =
∑
xi∈X

θ(σ (θ(g (Fi )
T , h(F j ))), γ (F j )), (4)

where g (·), h(·), and γ (·) denote the point-wise feature trans-
formations; for simplicity, they are considered in the form of
linear functions. θ is defined as the matrix (relation) function,
and σ(·) is defined as a normalization function, such as softmax.
We generate the output features, which are the sum of the input
features and the weighted features.
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D. Loss

Deep metric learning aims to learn embeddings that capture
semantic similarity information among points, and the loss
function is the key to DML success. In existing studies, the
previous loss functions include the contrastive loss [30], the
triplet loss [31,32], and some of its variants [33–35]. In this
paper, a novel joint loss function is proposed to get a good metric
for measuring the similarity between local features and global
representations. The proposed loss function is described in
detail as follows.

1. ImprovedAngular Loss

Each triplet {pa , p p , pn} consists of an anchor point pa , a
positive sample p p , and a negative sample pn in the iteration
of a batch. The mapping function f (·) can map point pi to
an embedding feature vector f (pi ) ∈Rd . For convenience,
ψa = f (pa ),ψp = f (p p),ψn = f (pn). The goal of the triplet
loss [32] is to pull the anchor point closer to the positive sample
than to the negative sample by a fixed margin η= 0. The triplet
loss can be formed as follows:

L tri =max(0, S(ψa , ψp)− S(ψa , ψn)+ η), (5)

where S(m, n)= ‖m − n‖2
2 denotes the Euclidean distance

between m and n.
The triplet loss only focuses on the information of one

negative sample in each optimization. To reduce the training
burden while making full use of each batch of training samples,
N-pair-mc loss [35] is introduced to identify one positive sample
from (N-1) negative samples. The corresponding (N-1)-tuplet
loss can be formulated as follows:

LNpair =
1

Q

Q∑
i=1

log

1+
∑
i 6= j

exp
(
ψT

i ψ
′

j −ψ
T
i ψ
′

i

),
(6)

where ψi = f (pi ) and {pi , p ′1, p ′2, · · · , p ′Q} denote Q pairs
of examples from Q different classes. Here, pi and p ′i indicate
the query and the positive sample, respectively. {p ′j , j 6= i} is
defined as the negative samples.

Both the triplet loss and the N-pair loss use distance as a
similarity measure, which is sensitive to changes in scale. The
angular loss minimizes the angle atψn of a triangle formed from
the three embeddings, instead of simply minimizing the dis-
tance ofψp toψa relative toψn . Angular loss is both rotationally

L N =
1

Q

∑
i,l

log

1+
∑

G j 6=G

exp
(
0(l)

(
Fpi

(l))T
H(G j )− 0

(l)(Fpi
(l))T

H(G)
). (10)

invariant and scale invariant, using a triangle in which all edges
of the triplet are taken into account [33]. However, under cer-
tain circumstances, the minimization of the angle at ∠n will
push ψn toward ψa as exhibited in Fig. 5 by the two gray trian-
gles and the dashed arrow. A new triangle1MNK is formulated
to move the anchor sample ψa and positive sample ψp to ψm

and ψk separately (see the red triangle in Fig. 5). The edges are
denoted as εmn, εnk, and εmk.

Fig. 5. Illustration of angular loss.

First, a hypersphere GC passing through ψa and ψp , with
a midpoint ψm , is constructed, where ψm = (ψa +ψp)/2.
Second, a straight line εnk is found by passing through the mid-
pointψm , setting an auxiliary line perpendicular to the line εmn

and intersecting the hypersphere2C at the point ψk . Finally, a
tangent function of angular loss is constructed in the right-angle
triangle byψm , andψk is minimized as follows:

tan ∠n′ =
‖ψm −ψk‖

‖ψm −ψn‖
=

∥∥ψa −ψp

∥∥ /2
‖ψm −ψn‖

≤ tan δ, (7)

where the hyperparameter δ is predefined upper accepted
bounds of the loss, which is set to be between 30◦ and 50◦ in our
experiments.

Equation (7) can be rewritten as Eq. (8):

S(ψa , ψp)≤ 4tan2δS(ψm, ψn). (8)

The angular loss function is defined as follows:

L ang =max(0, S(ψa , ψp)− 4tan2δS(ψm, ψn)). (9)

Since our work is based on unsupervised learning and learns
from the idea of instance discrimination in [36], in this paper,
the anchor point indicates the embedded local features, the
positive sample indicates the global features of one object, and
the negative samples indicate the global features of other objects.
However, there are different channels between the local features
{Fpi

(l), ∀i, l} and global features G . MLPs are used to embed
them into a shared feature space, e.g.,0(l)(Fpi

(l)), H(G).
For each sample from a mini-batch of size Q, {G i }

q
j=1

denotes the global features of different objects. Therefore,
Eq. (6) can be rewritten as follows:

The angular loss, which is combined in a log-sum-exp formu-
lation, can be formed as Eq. (11):

L A =
1

Q

∑
i,l

log

1+
∑

G j 6=G

exp(e )

, (11)
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e = 4tan2δ ρ exp
(
0(l)

(
Fpi

(l))
+H(G j )

)T
H(G j )

− 2
(
1+ 4tan2δ

)
ρ exp

(
0(l)

(
Fpi

(l))T
H(G j )

)
, (12)

whereρ is set to a constant value of 64 to rescale the features.
The angular constraint can be combined with traditional

distance metric loss to boost the overall performance. The
improved angular loss is defined as follows:

L IA = τ L A + L N, (13)

where τ denotes a weight, which is set to 0.1 in all experiments.

2. Self-Reconstruction Loss

Chamfer distance (CD) is chosen as the reconstruction error.

L R =
1
|P |

∑
p∈P

min
p ′∈D(G)

∥∥p − p ′
∥∥2

2
+

1
|D(G)|

∑
p ′∈D(G)

min
p∈P

∥∥p ′ − p
∥∥2

2
.

(14)
The average nearest squared distance between the recon-

structed point cloud D(G) and the input point cloud P is
measured by CD in Eq. (14). The point cloud D(G) is gen-
erated by our proposed decoder conditioned on the global
features G .

3. Total Loss

Accordingly, the total loss of the training network involves a
combination of the above losses, which is defined in Eq. (15):

L com = L R + L IA. (15)

3. EXPERIMENTS AND RESULTS

A. Datasets and Implementation Details

Datasets. To demonstrate the effectiveness and efficiency of our
network, extensive experiments are conducted on ModelNet40
and ModelNet10 benchmarks and the real-world dataset (the
3D Terracotta Warriors fragments) for the point cloud classifi-
cation task. ModelNet10 contains 4899 CAD models from 10
categories and is split into 3991 for training and 908 for testing.
ModelNet40 comprises 9843 training objects and 2468 test
objects in 40 classes. Each sample only retains 1024 uniformly
distribute points as input, and only the coordinates (x , y , z) of
the sampled points are used in the experiment.

The raw point clouds of the Terracotta Warrior fragments are
scanned by trained students in our lab using Creaform VIU 718
handheld 3D scanner from Canada. Figure 6 illustrates some
obtained models of Terracotta Warriors fragments. There are
conflicts between the dense point cloud obtained by the high
resolution of 3D scanners and the number of the neural network
input point clouds. To this end, the sampled point clouds are
obtained using Geomagic software as exhibited in Fig. 7(a).
According to the parts of the Terracotta Warriors, data can be
divided into four categories: Arm (800), Body (810), Head
(810), and Leg (830). The number of Terracotta Warrior frag-
ments is not far from enough for training deep neural networks,
and the deep neural networks have a fixed input number as 1024
or 2048. Therefore, an extended dataset is generated by random

Arm

Body

Head

Leg

(a) (b) (c)

Fig. 6. Illustration of the Terracotta Warriors fragments.

(a) Original point cloud

(b) Extended dataset

(1) (2)

(3) (4)

Zoom inMerge

(c)

Fig. 7. Pipeline of input data generation approach.

Table 1. Number of Fragments for Each Class in the
Expanded Dataset

Label Arm Body Head Leg Total

Train 2656 2720 2720 2496 10144
Test 476 504 428 444 1852

sampling from the dense point clouds [Fig. 7(b)]. Here we
ensure that the four non-overlapping point clouds are sampled
from the same object by the random sample method, which
is exhibited in Fig. 7(c). Subsequently, the extended dataset
that included 11,996 patches of the 3D Terracotta Warriors
fragments are obtained, and the number of samples included in
the different partitions is exhibited in Table 1.

Network configuration. In UMA-Net, there are three
multi-scale shell blocks. In each block_ i , the parameters, Mi ,
X i , Ni

shell, and Di (i = 1, 2, 3), respectively denote the number
of sampled points by FPS, the number of shells, the number of
points in each shell of the same scale, and the output channels.
Mi is set to [512,128,32], X i is set to [4,2,1], Ni

shell is set to
[8,16,32], and Di is set to [256,89,1792] Therefore, points in
each area of the local region can be defined as X i × Ni

shell. To
measure the similarity between local features in each encoding
layer and the global feature, the MLPs are used to embed them
into a shared feature space. Here, the dim is set to 512.

Training. The network was trained for 200 epochs on an
NVIDIA GTX 1080Ti GPU and PyTorch v1.2, using an Adam
optimizer without weight decay. An initial learning rate of 0.01,
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an initial momentum for batch normalization layers of 0.9, and
a batch size of 22 were set. The learning rate was decayed by 0.7
every 20 epochs using the lambda learning rate scheduler, and
the momentum was decayed by 0.5 every 20 epochs. The batch-
normalization and Rectified Linear Unit (ReLU) activation
were applied to each layer, and dropout was used with p = 0.5.

B. Experiments on Modelnet40

1. Pre-training theNetwork

UMA-Net is trained to receive and reconstruct point clouds
of 1024 points. During training, a random translation in [0.2,
0.2] and a random anisotropic scaling in [0.67, 1.5] are applied
to augment the input data. The model is pre-trained across
all categories of the Modelnet40 dataset, and then the trained
model is transferred to the classification downstream task. All
pre-trained weights are frozen during training, and the network
is not fine-tuned for the downstream task.

2. Classification

To evaluate the performance of the model on representation
learning, we extract the global features G of ModelNet40/10
from the pre-trained model without any fine-tuning, train a lin-
ear classifier on them, and report the classification accuracy. The
performance comparison between our UMA-Net with several
baselines is summarized in Table 2. For unsupervised represen-
tation learning methods, we also compare with some advanced
voxel- [37] and view-based [38] methods except for point-based
methods. From the results of the experiment conducted on
Modelnet10 in Table 2, our unsupervised learning method
outperformed all unsupervised methods and is slightly inferior
to the supervised methods. For the results of ModelNet40,

Table 2. Comparisons of the Classification Accuracy
(%) of Our Method Against the Unsupervised and
Supervised Methods on ModelNet40/10

a

Method Re. Supervised M40 M10

3D-GAN [37] V F 83.30 91.00
VIPGAN [38] Mv F 91.98 94.05
FoldingNet (M40) [10] P F 84.36 91.85
FoldingNet [10] P F 88.40 94.40
l -GAN (M40) [16] P F 87.27 92.18
l -GAN [16] P F 85.70 95.30
Multi-Task [22] P F 89.10 —
L2G-AE [17] P F 90.64 95.37
PointNet [4] P T 89.20 —
PointNet++ [5] P T 90.70 —
ShellNet [9] P T 93.10 —
PointWeb [8] P T 92.30 —
AMS-Net [29] P T 92.94 95.83
DGCNN [7] P T 92.90 —
SO-Net [15] P(2048) T 90.90 —
AMS-Net [29] P, N T 93.52 95.91
Ours P F 92.06 95.60

aM40, ModelNet40; M10, ModelNet10; Re., the representation of input;
Acc., overall accuracy; V, voxel; Mv, multi-views; P, x y z coordinates of the
point; N, surface normal vector.

our model even outperforms the methods trained under the
larger ShapeNet dataset, such as FoldingNet [10] and l -GAN
[16]. For a fair comparison, we train all these methods under
ModelNet40. Our model reaches a much better classification
performance with an accuracy of 92.06%, outperforming the
approaches FoldingNet, l -GAN, Multi-Task, and L2G-AE by
7.7%, 4.79%, 2.96%, and 1.42%, respectively. Results suggest
that our model achieves optimal accuracy on the ModelNet40
classification task compared to other unsupervised methods
listed in Table 2. Our model is still 1.16% better than SO-Net
using 2048 points. In general, the results also suggest that the
unsupervised model is competitive with the supervised models.

3. Visualization of theGlobal FeaturesG

To reflect the ability of the encoder by visualizing the repre-
sentative features, we select 10 categories and randomly sample
200 shapes from each category. The t-SNE visualization is
exhibited in Fig. 8, which demonstrates the performance of our
UMA-Net.

4. Robustness

The robustness of our UMA-Net on sampling density was evalu-
ated by using sparser points of numbers 1024, 512, 256, and
128 as the input to a model trained with 1024 points. Figure 9
suggested that our UMA-Net drops by 1.58% with points of
numbers from 1024 to 512 and 4.89% with points of numbers
from 1024 to 256. When the number of sampling points is
set as 128, the UMA-Net we proposed can still reach 82.33%.
Besides, compared with PointNet and SO-Net, our method has
a gentler decline and is still considerably robust.

5. AblationStudy

In this section, an extensive ablation study was performed to
investigate the effectiveness of each component of the UMA-
Net architecture as follows. (1) The structure of the encoder:
single-scale versus multi-scale. As suggested in Table 3, the
UMA-Net outperforms the single-scale model by 1.42%, which
is owing to our network being able to extract multi-scale detail
features effectively. (2) The structure of decoder: MLPs ver-
sus FoldingNet versus Cross-Dim block. The folding-based
decoder has the same accuracy as our model. To further prove

Fig. 8. Visualization of embedded features with T-SNE.
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Fig. 9. Robustness for sparser point clouds.

Table 3. Ablation Study of Our Method

Acc. (%)

Encoder Single-scale 90.64
Multi-scale 92.06

Decoder MLPs 91.65
FlodingNet 92.06

Cross-dim block 91.97
Loss L R 89.47

L R + L N 91.86
L R + L A 89.59
L R + L IA 92.06

Ni
shell [4,8,16] 92.00

[8,16,32] 92.06
[16,32,32] 90.88

the effectiveness of our model, the convergence of our UMA-
Net and the comparison method are presented as exhibited
in Fig. 10. In the first 50 iterations of training, our model has
stronger convergence than the other two. In the subsequent 100
iterations, the three networks gradually become flat and stable.
In conclusion, our UMA-Net can generate a result that is more
similar to the input point cloud. (3) Loss: the notation of each
loss function has been defined in Section 3.D. As suggested in
Table 3, the result of the total loss (L R + L IA) achieves the best
performance. The angular loss contributes to the network. In
summary, the integration of multi-scale encoder, cross-dim
decoder, and angular loss achieve significant performance
improvement over baseline. (4) The number of the neighbors in
each scale is Nnei = X × Nshell. Here, we also perform the fixed
value of the number of shells X in [9]. The shell size Nshell is the
key factor in affecting the neighbors’ regions. The performance
of our UMA-Net is tested with different shell sizes. In each
blocki , we set Ni

shell to [8,16,32] for point cloud classification.

6. Complexity Analysis

We measure network complexity by floating point operations
(FLOPs) and GPU inference throughput on NVIDIA GTX
1080Ti GPU. With batch size 22, point cloud size 1024 from
the ModelNet40 dataset. Table 4 summarizes the model com-
plexity of different methods. We can see our large model requires
considerable computation cost but maintains an acceptable

Fig. 10. Contrast of convergence.

Table 4. FLOPs and Inference Throughput of Several
Models

a

Model FLOPs Throughput Acc. (%)

DGCNN 39.924 G 257.27pc/s 92.9
SSG PointNet++ 13.814 G 113.42pc/s 90.5
MSG PointNet++ 64.473 G 68.78pc/s 91.7
Method in [28] 91.666 G 457.59pc/s —
Ours 8.039 G 53.84pc/s 92.06

apc/s, point cloud(s) per second.

actual cost on GPU due to the simplicity of the SSG model. Our
UMA-Net achieves a better trade-off on speed and accuracy.

C. Application on the Terracotta Warrior Dataset

To prove the effectiveness of our UMA-Net on 3D Terracotta
Warrior fragments, the performance comparison between our
model with several supervised baselines is exhibited in Table 5.
The first two are traditional methods, and the others are DML
ones. The highest mean accuracy of the existing traditional
approaches is 87.64%. Our UMA-Net can achieve competitive
performance with an accuracy improvement of 6.26% com-
pared to the method in [39]. Simultaneously, our AMS-Net
improves accuracy by 4.97% compared to PointNet. Although
the method in [28] is a dual modal that incorporates geospatial
and texture information of the fragments, our method out-
performs it by 2.49%. However, our UMA-Net is only 1.78%
lower than the supervised learning method named AMS-Net.
Compared with ModelNet40, the real-world dataset has the fol-
lowing characteristics: the smooth surface of objects and uneven
distribution of wrinkles, such as arms and bodies. To sum up, the
results suggest that our unsupervised model is competitive with
the supervised models, and these quantitative results further
validate the high effectiveness and promises of UMA-Net.

Table 6 exhibits the accuracy of the average class. From the
results, first, a conclusion can be drawn that the accuracy of the
class Body is the highest, while the accuracy of the class Arm is
the lowest. The main reason is that most of the body parts are
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Table 5. Compared with Other Methods on the 3D
Terracotta Warrior Fragment Dataset

a

Method Data Type Supervised OA(%)

Method in [26] I T 84.34
Method in [39] P T 87.64
PointNet [4] P T 88.93
Method in [28] P, I T 91.41
AMS-Net [29] P T 95.68
Ours P F 93.90

aI, the image.

Table 6. Classification Accuracies of the Four
Classes

a

Method Arm Body Head Leg

Method in [28] (G) 82.51 96.45 92.36 84.41
Method in [28] (T) 77.75 92.75 91.50 76.25
Method in [28] 87.55 87.55 94.37 88.41
AMS-Net [29] 92.40 98.10 98.00 94.20
Ours 91.00 94.73 94.58 92.54

aG, the result of the classification based on geospatial information only;
T, texture information.

Fig. 11. Illustration of failure examples.

Table 7. Results for Different Numbers of Input Points

Input Numbers 1024 512 256 128

Acc. (%) 93.90 93.51 92.29 90.43

wearing armor, or the clothes have more folds, as illustrated in
Fig. 6. Second, the characteristics of the class Body are more
obvious in general. Finally, the characteristics of class Arm are
similar to class Leg, e.g., the models of column c in these two
classes as illustrated in Fig. 6. The fragments in the two columns
on the left of Fig. 11 belong to class Arm, and the remaining
two columns on the right are from class Leg. As the features of
class Leg are relatively smooth, these two categories can easily be
misclassified.

From Table 7, we know that the robustness of our UMA-Net
on sampling density is equally applicable to the real-world
dataset.

4. CONCLUSION

In this paper, a novel autoencoder network for unsupervised
representation learning has been proposed. The main contribu-
tions can be summarized as follows: (1) Our model can capture
the structural and semantic information at the same time by the
similarity measure between local features and global features.
(2) A hierarchical multi-scale shell-based encoder is present to

learn the correlation between different areas for point clouds.
(3) A structure-preserving decoder is proposed for high-quality
point cloud generation in a coarse-to-fine manner. (4) It is
the first attempt to our knowledge to apply the unsupervised
representation learning for 3D Terracotta Warrior fragments.
Extensive experiments conducted on challenging benchmarks
have demonstrated that the model we proposed achieves excel-
lent performance on 3D object classification, significantly
narrowing the gap with the fully supervised counterparts in
the literature. In the future, we would like to exploit unsuper-
vised techniques to improve the performance and extend our
approach to high-level 3D understanding tasks such as 3D
object detection and semantic segmentation. Additionally, we
hope the findings in this study will encourage more research on
3D representation learning.
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