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Abstract: Cone-beam X-ray luminescence computed tomography (CB-XLCT), as an emerging
optical molecular imaging modality, has garnered extensive attention due to its capability to
monitor the dynamic changes in early-stage tumors. However, the reconstruction of CB-XLCT
has been impeded by the low absorption and pronounced scattering properties inherent in
biological tissues. Here, a variational Bayesian method based on the Laplacian scale mixture
prior has been proposed for the modeling and recovery of sparse signals for CB-XLCT. Within
this framework, the scale variable is governed by an inverse gamma distribution, which is
employed as the conjugate prior to the Laplacian, thereby enabling an adaptive representation of
sparsity levels and enhancing model flexibility. The Laplace approximation has been utilized to
derive an analytical form of the posterior distribution, converting the intractable posterior into a
Gaussian distribution. Under this approximation, the maximum a posteriori (MAP) estimate
has been shown to correspond to the expected value. Additionally, signal recovery has been
conducted within the variational Bayesian structure using the expectation-maximization (EM)
algorithm, resulting in substantial improvements in reconstruction accuracy. The performance
of our method has been assessed through numerical simulations and implantation experiments.
Results have demonstrated superior performance in both source localization and morphological
restoration, thereby highlighting its potential for advancing CB-XLCT toward preclinical and
clinical applications.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

X-ray luminescence computed tomography (XLCT) is a hybrid imaging technique that combines
the high spatial resolution of X-ray imaging with the high molecular sensitivity of optical imaging.
It has demonstrated significant potential for applications in biomedical fields, such as tumor
imaging and precision therapy [1]. In this approach, fluorescent nanoprobes are excited by external
X-rays, causing them to emit visible light or near-infrared (NIR) signals, which are capable of
penetrating tissues and are detected with high sensitivity using charge-coupled devices (CCDs),
photomultiplier tubes (PMT), scientific complementary metal-oxide-semiconductor (sSCMOS)
cameras, and other photosensitive technologies [2]. Compared to other optical molecular imaging
techniques [3,4], XLCT leverages the strong penetrating ability of X-rays, allowing for the
imaging of targeted fluorescent probes within deep tissues. XLCT systems can be classified
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into narrow beam or pencil beam (NB-XLCT/PB-XLCT) [5] and cone beam (CB-XLCT) [6],
depending on the structure of the X-ray excitation beam. NB-XLCT and PB-XLCT generally
utilize point-by-point scanning, which provides high resolution but requires extended acquisition
times, thus limiting their clinical applicability [7]. In contrast, CB-XLCT employs a cone beam
to excite the entire imaging region simultaneously, substantially improving data acquisition
efficiency and X-ray dose utilization and making it more suitable for fast, high-throughput
imaging applications [8]. Consequently, the CB-XLCT system is adopted in this study to optimize
imaging efficiency, thereby making it more suitable for fast, high-throughput imaging applications
relevant to practical screening or monitoring. However, due to the low photon absorption and
high scattering properties of biological tissues, the image reconstruction problem in CB-XLCT
is inherently ill-conditioned [9].

To address the ill-conditioning inherent in CB-XLCT, various improvement strategies have
been developed. Sparsity that is acknowledged as a robust prior is employed to enforce structural
constraints on the solutions. As a result, its application has become widespread in the resolution
of inverse problems [10]. Sparse regularization approaches were initially developed by Chen et al.
[11,12]. In their work, an incomplete variable truncation conjugate gradient (IVTCG) algorithm
was integrated with a permissible region strategy (PRS), leading to a notable enhancement in
reconstruction performance. In order to integrate the advantages of various regularization forms,
methods such as manifold regularization, elastic net (L;-L,) regularization, and sparse non-convex
L, regularization have been developed successively [13—15]. Furthermore, both internal and
external iterative reconstruction methods with restart strategies, along with permissible region
(PR) strategies, have been further explored [16,17], aiming to reset the permissible region
and accelerate the convergence of outer iterations. Recently, Liu et al. investigated adaptive
reconstruction algorithms based on the maximum likelihood expectation maximization framework
(ADFISTA-MLEM) [18], which further improved reconstruction accuracy and convergence
stability.

While regularization methods have demonstrated strong performance in computational effi-
ciency and reconstruction accuracy, they exhibit limitations in edge preservation, often leading
to image blurring and the enhancement of artifacts [14]. To address this issue, Singh et al.
introduced a dictionary learning framework [19], where adaptive learning of dictionary elements
and sparse representation were employed to preserve the original structural details of tumor
regions. Methods such as dictionary learning and group structure (DLGS) [20] and compressed
sensing collaborative dictionary learning [21] have effectively captured sparse features, resulting
in stable and accurate reconstructions. However, this approach is highly dependent on dictionary
selection and the learning process, which may lead to high computational complexity and
increased susceptibility to noise [20]. Therefore, a reconstruction strategy must be developed
to preserve structural details and enhance robustness while simultaneously incorporating prior
knowledge and enabling effective uncertainty modeling.

The shortcomings of the methods above have been addressed by employing a Bayesian
framework [22], in which probabilistic modeling is combined with prior knowledge to alleviate
the ill-conditioned nature of the CB-XLCT reconstruction process substantially. Specifically,
the complex optimization problem is reformulated as posterior probability inference, enabling
systematic integration of prior information and observed data, which effectively suppresses
noise interference. Reconstruction accuracy is thereby improved, and image features are more
accurately delineated. For example, hierarchical Bayesian and naive Bayesian techniques [23,24]
have been shown to significantly reduce computational complexity through multi-level iterative
algorithms, while sparse Bayesian methods [25] further enhance the capability to recover sparse
signals. Concurrently, variational Bayesian and Bayesian optimization methods [26,27] have
seen continuous development within the medical imaging domain, utilizing variational inference
and hierarchical modeling to effectively manage high-dimensional sparse challenges, thereby
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improving the accuracy of source localization and morphological reconstruction. As a result,
the Bayesian framework has provided important perspectives for three-dimensional sparse
reconstruction. Nonetheless, the practical implementation of Bayesian methods remains limited
due to their considerable dependence on the selection of prior information.

In this paper, a variational Bayesian method based on the Laplace scale mixture (VB-LSM)
prior is proposed for sparse signal reconstruction. In this approach, the advantages of the LSM
prior in modeling both sparsity and multi-scale structures are comprehensively leveraged. The
scale parameter is formulated as an inverse Gamma distribution, enabling the intrinsic sparse
characteristics and hierarchical patterns of the signal to be accurately captured. As a result, the
representational capability of the signal is markedly improved. During the inference phase, to
address the computational challenges posed by the intractable posterior, a Laplace approximation
is adopted to approximate the non-analytic distribution with a Gaussian form, significantly
reducing the complexity of inference. Furthermore, maximum a posteriori (MAP) estimates are
efficiently obtained using expected values under the current posterior estimates, allowing for
accurate parameter inference and uncertainty quantification. To further refine posterior estimation,
a variational Bayesian inference framework within the expectation-maximization (EM) scheme is
incorporated. This framework enables a more complete characterization of the posterior induced
by the LSM prior, improving the ability of the model to recover sparse structures. Overall, the
proposed VB-LSM method achieves a favorable balance between representational power and
computational efficiency.

The organization of this paper is as follows: Section 2 presents the CB-XLCT forward
propagation and the VB-LSM method. Section 3 describes the experimental setup. Section 4
displays the experimental results. Section 5 offers a discussion and conclusion of our work.

2. Methodology
2.1.  Forward propagation

According to Lambert-Beer’s law [28], the density distribution of X-rays as they pass through
tissue can be expressed as follows:

X(r) = Xpexp {— I ,ut(a))dw} (1)

where X(r) is the X-ray intensity at position r, X is the X-ray concentration at the initial position,
and pf(w) is the X-ray attenuation coefficient at position w, which can be calculated from the
X-ray projection data.

Subsequently, based on the principles of CB-XLCT imaging, nanoparticles within biological
tissue are excited by external X-rays, leading to the emission of near-infrared light. This process
can be expressed as follows:

S(r) = 6X(r)p(r) @)

where S(r) is the light source, ¢ is the photon yield, and p(r) is the nanoparticle concentration at
position r.

The transportation process of visible light or NIR light in biological tissue can be modeled
by the radiative transfer equation (RTE), but it is challenging to solve RTE directly because of
its high mathematical complexity. Due to the highly scattering and weak absorption properties
of the visible or NIR spectral window in biological tissue, in general, the RTE model can be
simplified to the following steady-state diffusion equation (DE) model [29] with Robin-type
boundary condition, which is defined as follows:

=V[D(r)V&(r)] + ua(r)®@(r) = S(r),r € Q
2yD(r)[vVO(r)] + &(r) = 0,r € 0Q

3
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where D(r) is the diffusion coefficient, which can be calculated by D(r) = [3(ua(r) + wi(r)] 7,
and p,(r) and p;(r) are the absorption and reduced scattering coefficients at the position r, @(r)
is the photon flux density, Q denotes the domain occupied by the imaging object, y represents
the boundary mismatch factor, and v is the outward unit normal vector on the boundary 9Q.

Ultimately, the diffusion equation is numerically approximated by means of the finite element
method [30]. Accordingly, Eq. (3) is reformulated as the following linear expression:

d = Ax “

where @ represents the measurable infrared light data on the surface of the biological tissue, A is
an m X n sparse matrix, and x is the distribution of internal fluorescent source.

2.2. Reconstruction based on VB-LSM method

The primary aim of CB-XLCT is to reconstruct the unknown spatial distribution of nanoparticle-
based fluorescent agents x, based on measurement data @ collected in the visible or near-infrared
spectrum. However, due to the inherently low absorption and strong scattering characteristics
of biological tissues, the system matrix A is rendered severely ill-conditioned. As a result, the
inverse problem becomes highly ill-conditioned. To overcome this challenge, Eq. (4) has been
reformulated as a minimization objective function based on the principles of compressed sensing.
Through this transformation, the acquisition of sparser and more robust solutions is facilitated.

X = arg min||® — Ax| |§ (5)

where || - || is the k -norm operator, 7 is the sparse constraint coefficient that regulates the
degree of signal sparsity. However, due to the non-convex nature of the objective function,
direct optimization proves to be challenging. Therefore, in CB-XLCT image reconstruction, the
posterior distribution is approximated through the integration of the expectation-maximization
(EM) framework and the variational Bayesian (VB) method.

In addition, during the CB-XLCT imaging procedure, the effect of measurement noise must
be considered. The noise term 7 is assumed to follow an additive Gaussian white noise model
characterized by zero mean and variance of 8~'. The corresponding probability distribution is
expressed as:

p(n) = N(0|0,7'1) (6)

where I € RV is the identity matrix.

At the same time, the noise precision 3, defined as the reciprocal of the noise variance, is
constrained to be strictly positive. Consequently, its prior distribution must be defined on the
positive real domain. The Gamma distribution [31] is commonly adopted due to its support of
positive values and the flexibility provided by its shape and scale parameters, which facilitate the
encoding of various prior beliefs. Furthermore, within the framework of variational Bayesian
inference, the Gamma distribution is employed as a conjugate prior for the precision parameter
in Gaussian noise models, thereby significantly simplifying the computation of the posterior
distribution. The explicit form is expressed as follows:

ba
I'(a)

p(B;a,b) = G(B;a,b) = — B exp(~bp) )

where T'(a) is the Gamma function, and the scaling parameters a and b are set to 107 [32],
ensuring that the prior for 8 is non-informative.

Based on the previously described measurement framework and noise assumptions, and within
the context of Bayesian theory, the conditional probability of the fluorescence distribution x,
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noise precision S, and observed data @ is represented by a Gaussian distribution.

p(®lx, B) = N(@|Ax, p7'1) = (2n>-%ﬂ%exp<—§||¢ - Ax|]?) ®)

Within the Bayesian framework, the variable x is regarded as a random variable, and a
sparse prior is imposed to facilitate accurate reconstruction of the nanofluorescence distribution.
Gaussian scale mixture (GSM) priors have been widely adopted in conventional methods [33].
However, to characterize the multiscale and sparse properties of the signal more effectively, this
study employs a Laplacian scale mixture (LSM) prior [34].

The local heterogeneity of the sparse coefficients is captured by employing a collection of

non-stationary Laplace distributions, each defined by a unique scale parameter A,,(m = 1, ..., M).
The explicit formulation is provided as follows:
M
M 1 ||
Pl = ﬂ Leonl0, ) = [ ],,_, 57 ew (‘E ©)

where £L(x,|0, 4,,) is the Laplace distribution with scale parameter 4,,, modeling each sparse
coeflicient x;,,.

The scale parameter 4, is modeled using an inverse Gamma distribution as a prior, thereby
improving the flexibility and adaptability of the model.

dc d
p(A;c,d) = n:zl IGApn;c,d) = ni; mﬂrf_lexp (—/1—) (10)

where I'(c) is the Gamma function, c is the shape parameter, and d is the scale parameter of the
Gamma distribution. To ensure a highly non-informative prior, both ¢ and d are set to 107# [32],
where this choice mitigates the influence of excessive prior knowledge.

The prior distributions of the Laplace and inverse gamma are combined to derive the marginal
likelihood of the sparse signal x. By eliminating the scaling parameter 4,,, the expression for the
marginal likelihood is obtained as follows:

M
pw;c,d) = l_[m:l pWm;c,d)

- 1—1::1 Jo = PWinl )P €, d)d A (an

_ HM cd¢
=L 2(|w] + )

In the practical implementation of sparse signal recovery, the posterior distribution is estimated
by employing a VB inference method grounded in the EM algorithm [35]. Specifically, during
each iteration, the VB technique is applied in the E-step to approximate the posterior distribution,
thereby enabling the computation of the expected values of latent variables. Subsequently, model
parameters are updated in the M-step based on these expectations. To further improve the
precision of posterior estimation, the Laplace approximation [36] is incorporated to enhance
the representational capacity of the variational distribution. This approach has been shown to
effectively capture sparse structures in XLCT image reconstruction while significantly diminishing
reconstruction errors and elevating the overall image fidelity.

Specifically, the sparse signal x is recovered through maximum a posteriori (MAP) estimation,
which is performed by maximizing the posterior distribution p(x|®, 4, 8) within the framework
of the EM algorithm. The procedure is formally expressed as follows:

Xmap = arg max p(x|®, 4, B) (12)

The EM algorithm is an iterative method employed for optimizing parameter estimation. It
comprises two primary steps: the expectation step (E-step) and the maximization step (M-step).
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In the E-step, the expectation of the log-likelihood function is calculated. The primary task
of this step is to determine the posterior distribution of the latent variables. In the VB-LSM
method, it is assumed that the posterior distribution of the signal x is conditionally independent,
i.e., p(x|®) = p(x|4, B)p(1)p(B). The O-function, which represents the expected log-likelihood
given the current parameter estimates, is derived by evaluating the expectation function. The
goal of the E-step is to compute the expectation with respect to the latent variables, which is
formally expressed as:

Q(x; )Ac(t)) — E/l,ﬁ|@,-%m [logp()d@, /l’ B)]

(13)
= Ey gjpz0llog p(Plx, B) + log p(x|1)]

where E g ;0 is the expected value of p(4, 5|, £®), 2 is the sparse signal estimated at the
t-th iteration.

In the M-step, the signal estimate is updated by maximizing the Q-function. Maximizing the
Q-function represents a critical step in the EM algorithm. This process results in the updated
signal estimate X+1). The goal of the M-step is to determine a new signal estimate that maximizes
the Q-function. The updated formula is provided as follows:

3D = arg max[Q(x; 37)] (14)
X

The signal recovery accuracy is enhanced through the optimization of the Q-function. By
iterating multiple times, the EM algorithm effectively determines the optimal estimate of the
signal.

The core of the EM algorithm is based on the computation of the Q-function, which requires
the derivation of the posterior distribution of the latent variables. In the VB-LSM algorithm,
variational Bayesian inference is utilized to approximate the posterior distribution. Specifically,
the posterior values of all latent variables are derived within the Bayesian inference framework:

P(D|x, B)p(x| )p(B)p(A)
p(D)

where p(x, A, B|®) is the posterior distribution, p(x|4) is the prior distribution, P(®|x, B) is the
likelihood function, representing the probability of observing the data @ given the latent variable
x and the noise parameter 3, p(f3) is the prior distribution of the hyperparameter 3, p(1) is the
prior distribution of the hyperparameter A, and p(®) is the marginal likelihood of the observed
data.

Therefore, the latent variables are consolidated into a unified probability density function:

p(x, 4, BlP) = s)

(@) = / / / p(@lx. APl Dp(BP(VdxdAdp (16)

To simplify the intractable integral computations, approximate Bayesian inference is employed.
The associated posterior distributions are assumed to be factorized and statistically independent.
The corresponding formulation is presented as follows:

px. 4, BI®) ~ q(x, 4, B) = q(x)g(D)q(B) a7

Within the EM framework, the logarithmic form of the variational distribution g(x) associated
with the signal x is formulated as follows:

lOg q(x) = <log p(¢7x’ 4, ﬁ))q(/l)q(ﬁ)
= (log p(Plx, B) p(x| D))y a)4(8)

where (-),1)4(5) represents the expected value with respect to the probability density functions
q(4) and g(B). For simplicity, (-),(1)43) Will be denoted as (-) in the subsequent descriptions.

(18)
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Owing to the non-conjugacy between the Laplace prior in Eq. (10) and the Gaussian likelihood
in Eq. (9), the analytical derivation of the posterior distribution g(x) is rendered challenging. To
overcome this difficulty, the Laplace approximation is applied. A second-order Taylor expansion
is conducted around the MAP estimate Xjs4p to approximate the posterior distribution effectively.
The corresponding objective function for the Laplace approximation is given as follows:

L9 = ~ ogp(@lx B)
_ B axp s S (L
= Go—adf+ 3 (5

where p(®@|x, A, B8) « p(D|x, B)p(x|1), the MAP estimation can be calculated by Xpup =
arg min{L(x)}.
X

19)

The gradient and Hessian matrix corresponding to L(x) can be derived for optimization through
the application of the aforementioned Laplace approximation. In the MAP estimation, by setting
V,L(x) = 0, the following is obtained:

V.L(x) = ((BYATA + A)'AT® (20)

where A = diag [< %> ﬁ] denotes a diagonal matrix that contains prior information related to

the signal.
The estimate X4p is derived based on Eq. (20).

Smap = (B) (BYATA + A) AT @n
Building upon this, the Laplace approximation is subsequently introduced. The distribution

q(x) is approximated by a second-order Taylor expansion, as presented below:

. 1 . . .
log q(x) = log q(kmap) + E(x — &pap) H(Guap)(x — Zuap) (22)

Equation (22) represents the second-order Taylor expansion of g(x) around the MAP estimate
x. The first-order term (x — Xpap)? Vilog q(x)|s=typ is null. H(Zpap) denotes the value of the
Hessian matrix of log g(x) evaluated at Xy;4p. The derivation is presented below:

HGuap) = V20890 xmtynr = — VL) xmtyip (23)

The term V2L(x) ~ (B) ATA + A is derived from Eq. (20), A is treated as independent of x.
Consequently, the posterior distribution g(x) is approximated as a Gaussian distribution, with its
precision matrix denoted by ».. The equation is expressed as follows:

1 1 <
q(x) = EexP{_E(x - Zyap)" Z(X — Xmapr)} 24)

where Y = ((8) ATA + A)~!, or equivalently Y. = A™' — AP AT((B) 1T + AATTAT)TAATL s
expressed using the Woodbury matrix identity. In this equation, C represents a normalization
constant, given by C = [*% exp{—1/2(x — &amapr)” - X' (x — Xpsap)}dx.
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Consequently, the posterior distribution g(x) of the sparse signal is further simplified as:

q(x) ~ N(xlg, Y) (25)

in which,
= Swap = (B) ) AT® (26)

Similar to Eq. (18), the posterior distribution of g(1) can be derived. The logarithmic form of
q(A) is expressed as:

log () = (logp(x, D, 4, B)) yva(s)
= (log p(x1VDP(D))) yvq(8)

S < () S
=—Zlogﬂm—zﬁ—m—(c+I)Zlog/lm—d
m=1 m m=1

m=1

M

2 i @7

" N 1 m=1
==+ D)= 1] ) log A= ) (d+ {xul)
m=1 m=1 m

As can be observed from Eq. (27), g(4) is also an inverse Gamma distribution. Therefore, it
can be expressed as:

o =[] 161z.d) (28)

in which,
t=c+1 (29)
= d + (fnl) (30)

In addition, the posterior distribution of 8, denoted as ¢(83), can be derived as follows:

lqu(ﬂ) = <lOgP(Wa D, 4, B))q(w)q(/l)
= <lng(¢|W, ﬂ)p(ﬂ)))q(w)q(/l)

= glogﬁ— 'g <||<15—Ax||2> + (a—1logB - bB €19}
_ (a+ i l)log,B— (%<||¢—Ax||2> +b|p

The probability density function of the Gamma distribution is formulated as follows, and it is
utilized to describe the statistical characteristics of the associated random variable:

q(B) = G(Bla,b) (32)

in which,
a=a+ g 33)
E=b+%(||4>—Ax||2> (34)

Ultimately, the posteriors presented in Eq. (25), Eq. (28), and Eq. (32) are employed to estimate
the sparse signal and latent variables by iteratively updating their expected values until the desired
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estimation accuracy is attained. The expected updates are provided as follows:

1 1
(x) = u=(B)(BYATA + diag <7> T |>])1AT<D (35)
1 ¢ c+1
<E> 3 d+ (oD (36)
N +2a

]

B) =z = (37

b (l|®-Ax|?) +2b
To compute the update formulas mentioned above, the matrix for x must be derived, encom-
passing {|x,,|) and <| |® — Ax| |2> . The corresponding expressions are provided as follows:

23 mm 11 1
(Jnl) = 2 F][—— (—)]

n 22 2\
(38)
sz’m 'uZ #2
e (- | ke |\ 5
(ll® — Ax||*) = [|@ — Ax||* + 1r[ZATA] (39)

+00

where Fila,b,c] = 2,
n=0

a(n) I

5w o1 represents the conjugate hypergeometric function of Kummer,

and x is the rising factorial, defined as x™Ax(x + 1)(x +2)--- (x + n + 1). Additionally,

erf(x) = 2//m [ e~ dt is the error function.

In summary, during each iteration of the algorithm, the sparse signal x is updated in accordance
with Eq. (35), incorporating the estimated scaling parameter A and the inverse noise variance /3.
Subsequently, the parameters 1/4,, and B are iteratively refined using Eq. (36) and Eq. (37).

Through iterative alternation of the aforementioned steps, the accuracy and stability of
nanophosphor distribution reconstruction are gradually improved. The difficulties associated
with the ill-conditioned system matrix and measurement noise in CB-XLCT are effectively
mitigated. The parameter updating scheme of the VB-LSM algorithm is thoroughly described in
Algorithm 1.

3. Experiment design

To assess the performance of the VB-LSM method, both numerical simulations and implantation
experiments were performed. The proposed method was benchmarked against Fast-Laplace [25],
FISTA [12], IVTCG [18] and SBL-LCGL [25]. All experimental procedures were executed on a
personal computer configured with an Intel Core i5-10210U CPU (1.60GHz) and 8GB of RAM.

3.1. Evaluation metrics

Localization error (LE), dice coefficient (DICE) and runtime (Time) were utilized as quantitative
evaluation metrics [37]. The respective mathematical formulations are provided below.

LE is defined as the Euclidean distance between the actual source center L; and the estimated
source center L. The value of LE lies within the range of 0 to 1, where values closer to 0 signify
enhanced localization precision.

LE = ||L; - Lol (40)

DICE is employed to measure the extent of overlap between the actual target region R and the
reconstructed region R,. It ranges from O to 1, with values approaching 1 indicating improved
reconstruction fidelity.

|R1 N Ry|

DICE =2—=— 41)
[Ri| + Rz
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Algorithm 1. Algorithm 1: VB-LSM

Input: System matrix A, surface flux @, initial value of sparse signal x, hyperparameters a,
b, c, d, initial value of noise precision 5, = 1, scaling parameter 1; = 1.
Initialization: Maximum number of iterations k4, = 1000, error threshold err = 1le —
6, initial residual vector r° = @ — Ax?, current iteration number k = 1.
While

Step 1: Update the parameters and expectations of the noise precision £: Eq. (33), Eq.
(34), and Eq. (37).

Step 2: Update the parameters and expectations of the scaling parameter A,,,: equations
Eq. (29), Eq. (30), and Eq. (36).

Step 3: Compute the expectation of the sparse signal x.

2nmm uz uz
(lxm [} = ; exp <— Zzirrll,m> + |tmlerf ( Zzgm)

Step 4: Update the posterior distribution of the sparse signal x.

1
() = (B(BIATA + diag [() 7)) AT

Step 5: Compute the residual and check the convergence condition.
k=@ — Alx)
The iteration stops if 7% < err or k > kypqy.
End While
Output: x = (x).

3.2.  Numerical simulation experiments

In the numerical simulation experiments, a cylindrical model with a radius of 10 mm and a height
of 30 mm was designed to simulate biological structures, as shown in Fig. 1(a). The model
contains five organs, including muscle, heart, bone, lung, and liver. Moreover, all experiments in
this work are based on single spectrum (650 nm). Here, the optical parameters of these organs at
650 nm are consistent with that in Ref. [38], as shown in Table 1. The intensity of each source is
1 nw/mm?, and the fluorescence distribution of the surface was simulated using the molecular
optical simulation environment (MOSE) [39] based on the Monte Carlo method, as depicted in
Fig. 1(e) and Fig. 1(f). In all simulations, for the inverse reconstruction, the cylinder model was
discretized into a uniform tetrahedral mesh, including 4626 nodes and 25840 tetrahedral elements
using the COMSOL Multiphysics 6.1 platform (COMSOL, Inc., Burlington, Massachusetts,
USA), and the mean element edge size is 1.37 mm, as shown in Fig. 1(b).

Table 1. Optical parameters of the organs inside the cylindrical model

Tissues Hax(mm™") ps’ (mm™") Ham(mm™") Mg (mm™")
muscle 0.075 0.412 0.047 0.312
heart 0.050 0.944 0.033 0.820
bone 0.052 2.442 0.033 2.114
lung 0.168 2.157 0.105 2.048
liver 0.302 0.668 0.192 0.602

The cylindrical model is adopted due to its capacity to simplify the geometric structure of
biological systems, thereby improving computational efficiency. This model is particularly
appropriate for preliminary molecular optical simulations and for investigating interactions within
multi-organ systems. Through this simplification, the model effectively represents the overall
functions and interactions of five organs, establishing a solid balance between computational
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Fig. 1. (a) The 3D view of the main organs of cylindrical phantom. (b) The 3D view
of meshed biological tissues. (c) Cylindrical phantom with single-target. (d) Cylindrical
phantom with dual-target. (e) Forward simulation of cylindrical phantom with single-target.
(f) Forward simulation of cylindrical phantom with dual-target.

complexity and simulation accuracy. Despite the simplification of certain details, the model
continues to serve as a reliable foundation for subsequent research and is highly suitable for
macro-level analysis and validation.

Three experimental setups were designed, including single-source experiment, dual-source
experiment, and anti-noise experiment. In the single-source experiment, a sphere with a radius
of 1 mm and a center located at (-5, -3, 11) mm was modeled to represent a tumor, as shown
in Fig. 1(c). In the dual-source experiment, two spheres, each with a radius of 1 mm, were
positioned at centers (-1, 3, 11) mm and (-1, 3, 19) mm, as shown in Fig. 1(d). In the anti-noise
experiment, Gaussian noise was introduced at levels of 5%, 10%, 15%, 20%, and 25% to the
single-source experiment to evaluate the robustness of the VB-LSM method.

3.3. Implantation experiment

In the implantation experiment, a flexible plastic tube with a radius of 1 mm was carefully shaped
into an approximate sphere and subsequently implanted into the body of an adult BALB/C nude
mouse (approximately 6 to 8 weeks of age). The tube was preloaded with approximately 20 uL of
Gd,0,S: Tb nanophosphors to simulate a localized target, with a reduced scattering coefficient of
10 mm~!. The coordinates of the implant were (11, 14.5, 21) mm, which correspond to the center
position in the CT image. All experimental procedures are under the approval of the Animal
Ethics Committee of the Northwest University of China, and all procedures were conducted
under isoflurane anesthesia to alleviate discomfort.

Imaging system contains a cone-beam X-ray source (Apogee, Oxford Instruments, USA),
an electron-multiplying CCD (EMCCD) camera (PIXIS 2048, Princeton Instruments, USA), a
CMOS X-ray detector (C7921CA-02, Hamamatsu, Japan), and a rotation platform, as depicted in
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Fig. 2. The schematic diagram of the CB-XLCT system.

Fig. 2. During the procedure, the mouse was securely positioned on the rotation platform and
rotated through 360° in 1° increments. The X-ray source was operated at 50 KVp and 1 mA
to stimulate the internal nanophosphors. High-resolution computed tomography images were
acquired using the CMOS X-ray detector, while optical emissions at 620 nm were recorded by the
EMCCD sensor. Next, the major organs of the mouse, including the muscle, heart, lung, stomach,
liver, and kidney, were segmented using Amira software (Amira, Visage Imaging, Australia).
The segmented anatomical structures were subsequently incorporated into an integrated three-
dimensional model of the mouse torso. Finally, the 2D fluorescence images obtained from the
CB-XLCT system were registered and mapped onto the 3D surface of the mouse using predefined
registration points.

4. Results

4.1. Numerical simulation experiments
4.1.1. Single-source experiment

The reconstruction results of the single-source experiment are shown in Fig. 3. Quantitative
evaluations of the five approaches are additionally provided in Table 2. As illustrated in Fig. 3,
the reconstruction achieved by the VB-LSM method is closer to the actual light source than that
obtained with the other four techniques. The LE is 0.277 mm, corresponding to a 48.6% decrease
relative to the next-best IVTCG scheme. A DICE of 0.857 is attained, signifying considerable
overlap in the light-source region, while the computational time remains slightly higher than the
average. In summary, the spatial structure of the true light source is effectively reconstructed
by the VB-LSM algorithm, highlighting its significant potential for practical applications in
CB-XLCT reconstruction.

4.1.2. Dual-source experiment

The reconstruction results of the dual-light experiment are illustrated in Fig. 4. Quantitative
assessments of the five techniques are also summarized in Table 3.

As shown in Fig. 4, the reconstruction performance of the VB-LSM technique is consistently
shown to surpass that of the other four methods. The quantitative results presented in Table 3
further substantiate this conclusion. LE of 0.243 mm and 0.378 mm was obtained with the
VB-LSM method, indicating that the reconstructed light-source positions were closer to the true
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Fig. 3. Reconstruction results of five methods for the single-source experiment. The
first row shows the 3D views of the four methods, with the red regions representing the
reconstructed light sources. The second row presents the reconstructed sectional views on
the Z = 11 mm plane, where the red-to-yellow regions indicate the reconstructed profile,
and the blue circles represent the true target positions and their corresponding boundaries.

Table 2. Quantitative analysis results of the single-source simulation experiment

Method Target source Reconstructed LE (mm) DICE Time (s)
(mm) source (mm)

Fast-Laplace (-5,-3,11) (-4.614, -3.182, 0.803 0.332 54.381
10.729)

FISTA (-5,-3,11) (-4.687, -3.197, 0.620 0.444 61.356
11.271)

IVTCG (-5,-3,11) (-4.525, -2.895, 0.539 0.615 47.068
11.232)

SBL-LCGL (-5,-3,11) (-4.767, -3.241, 0.577 0.500 52.166
11.218)

VB-LSM (-5,-3,11) (-4.735, -3.101, 0.277 0.857 48.327

10.947)
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Fig. 4. Reconstruction results of five methods for the dual-source experiment. The first
column presents the 3D view produced by four distinct methods, with the red regions
representing the reconstructed light sources. The second to fifth columns present the axial
view (two slices), sagittal view, and coronal view for each method, where the red-to-yellow
regions indicate the reconstructed profile, and the blue circles represent the true target
positions and their corresponding boundaries.

sources. The mean DICE reached 0.820, demonstrating considerable spatial overlap with the
actual emission region, while the computational time was measured at 91.937 s, slightly exceeding
the average. In summary, the VB-LSM algorithm markedly reduces positional inaccuracies and
improves the precision of source localization and reconstruction under multi-source conditions.

4.1.3. Anti-noise experiment

As shown in Fig. 5, the results of the noise-resilience experiment indicate that, as the proportion
of Gaussian noise was progressively increased, the reconstruction performance of the VB-LSM
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Table 3. Quantitative analysis results of the dual-source simulation experiment

Method Target source Reconstructed LE (mm) Total LE DICE Time (s)
(mm) source (mm) (mm)
(-1,3,11) (-1.329, 3.193, 0.851 0.160
Fast-Laplace 11.240) 0.844 103.851
(-1,3,19) (-1.348, 3.154, 0.836 0.178
19.207)
(-1,3,11) (-1.241, 3.162, 0.775 0.231
FISTA 0.739 126.020
11.197)
(-1,3,19) (-1.034, 3.316, 0.702 0.334
18.639)
(-1,3,11) (-1.493, 3.348, 0.670 0.381
IVTCG 11.223) 0.635 85.094
(-1,3,19) (-1.064, 3.457, 0.600 0.471
18.941)
(-1,3,11) (-1.371, 3.108, 0.448 0.796
SBL-LCGL 11.189) 0.420 86.340
(-1,3,19) (-1.135, 3.265, 0.392 0.642
18.889)
(-1,3,11) (-1.120, 2.899, 0.243 0.889
VB-LSM 11.080) 0.311 91.937
(-1,3,19) (-0.861, 3.129, 0.378 0.750
18.923)

method was maintained at a relatively stable level. The LE was observed to rise from 0.2 mm
to 0.26 mm, representing a modest increment, while the DICE was reduced from 0.92 to 0.81,
corresponding to a decline in spatial overlap of only 11.96%. These results demonstrate that high
reconstruction accuracy can be preserved under noisy conditions, reflecting substantial noise
resilience and robustness. Even under 25% noise contamination, the VB-LSM approach was able
to effectively recover both the spatial structure and intensity characteristics of the light source,
further confirming its strong adaptability for practical applications.

0.40 7 130

0304 0.98

(mm)

0.204 065

DICE

LE

0.104 033

Fig. 5. Anti-noise experiment results.

4.2. Implantation experiment

The reconstruction results of the implantation experiment are depicted in Fig. 6. Furthermore,
quantitative metrics were calculated and summarized in Table 4. As shown in Fig. 6, the results
produced by the Fast-Laplace and SBL-LCGL methods were found to be excessively dispersed,
whereas those obtained with FISTA and IVTCG were observed to be overly concentrated. In
contrast, artifacts were effectively mitigated by the VB-LSM approach during the reconstruction
process, resulting in a clearer depiction of the light-source distribution. The LE between the
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reconstructed and actual light sources was determined to be 0.237 mm, and the DICE was
recorded as 0.860. Furthermore, the computational time was comparatively low, indicating that
the VB-LSM method can efficiently capture the spatial arrangement of the light source while
preserving high morphological fidelity. In summary, VB-LSM demonstrates marked advantages
in spatial localization, morphological restoration, and parameter retrieval, thus providing a solid
foundation for high-precision CB-XLCT reconstruction.

5. Discussion and conclusion

Cone-beam X-ray luminescence computed tomography (CB-XLCT) is a hybrid imaging modality
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Fig. 6. Reconstruction results of the implantation experiment. The first row shows the 3D
views of the five methods, with the red regions representing the reconstructed light sources.
The second row presents the reconstructed sectional views on the Z = 21 mm plane, where
the red-to-yellow regions indicate the reconstructed profile, and the blue circles represent
the true target positions and their corresponding boundaries.

Table 4. Quantitative analysis results of the implantation experiment

Method Target source Reconstructed LE (mm) DICE Time (s)
(mm) source (mm)

Fast-Laplace (11, 14.5,21) (10.742, 14.804, 0.892 0.319 213.529
20.751)

FISTA (11, 14.5,21) (10.679, 14.699, 0.637 0.484 197.318
21.045)

IVTCG (11, 14.5,21) (10.798, 14.845, 0.589 0.693 155.766
20.814)

SBL-LCGL (11, 14.5,21) (10.968, 14.874, 0.503 0.772 152.694
20.871)

VB-LSM (11, 14.5,21) (10.872, 14.720, 0.237 0.860 159.381
20.843)

that enables the reconstruction of the three-dimensional distribution of targeted probes within
biological tissues. Nonetheless, its widespread application in biomedical fields has been
constrained due to suboptimal reconstruction quality arising from ill-conditioning. In this study,
the VB-LSM approach was proposed to enhance the reconstruction performance of CB-XLCT.
The employed method utilizes an LSM prior to modeling sparse signals, thereby augmenting
the sparsity representation of the excitation source. To realize sparse Bayesian inference based
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on the LSM prior, multiple optimization strategies have been incorporated into the VB-LSM
method. Firstly, the scale parameter of the Laplace distribution is assumed to follow an inverse
Gamma distribution, facilitating conjugate inference with the Laplace prior and thereby reducing
computational complexity. Secondly, the Laplace approximation is applied to approximate
the posterior distribution of the sparse signal as a Gaussian distribution, with the expectation
demonstrated to correspond to the MAP estimate. Finally, a variational Bayesian inference
procedure has been derived based on the EM algorithm, enabling the efficient recovery of sparse
signals. The characteristics of sparse signals have thus been accurately captured by the proposed
method, resulting in improved reconstruction accuracy and demonstrating particular suitability
for CB-XLCT imaging tasks.

To evaluate the performance of the VB-LSM method, numerical simulations and implantation
experiments were conducted. The Fast-Laplace, FISTA, IVTCG and SBL-LCGL methods were
used for qualitative and quantitative comparisons. In the numerical simulations, single-source,
dual-source, and anti-noise experiments were designed. The results consistently indicated that the
LE of the VB-LSM method remained below 0.4 mm, while the DICE exceeded 0.7. The stability
of both metrics was maintained under varying noise conditions (5%, 10%, 15%, 20%, 25%),
demonstrating that the VB-LSM approach possesses not only strong robustness but also high
precision in localization and source reconstruction. In the implantation experiment, a flexible
plastic sphere containing nanophosphors was implanted into a mouse in order to assess practical
performance in tumor localization and morphological reconstruction. Consistent with numerical
simulation experiments, our proposed VB-LSM method achieves the lowest LE of 0.237 mm
and the highest DICE of 0.860, yielding superior localization and morphological reconstruction
results. These findings further underscore the considerable potential of the VB-LSM method for
biomedical imaging applications.

Although the VB-LSM method has exhibited superior performance in CB-XLCT reconstruction
compared with existing approaches, several critical challenges have yet to be addressed. First,
the incorporation of flexible priors has been shown to enhance reconstruction quality; however,
the approximation error introduced by the Laplace approximation has not been fully eliminated.
Second, validation has primarily been restricted to implanted models and has not encompassed
more complex animal experimental conditions. In future work, experiments will be conducted
in tumor-bearing mouse models, which more closely replicate physiological conditions, to
assess the feasibility and robustness of this approach in practical applications. On this basis,
further investigations will be directed toward the development of advanced inference strategies
to mitigate the aforementioned approximation error, and a systematic evaluation of VB-LSM
will be performed across other optical tomography modalities, including Cerenkov luminescence
tomography (CLT), bioluminescence tomography (BLT), and fluorescence molecular tomography
(FMT), to assess its potential utility in diverse imaging scenarios.

In summary, the proposed VB-LSM approach achieves high-precision morphological CB-
XLCT reconstruction of tumor regions. Sparse signals are modeled using an LSM prior within
the VB-LSM technique, thereby enhancing the capability for sparse representation. Through
the integration of variational inference, Laplace approximation, and the EM algorithm, accurate
reconstruction of sparse signals is enabled. The method has been validated by numerical
simulations and implantation experiments. The reconstruction findings indicate that compared to
alternative approaches, superior performance in localization accuracy, morphological restoration,
and noise robustness is exhibited by the proposed strategy. Future investigations will focus on
developing more advanced estimation techniques and promoting the application of this method
in both preclinical and clinical settings.
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