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The emergence of the three-dimensional (3D) scanner has greatly benefited archeology, which can now store cul-
tural heritage artifacts in computers and present them on the Internet. As many Terracotta Warriors have been
predominantly found in fragments, the pre-processing of these fragments is very important. The raw point cloud
of the fragments has lots of redundant points; it requires an excessively large storage space and much time for
post-processing. Thus, an effective method for point cloud simplification is proposed for 3D Terracotta Warrior
fragments. First, an algorithm for extracting feature points is proposed that is based on local structure. By con-
structing a k-dimension tree to establish the k-nearest neighborhood of the point cloud, and comparing the feature
discriminant parameter and characteristic threshold, the feature points, as well as the non-feature points, are
separated. Second, a deep neural network is constructed to simplify the non-feature points. Finally, the feature
points and the simplified non-feature points are merged to form the complete simplified point cloud. Experiments
with the public point cloud data and the real-world Terracotta Warrior fragments data are designed and con-
ducted. Excellent simplification results were obtained, indicating that the geometric feature can be preserved very
well. ©2020Optical Society of America

https://doi.org/10.1364/JOSAA.400571

1. INTRODUCTION

Terracotta Warriors, known as one of the world’s wonders, have
become an important channel for spreading Chinese culture. In
1974, some fragments of Terracotta Warriors were discovered
near Xi’an, Shanxi province. After two years of investigation and
excavation, more figures of horses and warriors, which consisted
of war chariots, infantrymen, cavalrymen, and other armed
servicemen, were discovered. As many Terracotta Warriors have
been predominantly found in fragments, the traditional restora-
tion of cultural relics not only consumes a lot of manpower but
also causes secondary damage to the Terracotta Warriors [1,2].
With the rapid development of laser scanner technology, the
Terracotta Warrior fragments can be restored and preserved in
a digital way, and the restoration work can be done virtually.
However, the raw point cloud collected by scanning devices
usually contains a lot of redundant points. It requires excessive
amounts of main memory and much more time for subsequent

processing in later applications such as classification, regis-
tration, 3D reconstruction and so on. Therefore, reducing
the complexity of the raw point cloud is a critical issue in the
restoration of Terracotta Warriors.

According to the principle of reduction, the traditional
point cloud simplification methods can be generally classified
into two categories: polygonal mesh-based methods and point
cloud-based methods. The former methods simplify the point
cloud by converting the point cloud to polygonal mesh model,
simplify the model, and then reduce the points based on some
rules. Wei et al. [3] represented a method for mesh simplifica-
tion, which was based on visual saliency weighting. The method
described the local feature values of the surface through the rela-
tionship between Voronoi poles and the sample points. Li et al.
[4] proposed a uniform simplification algorithm for scattered
point cloud data. The algorithm was based on the open-source
C++ programming library point cloud library (PCL). First, a
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k-nearest neighborhood voxel grid was built by voxel grid class
in the PCL. Then, the k-nearest neighborhood distance was
calculated and the normal was estimated. Then the barycenter
of each small voxel grid was established, which replaced all
point cloud in the voxel grid to achieve point cloud simplifi-
cation. Finally, the simplified point cloud was reconstructed
and displayed with a triangular mesh by the greedy projection
triangulation class. Sun et al. [5] introduced the medial mesh, a
discrete representation of the medial axis, to simplify the point
cloud. The medial mesh is a two-dimensional (2D) simpli-
cial complex coupled with a radius function that provides a
piecewise linear approximation to the medial axis. The main
disadvantages of these polygonal mesh-based methods are that
they are highly complex and time-consuming. In contrast, point
cloud-based methods can consume the point cloud directly.
Since there is a lack of topological structures, it is a difficult task
to remove redundant points while preserving the appearance
properties, features, and contour of the raw point cloud in the
simplified point cloud. Huang et al . [6] proposed a simplifica-
tion method with a geometric feature reservation. First, points
were distributed into uniform grids. Bounding spheres were
searched in the relevant bounding sphere. Second, a specified
function was defined to measure the curvature of each point
so that feature points could be extracted and reserved. Finally,
non-feature points in the bounding spheres were simplified
according to the threshold of normal vectors, the inner product.
Wang et al . [7] presented a feature points detection algorithm
based on curvature and density. First, the feature parameter of
each point was calculated. Then, the density of data was defined
by using an octree. It was divided by the maximum distance
from model center to data points and applied as the feature
threshold to determine the feature points. The feature points
were recognized when its density parameter was bigger than
the threshold. Chang et al . [8] proposed a k-means clustering
algorithm based on boundary reservation to simplify the point
cloud. The algorithm first used the k-dimension (kd-tree) to
initialize the center of mass, and then used the XY boundary
extraction algorithm to preserve the boundary integrity. Finally,
the cluster was subdivided according to the curvature level, so
that the necessary points were kept in the high-curvature region,
and some were kept uniform in the low-curvature region. Shi
et al. [9] extended an adaptive simplification of the point cloud
using k-means clustering. An automatic recursive subdivision
scheme was designed to pick out representative points and
remove redundant points. To maintain the integrity of the
border, an automatic boundary cluster detection algorithm was
developed. The method was mainly impacted by two factors:
user-defined space interval and normal vector tolerance. By
adjusting the two parameters, each level of detail and amount
could be obtained. Chen et al. [10] presented a method for point
cloud simplification. The proposed method used the position of
points, the normal vector, and the curvature to detect the feature
points and used Gauss map clustering for sharp feature detec-
tion. It calculated the dynamic simplification ratio in different
regions, and used a lower simplified rate in the feature region and
a high simplified rate in the flatness region to retain an appropri-
ate density and avoid producing blank areas and holes. Ji et al.
[11] defined the detail feature points simplified algorithm
(DFPSA). A k-neighborhood search method based on distance

and density was proposed to find the k-neighborhood of each
point as accurately as possible. Feature points and non-feature
points were reduced in different ways. Li et al. [12] proposed a
synthetic down-sampling method for point cloud simplifica-
tion. A coarse-to-fine feature extraction manner was designed
with normal vectors deviation and k-means clustering methods,
which could concentrate more sample points in regions of the
high curvature. Moreover, the directed Hausdorff distance
approach was employed for sampling in an edge-preserving
manner. Chen et al. [13] defined an algorithm of extracting
feature points based on the multiple parameters hybridization
method. Based on the feature parameters, the characteristic
threshold and the feature discriminant parameter could be
defined and figured out. Feature points were recognized by the
defined rule. The proposed algorithm not only extracted the
steep feature points but also identified the boundary points.
The experiment verified that the algorithm was not effective in
thin-wall models. Markovic et al. [14] proposed a method for
feature-sensitive simplification of the 3D point cloud that was
based on ε insensitive support vector regression (ε-SVR). By the
flatness property of ε-SVR, the effective recognition of points in
high-curvature areas of scanned lines was exploited. Besides, the
points in the vicinity of sharp edges were effectively detected by
the method without additional processing.

In recent years, deep learning has gained significant progress
in the field of point cloud processing. The first deep learning
architecture for consuming the point cloud was presented
by Qi et al. [15] and named as PointNet. The basic idea of
PointNet was to learn the spatial encoding of each point and
then aggregate all individual point features to a global point
cloud signature. PointNet provided a unified approach to sev-
eral 3D recognition tasks including object classification, part
segmentation, and semantic segmentation. However, PointNet
could not capture local structures induced by the metric space
points live in, limiting its ability to recognize fine-grained pat-
terns and generalizability to complex scenes. To learn richer
local structures, many specialized neural modules have been
subsequently and rapidly introduced. These notable exten-
sion modules can be generally categorized as neighborhood
features pooling [16–19], graph-based convolution [20–25],
and kernel-based convolution [26–30]. A hierarchical neural
network that applied PointNet recursively on a nested parti-
tioning of the input points is proposed in Ref. [16] and named
as PointNet++, which learned deep point cloud features effi-
ciently and robustly. Li et al. [17] proposed the novel SO-Net
that performed hierarchical feature extraction for point cloud
by explicitly modeling the spatial distribution of input points
and systematically adjusting the receptive field overlap. The
SO-Net guaranteed invariance to the order of input points, by
the network design and permutation invariant SOM training.
It outperformed other deep learning-based approaches in the
field of point cloud classification and shape retrieval. Based on
PointNet, Yang et al. [20] proposed an auto-encoder (AE) that
is referenced as FoldingNet. On the encoder side, a graph-based
enhancement was enforced to promote local structures on
top of PointNet. A novel folding-based decoder deformed a
canonical 2D grid onto the underlying 3D object surface of a
point cloud, achieving low reconstruction errors even for objects
with delicate structures. Wang et al. [19] proposed a new neural
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network module dubbed EdgeConv suitable for CNN-based
high-level tasks on point cloud, including classification and seg-
mentation. EdgeConv acted on graphs dynamically computed
in each layer of the network. EdgeConv incorporated local
neighborhood information and could be stacked and applied
to learn global shape properties. Hua et al. [25] presented a
convolutional neural network. At the core of the network was
pointwise convolution, a new convolution operator that could
be applied at each point of a point cloud. The network could
yield competitive accuracy in both semantic segmentation
and object recognition task. A recent work by Dovrat et al.
[31] proposed a task-specific sampling method. The network,
termed S-NET, consumed a point cloud and output a down
sampled point cloud that was optimized for a particular task.
The generated point cloud was not guaranteed to be a subset of
the input. Therefore, in a post-processing step, the clouds were
replaced by their nearest neighbor points in the raw point cloud,
which yielded a subset of the input. Lang et al. [32] introduced
a novel differentiable relaxation for point cloud sampling. They
employed a soft projection operation that represents output
points as a weighted average of points in the input. During
training the network, the soft projection operation replaced
the regression of optimal points in the ambient space with
multiple classification problems in local neighborhoods of the
input. In summary, the variety of deep learning applications for
point cloud expanded substantially, and these methods have
gained encouraging results compared to traditional point cloud
simplification methods.

In this work, a novel method for simplifying the Terracotta
Warrior fragments is presented. Firstly, an algorithm for extract-
ing feature points is proposed. By constructing a kd-tree, the
k-nearest neighborhood of each point is established, and multi-
parameters for describing the features of each point are designed
and calculated. The multi-parameters include four parts (see
Section 2.A for details). Based on the four parameters, the fea-
ture points and non-feature points can be extracted. Secondly,
several subsets of non-feature points are generated based on
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Fig. 1. Flowchart of the proposed method.

uniform sampling method and the k-Nearest Neighbor (kNN)
method. A deep neural network is then constructed to simplify
these subsets. Finally, the simplified subsets and feature points
are merged into the complete point cloud. The flowchart of this
method is shown in Fig. 1.

The remainder of this paper is organized as follows. In
Section 2, the related theories, network architecture, and our
simplification method are described. The experimental results
and the contrasts with other related methods are provided in
Section 3. Finally, discussion and a conclusion are given in
Section 4.

2. METHODS

A. Extraction of Feature Points

In order to retain the feature points entirely and accurately, a
method to measure the importance of each point is proposed.
Based on the method, the feature points can be judged. Given
the raw point cloud as R = {pi (xi , y i , zi )}, (i = 1, 2, . . . , N),
where pi denotes the i th point, and N denotes the size of R . As
the topological relationship between the scattered points is not
obvious, the method needs to construct the k neighborhood
of points. At present, common methods for the kNNsearch
include the spatial grid method, the octree method, and the
kd-tree method. The kd-tree method can quickly establish
the search path of each data point. It not only consumes less
computer memory, but also has strong adaptability. After com-
parative considerations, the kd-tree method is used to establish
the k neighborhood of points. Four characteristic parameters
to reflect the importance of one point are defined: the average
distance from one point to its k-nearest neighborhood points
(abbreviated as AVD), the curvature and the average normal
vectors deviation angles between the point and its neighbor-
ing points (abbreviated as ANVDA), and the distance from
one point to the centroid of its neighborhood (abbreviated as
DCON). Based on the four characteristic parameters, a feature
discriminating parameter and a feature threshold are defined,
and the point where the feature discriminating parameter is
greater than the threshold is the feature points.

1. AVD

The AVD from point pi to its k-neighboring points is calculated
as follows:

d(pi )=
1

k

k∑
i=1

|q j−pi |, (1)

where q j ( j = 1, 2, . . . , k) denotes the j th point of the k-
neighboring points of point pi . When the neighborhood points
of point pi are more densely distributed, the smaller the AVD
value and the greater the probability that point pi is a feature
point and should be retained. Conversely, it should be noted
that a large AVD value means that point pi locates in a flat
region. Therefore, the point with a large AVD value can be
regarded as a redundant point and should be removed.
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2. Curvature andANVDA

The principal component analysis (PCA) algorithm is used to
obtain a normal estimation for each point pi in point cloud
R . Based on the covariance matrix, the local surface properties
of point-based surfaces can be estimated. The centroid of the
neighbors q j of point pi is defined as follows:

u =
1

k

k∑
j=1

q j . (2)

The 3× 3 covariance matrix R is given by

M=
1

k

k∑
j=1

(q j − u)(q j − u)T =
1

k


q1 − u
q2 − u

...
qk − u


T 

q1 − u
q2 − u

...
qk − u

.

(3)
Assuming λ0, λ1, and λ2 are the eigenvalues of M, and λ0 ≤

λ1 ≤ λ2. ν0, ν1 and ν2 are the eigenvectors corresponding to λ0,
λ1, and λ2, respectively, then, the eigenvector ν0 corresponding
to the smallest eigenvalueλ0 is taken as the surface normal vector
npi at pi .

The minimum eigenvalue λ0 measures the change of the
local surface, so the change of λ0 can be used to estimate the
curvature. The local curvature at pi can be provided by Eq. (4):

c i
cur =

λ0

λ0 + λ1 + λ2
. (4)

The value of c i
cur reflects the curve of the surface. For points

belonging to an ideal plane, λ0 = 0 and c i
cur = 0 are defined.

The larger the value of c i
cur, the region that the variance of the

curvature changes more where pi locates in and the greater the
probability that the point pi is a feature point.

The normal vector of the point reflects the tangent plan where
the point is located. If the normal vectors of two points are the
same, it implies that they locate in the same region. In contrast,
if the difference between the two normal vectors is large, it
means that they are more likely to be in different tangent planes.
Therefore, the average of the sum deviation angles between npi

and nqj is denoted as follows:

ωpi =
1

k

k∑
j=1

arccos
npi · nqj

|npi| × |nqj|
(i = 1, 2, . . . , N), (5)

where ωpi ∈ [0, π ]. The larger the value of ωpi, the curved sur-
face fitted by point pi , and the more convex its k-neighboring
points, the greater the probability that pi is a point in a sharp
region.

As shown in Fig. 2, point q j with the green color is the k-
neighboring points of pi and the vectors n denote the normal of
each point, where k = 4. The region in which the variance of the
curvature changes greatly where point p1 locates in is sharp. The
deviations of the angles between point p1 and its k-neighboring
points are large, as shown in Fig. 2(a). However, the deviations
of the angles between point p2 and its k-neighboring points are
shown in Fig. 2(b). According to the deviations, the points can

 (a)

(b)

Fig. 2. Deviation anglesωpi between point pi and its k-neighboring
points. (a) The deviations of the angles between the sharp point pi and
q j . (b) The deviations of the angles between the flat point pi and q j .

be clustered into sharp regional points (in red) and flat regional
points (in yellow).

3. DCON

The boundary points are extracted by the distance between
point pi and the centroid of its neighbors. The DCON value
can be defined by Eq. (6).

dcentroid(pi )=

√
(pi − u)2, (6)

where u is the centroid of the neighbors q j of point pi . The
larger the value of dcentroid(pi ), the farther the distance between
point pi and the centroid of its neighbors. Point pi can be
judged as a boundary point. On the contrary, point pi should be
judged as an internal point.

4. Discrimination of FeaturePoints

In this paper, the feature points include both the sharp regional
points and the boundary points, as mentioned above. The
feature discriminant parameter is defined as follows:

fi =
α · c i

cur + β ·ωpi + γ · dcentroid(pi )

d(pi )
, (7)

where α, β, and γ are the parameters of c i
cur, ωpi, and

dcentroid(pi ), respectively. In order to avoid having the param-
eters in the feature discriminant parameters differ greatly in
different models, the threshold is defined as follows:

Fi =
1

N

N∑
i=1

φi , (8)

where φi =
c i

cur+ωpi+dcentroid(pi )

d(pi )
. Finally, the discrimination rule

can be defined as follows:



Research Article Vol. 37, No. 11 / November 2020 / Journal of the Optical Society of America A 1715

class(pi )=

{
feature point fi ≥ Fi

non− feature point otherwise
. (9)

B. Network Architecture for Simplifying Non-feature
Points

After the extraction of the feature points according to the dis-
crimination rule, the non-feature points can also be extracted
and retained. To simplify these non-feature points, we construct
a deep neural network based on SampleNet. An overview of
the network is presented in Fig. 3. First, an AE [33] network is
pre-trained on the input point set P (N, 3) for the task of recon-
struction. Then, a smaller set of samples Q(MQ, 3) is generated
via the simplified network. The simplified network includes
five convolution layers, a feature-wise max-pooling layer and
three fully connected layers. As Q is not a subset of P , the point
in Q is projected onto P by a differentiable relaxation of the
nearest neighbor selection. The projected point set G(MG , 3) is
a subset of the set P , and the size of G is the same as Q. Finally,
the point set G can be seen as the simplified point set of P , and
the AE’s loss guarantees that G is the important point that is
suitable for reconstruction.

Thus, the goal of the proposed method can be concluded
as follows: given a point set and a simplified size MG , the goal
of simplification is to find a subset of G∗ of MG points that
minimizes the task T ′s objective function of H, while the task T
is to reconstruct a point cloud from its simplified point cloud.

G∗ = arg minG H(T(G)), G ⊆ P , |G| =MG ≤ N. (10)

However, some previous works did not deal with the non-
differentiability of the simplified operation. To deal with a novel
differentiable relaxation for simplifying the point cloud, a soft
projection operation is employed and named as soft projection.

1. Soft Projection

The soft projection strategy is used to make the generated point
a subset of the input point cloud. The training process of pro-
jection is illustrated in Fig. 4. A point qi (in orange) is projected
onto its k-neighboring points from the input set P (in blue). A
softly projected point g i (in red) is obtained from a weighted
average of its local neighborhood. The operation is governed by
the parameter t , which is minimized during the training process
to obtain the nearest neighbor point p5 (in yellow). Instead of
3D space coordinates, the projected point is represented in the
weight coordinates of its k-nearest neighborhoods in the input
point cloud.

The projected point g (g ∈ G) is given by a weighted average
of input points from P .

Fig. 3. Illustration of the proposed simplified method.

 (b)(a)

Fig. 4. Illustration of the simplified approximation. (a) Find k-
neighboring points of qi . (b) Project qi onto local neighborhood from
set P .

g =
∑

i∈Neig_p(qi)

εi pi , (11)

where Neig_p(qi ) contains the indices of the k-neighboring
points of qi in P . The weights εi (αi , t) obtained by the negative
square of distance between q and its k-neighboring points,
scaled with the parameter t . εi (αi , t), is given by the following
equation:

εi (αi , t)=
exp(−αi

2/t2)∑
j∈Neig_p(q)

exp(−α j
2/t2)

, (12)

whereαi is the Euclidean distance between the point q and its k-
neighboring points in set P . The distanceαi is given by Eq. (13).

αi =

√√√√ k∑
i=0

(q − pi )
2. (13)

Let εi (αi , t) be a probability distribution over the points
pi , where g is the expectation value. The parameter t controls
the shape of this distribution. In the limit of t→ 0, εi (αi , t)
will converge to a distribution centered at the nearest neighbor
point, as shown in Eq. (14):

lim
t→0

εi (αi , t)=
{

0, αi 6= 0
1, αi = 0

. (14)

In the limit of t→ 0, the soft projection is replaced with sam-
pling to obtain a sampled point cloud G∗. For each point g ∗ ∈
G∗, the point pi with the largest projection weight is selected:

lim
t→0

∑
i∈Neig_p(qi)

εi pi = arg max
{pi}

εi (αi , t)= g ∗. (15)

The point pi is the nearest neighbor point of qi . If several
points in G∗might correspond to the same point pi , the unique
set of sampled points is taken. Then the method of iterative far-
thest point sampling (FPS), which is a sampling strategy applied
in PointNet++, is used to complete it up to the size of G .

2. Loss Function

The network is trained with three terms:

Dtotal = Dae(G)+ α1 Dsimply(Q, P )+ α2 Dproject. (16)

The first loss term Dae(G) is used to optimize the
approximated sampled set G to the task of reconstruction.
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Dsimply(Q, P ) ensures the simplified set to be close to the input
and to be well spread over the input set P . Each point in Q
should find its nearest points in the input point cloud. The last
loss term Dproject is used to approximate the sampling of points
from the input point cloud by the soft projection operation.

Define the average nearest neighbor loss and the maximal
nearest neighbor loss as follows:

DCD(P , Q)=
1

|P |

∑
p∈P

min
q∈Q
‖p − q‖2

2, (17)

Dmax(P , Q)=max
p∈P

min
q∈Q
‖p − q‖2

2. (18)

Then, simplification loss can be defined as follows:

Dsimply(Q, P )= DCD(Q, P )+ Dmax(Q, P )+ DCD(P , Q).
(19)

The Chamfer loss is selected to construct the AE loss, which
measures the squared distance between each point in point
cloud G to its nearest neighbor in the other set G ′.

Dae(G, G ′)=
1

|G|

∑
g∈G

min
g ′∈G ′
‖g − g ′‖2

2

+
1

|G ′|

∑
g ′∈G ′

min
g∈G
‖g − g ′‖2

2. (20)

This is to drive every sample point g to be close to one point
of the input set P . A projection loss is given by the following
equation:

Dproject = t2. (21)

3. EXPERIMENTS AND RESULTS

To evaluate the performance of the proposed simplification
method, a series of experiments are devised and conducted. The
data set includes the public point cloud data and the real-world
Terracotta Warrior fragments data. It should be noted that the
point cloud of the Terracotta Warrior fragments is scanned
by trained students in our lab using a Creaform VIU handy
scanner. The scan resolution was 3.91 mm, which favors speed
but results in relatively low precision. The point clouds exhibit
strong local imbalances in the sampling pattern and contain
realistic noise that was the result of the scanning process. Thus,
the Terracotta Warrior fragments data are denoised before
using them to test the proposed method. The thickness of the
fragments and the distribution of the feature points are also
different. For example, armor and skirts pieces are thin-walled,
while heads, hands, arms, and legs are non-thin-walled. The
feature points of the head are concentrated on the eyes, nose,
mouth, and ears, while the forehead, neck, and cheeks are rel-
atively smooth with a few feature points. The armor contains
straight and continuous curve features. However, the hand
model is non-uniformly distributed. The back of the hand is
relatively flat, and its feature points are obviously less than those
of other parts. The coverage of the fragments selected in this
paper is as comprehensive as possible. Some models used in this
paper are shown in Fig. 5. All the experiments are conducted

Fig. 5. Representative models used in this paper. (a) Bunny (35947
points), (b) Fandisk (53721 points), (c) G10-4-21 (36956 points),
(d) G10-19-head (40859 points), and (e) G10-19-hand (26692
points).

by a PC with the hardware of AMD Ryzen7 2700 (2.39 GHz),
16 GB memory, and NVIDIA RTX TITAN.

A. Parameters Setting

1. FeaturePoints Extraction

The four parameters mentioned in Section 2.A are used to retain
the feature points entirely and accurately. The parameter k,
which determines the scale of the local regions, will be discussed.
As shown in Fig. 6(a), the extracted feature points are relatively
uniformly distributed, but the details of the head and ears are
lost to a large extent. As shown in Fig. 6(c), there are too many
points concentrated on the edges of the ears and legs, which are
obviously redundant points. However, the head of the bunny
does not have enough points. By comparison, we can find that
the result of Fig. 6(b) is the best. The extracted feature points can
well contain both sharp regional points and boundary points.
Therefore, the series of the following experiments are all based
on k = 16.

The parameters α, β, and γ are discussed as follows. A group
of experiments have verified that the parameter β is more sen-
sitive to the number of feature points. The results of different
feature points corresponding to different values of parameters
are shown in Table 1. In order to balance the number of point
clouds after simplification, the number of retained feature
points of the bunny is about 2000. β = 0.4 was chosen for this
experiment. As shown in Fig. 7(a1), the distribution of the

Fig. 6. Feature points extracted results of the bunny with different
values of k-neighborhood. (a) k = 8, the number of feature points is
1479; (b) k = 16, the number of feature points is 1874; (c) k = 32, the
number of feature points is 1583.
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Table 1. Results of Different Feature Points under α,
β, and γ for Bunny

α β γ Feature Points α β γ Feature Points

10 0.35 1 108 20 0.4 3 2420
10 0.35 2 143 20 0.45 1 10100
10 0.35 3 174 20 0.45 2 10363
10 0.4 1 1718 20 0.45 3 10642
10 0.4 2 1874 30 0.35 1 497
10 0.4 3 2069 30 0.35 2 539
10 0.45 1 9484 30 0.35 3 574
10 0.45 2 9773 30 0.4 1 2718
10 0.45 1 10100 30 0.4 2 2892
20 0.35 1 277 30 0.4 3 3142
20 0.35 2 300 30 0.45 1 10653
20 0.35 3 345 30 0.45 2 10853
20 0.4 1 2340 30 0.45 3 11103
20 0.4 2 2361

Fig. 7. Different results of feature points extraction. (a1) α = 10,
β = 0.4, and γ = 2; the number of feature points is 2413.
(a2)α = 20, β = 0.4, and γ = 2; the number of feature points is 2361.
(a3)α = 30, β = 0.4, and γ = 2; the number of feature points is 2272.
(b1) α = 20, β = 0.4, and γ = 1; the number of feature points is
2340. (b2) α = 20, β = 0.4, and γ = 2; the number of feature points
is 2361. (b3) α = 20, β = 0.4, and γ = 3; the number of feature
points is 2420.

extracted feature points is relatively scattered when α takes a
small value. The feature points are retained in some relatively
smooth areas like the body of the bunny. On the contrary, there
are fewer feature points on the parts of the head and right ear. As
can be seen from Fig. 7(a3), the feature points retained on the
head of the bunny are few. There are lots of redundant points on
the contour of the ear. Comparing the three results in the upper
row of Fig. 7, the result of Fig. 7(a2) is the best. So, we choose
α = 20. Parameter γ is used to control the extraction of edge
points. As shown in Figs. 7(b1) and 7(b3), the feature points on
the ears are either sparse or redundant. Therefore, γ = 2 is the
right choice. Larger or smaller values of γ results have negative
accuracy effects. Therefore, α = 20, β = 0.4, and γ = 2 are
chosen.

Table 2. Number of Feature Points for Different
Models

Models Total Number β Feature Points

Fandisk 53721 0.25 5523
G10-4-21 36956 0.32 4153
G10-19-hand 26692 0.32 3099
G10-19-head 40859 0.31 3412

According to the actual application project and experience,
the algorithm parameters have been set as follows: α = 20,
β = 0.4, and γ = 2 are chosen. In the same way, the parameters
for the other models are shown in Table 2. If the values of α,
β, and γ in other models are exactly the same as those of the
bunny, the proportion of feature points will be greatly different.
To achieve a balance, the parameters α and γ are fixed, and the
parameterβ is fine-tuned.

2. Non-featurePoints Simplification

For the non-feature points, the number of centroid points
determines the simplification rate. The process of simplifying
non-feature points is a self-training process. The five models
referenced in Fig. 5 are input into the network, respectively. The
neighborhood size group is the number of neighbors in P of a
point q ∈ Q, on which q is softly projected. The parameter con-
trols the local context in which q searches for an optimal point
to simplify. As shown in Figs. 8(a) and 8(c), the reconstruction
results have more holes in the bunny’s ears. Figure 8(b) shows
the best result with group= 8. The overall process of generating
the data sets is as follows.

First, centroid points are obtained from the uniform sam-
pling of the non-feature points by using Geomagic software
(Geomagic Wrap). The number of centroid points for each
model is defined as Nnon−cen. Second, each centroid point
can generate a subset by its 256 neighbors. It can obtain local
features from the subset. Hence, the size of the non-feature
points of each model is Nnon−cen × 256× 3. Each model is split
into 85%–5%–10% for train-validation-test sets. The AE was
trained to receive and reconstruct point clouds of 256 points.
During the training of the network, the Adam optimizer with a
learning rate of 0.0005 and mini-batches of 50 shapes is used,
and the soft projection weights are computed with group= 8.
The regularization weights in Eq. (16) are set to α1 = 0.01,
α2 = 0.0001. The number of total epochs is set to 400, and the
code is implemented with TensorFlow.

Fig. 8. Result of different neighborhood sizes. (a) group= 4, the
number of points is 7098. (b) group= 8, the number of points is 6727.
(c) group= 16, the number of points is 8580.
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Fig. 9. Simplified results. (a1)–(a4) are the results of the bunny
model, and the number of points of the simplified point cloud is 6885.
(b1)–(b4) are the results of the Fandisk model, and the number of
points of the simplified point cloud is 12362.

B. Simplification Results

Figure 9 shows the simplified results. In Fig. 9(a2), the areas of
the ears, neck, mouth, and feet are dense areas of feature points.
The feature points are well maintained. However, the body of
the bunny is a flat region. The non-feature points can be well
excluded. To reduce the holes that appear in the reconstructing
point cloud, the total number of simplified results should be
merged feature points with non-feature points, which is shown
in Fig. 9(a3). It retains more points at the local detail feature
parts, while fewer points are retained at the smooth position. In
order to verify the validity of the algorithm, Geomagic software
is used to fit the results of the point cloud simplification. The
Fandisk model has some sharp edges and the normal vector
changes greatly. The simplified result of the Fandisk model
is shown in Fig. 9(b3). The contour points and some sharp
regional points are well detected, and the sharp edges of the
model are well preserved, while the sparse points in the flat areas
are uniformly distributed.

The above two experimental results indicate that the pro-
posed method has a good simplification effect in both flat- and
high-curvature areas. The method is applied to the models of the
Terracotta Warrior fragments as well. The results shown in Fig. 8
are the fragments of G10-4-21and G10-19-head. As a result,
the number of the points in model of G10-4-21 is simplified
to 7355, while that in G10-19-head is reduced to 7889. The
simplification rates are 80.1% and 80.7%, respectively. From
the zoom-in view of the simplified results in Figs. 10(a4) and
10(b4), it can be seen that the proposed method has achieved
better results on the Terracotta Warrior fragments.

C. Comparison with Other Methods

In order to verify the feasibility and effectiveness of the simpli-
fication method proposed in this paper, we conduct two groups
of experiments. The first group of experiments compares the
proposed feature point extraction method with the traditional
methods in Refs. [6,7]. The proposed simplification method
is compared with two classical simplified algorithms, which
are the k-means clustering simplification method [8] and the
uniform simplification method [4] in the second group.

Fig. 10. Results of several Terracotta Warrior fragments.

Fig. 11. Feature points extraction results of different methods.
(a) The feature points extraction method in Ref. [6], the number of
feature points is 2387. (b) The feature points extraction method in Ref.
[7], the number of feature points is 2838. (c) The proposed feature
points extraction method, the number of feature points is 2361.

The comparison results of different feature points extrac-
tion methods are shown in Fig. 11. As shown in Fig. 11(a), the
method [6] only retains the contour points. The ears and legs
leave too many points to be redundant. However, flat regions
like the body and the head of the bunny have too few points and
some features are blurred. Figure 11(b) retains more points at
the smooth areas, such as the back. At the same time, the number
of feature points on the contour of the right ear is significantly
less. Holes appear in ears during point clouds reconstruction.
Figure 11(c) shows that the ears, mouth, and feet of the bunny
are all dense feature points, and these feature points are detected
and retained. While in the body of the bunny, some points are
retained to highlight the features of the model. The compared
results show that the feature points extraction method in this
paper is significantly better than the methods in Refs. [6,7].

The second group of comparative experiments is mainly
based on the real-world Terracotta Warrior fragments data.
For the fairness of the experiments, the simplification rate of
each algorithm is set to around 80% by adjusting the relevant
parameters.

Figure 12 shows the different simplified and reconstruction
results of the G10-19-head and the G10-19-hand. Compared
with Figs. 12(a3) and 12(a4), Fig. 12(a2) has a clearer contour
on the narrow feature positions, such as the ears, eyes, nose, and
mouth, and the redundant points in the forehead and cheeks
are removed. In Fig. 12(a3), there are many points in the high-
curvature regions, e.g. the nose and ear. However, the k-means
clustering simplification method ignores the points with low
curvature. It can be seen from Fig. 12(a4) that the result does not
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Fig. 12. Simplified and reconstruction results of G10-19-head and
G10-19-hand. (a1) and (c1) are the raw point cloud, the number of
points is 40859 and 26692; (a2) and (c2) are our simplification results,
with the number of points of 7889 and 6586; (a3) and (c3) are the
k-means clustering simplification method results, with the number
of points of 7890 and 6593; (a4) and (c4) are uniform simplification
method results, with the number of points of 7927 and 6580; and
(b1)–(b4) and (d1)–(d4) are the reconstruction results.

consider any feature points; it just deletes certain ratio points
evenly and ignores the curvature and density of the points. As
a result, the detail features are seriously lost. The simplifica-
tion result is worse. As shown in Figs. 12(b3) and 12(b4), the
reconstruction results of the two methods both have some holes.
For example, there are some holes at the area of the Terracotta
Warrior’s nose and right ear. From the Fig. 12(b3), the narrow
feature location such as the nose and mouth fit incompletely. In
Fig. 12(b4), the eyes of the model are blurred. Figure 12(b2) has

the more completed and smoother surfaces. As to the simplified
and reconstruction results of the G10-19-hand, the simplifica-
tion rates of the three methods are all 75.3%. In Fig. 12(d3), we
can see holes in the wrist of the hand model. And in the same area
in Fig. 12(d4), uniform simplification has bad fitting effects.
Compared with the other two methods, the proposed method
has a clearer contour on the feature position.

To evaluate the accuracy of the simplified point clouds,
the geometric error between the original and simplified point
clouds should be measured. The quantitative errors are shown in
Table 3, where 1max and 1avg represent the maximum error
and average error of the geometry that was proposed by Shi et al.
[9]. The method proposed in this paper makes the difference
between the simplified and the original point clouds smaller,
and better preserves the characteristics of the models.

4. DISCUSSION AND CONCLUSION

Point cloud simplification plays a very important role in the
process of virtual cultural relics protection, which can reduce
the time spent on subsequent tasks while reducing data storage
space. One of the most important principles of point cloud sim-
plification is to reduce the number of points as much as possible
without affecting the reconstruction effect. In this research, a
novel robust point cloud simplification method for cultural
relics, especially 3D Terracotta Warrior fragments, is devel-
oped that can hold the geometric features and the shape of the
potential surface. The main contributions are as follows: (1) an
algorithm for extracting feature points and non-feature points
is proposed, which is based on local structure; (2) a deep neural
network is constructed to reduce the number of non-feature
points; and (3) the proposed method can effectively reduce the
scale of the point cloud and is applied to the simplification of the
terracotta point cloud for the first time.

We have conducted a series of simulations and real data-based
experiments, and the results show that the proposed method can
simplify the point cloud more effectively than other methods.
Compared to traditional methods, one of the main advantages
is that the deep neural network can effectively learn the local
features of the point cloud. However, there are still some short-
comings in this method. First, the parameters for feature points
extraction are not adaptive. These parameters are determined
by experience, which wastes a lot of time for manually adjusting
the parameters. As for future work, the self-adaptive parameters
should be developed to retain more suitable descriptive feature
points. Second, the kNN used in the processing of feature points

Table 3. Simplification Results Comparison

Models G10-19-head G10-19-hand
Original points 40859 26692

Simplified points 7889 6586
K-means clustering simplification method [8] 1max (mm) 0.9114× 10−3 0.1135× 10−2

1 avg (mm) 0.2249× 10−3 0.2011× 10−3

Uniform simplification method [4] 1max (mm) 0.1309× 10−2 0.1051× 10−2

1 avg (mm) 0.2409× 10−3 0.1992× 10−3

Our method 1max (mm) 0.85794× 10−3 0.7432× 10−3

1 avg (mm) 0.20156× 10−3 0.1979× 10−3
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and non-feature points cannot capture wider context infor-
mation for each point. Learning more about richer structural
features is also a future research direction.

In summary, the method proposed in this paper can simplify
the point cloud effectively. The results of the first application
on the 3D Terracotta Warrior fragments have demonstrated
the effectiveness and practicability of the proposed method. We
hope this work can provide a useful data preprocessing tool for
archaeological work.
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