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ABSTRACT

Fluorescence molecular tomography (FMT) is a promising medical imaging technology with the ability to quantitatively reconstruct the
three-dimensional distribution of fluorescently labeled probes in vivo. However, due to the strong scattering properties of biological tissues,
conventional reconstruction methods encounter challenges such as low reconstruction accuracy and high computational complexity. Here,
an adaptive online variational Bayesian method based on the normal-generalized inverse Gaussian (NGIG) prior is proposed. This method
reduces computational complexity while ensuring that the globally optimal solution is maintained. Specifically, by utilizing variational
inference, the optimization of the objective function is converted into a convex optimization problem that minimizes the variational lower
bound, effectively reducing the function’s complexity. Furthermore, to accurately capture the prior distribution, the NGIG prior is intro-
duced. It imposes probabilistic constraints on the sparsity structure. This approach alleviates the adverse effects caused by overly strict
sparsity constraints. In addition, the adaptive gradient algorithm (Adagrad) is employed to dynamically adjust the parameter learning rate,
thereby preventing the algorithm from becoming trapped in local optima during the posterior inference process. The effectiveness of the
proposed method is validated through numerical simulations and fluorescence source implantation experiments. The results show that the
adaptive online variational Bayesian (AOVB)-NGIG method achieves superior performance in both fluorescence source localization and
shape recovery. The minimum localization error is 0.243 mm, accompanied by a dice coefficient of 0.889. Meanwhile, the root mean square
error and relative intensity error remain relatively low, indicating that the reconstructed results are the closest to the actual light source.
These outcomes demonstrate that AOVB-NGIG can reliably reconstruct the spatial characteristics of the fluorescence source with high
accuracy. This study is expected to advance the preclinical and clinical applications of FMT in early tumor detection.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0305351

I. INTRODUCTION

Fluorescence molecular imaging (FMI) is a non-invasive tech-
nique that enables real-time monitoring of structural and func-
tional characteristics within biological tissues and has been
extensively applied in both preclinical and clinical studies.1

However, FMI is limited to acquiring only two-dimensional surface

data, restricting the ability to obtain the spatial distribution of fluo-
rescent targets. This limitation is crucial for the precise localization
of fluorescent probes, quantifying biological processes, and improv-
ing diagnostic accuracy. Fluorescence molecular tomography
(FMT) reconstructs the three-dimensional distribution of fluores-
cent probes in vivo at the molecular level,2,3 exhibiting significant
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potential in tumor diagnosis and drug development.4–6 Nevertheless,
due to the significant scattering effects during photon propagation,
the measured photon count is significantly lower than the actual
number of emitted photons,7 resulting in a highly ill-conditioned
inverse problem for FMT.

Over the past two decades, significant efforts have been made by
researchers to overcome these challenges. Initially, some scholars
sought to improve the stability of the optimization process by incor-
porating constraints into the objective function,8 such as sparse regu-
larization,9 which has been widely adopted. These include L1 norm
regularization (Lasso),10 L2 norm regularization (Tikhonov),11 and Lp
norm regularization (non-convex method) (0 < p < 1).12 Subsequently,
De Mol and colleagues proposed elastic net (EN) regularization and
total variation regularization,13,14 which incorporate additional prior
knowledge into the Lp regularization framework to better preserve the
target’s morphological features. Inspired by compressed sensing
theory, L1 norm-based regularization methods have been continu-
ously optimized, including the fast iterative shrinkage-thresholding
algorithm (FISTA), truncated conjugate gradient with incomplete var-
iables (IVTCG), and the group orthogonal matching pursuit-based
greedy algorithm (AGOMP).15–17 Moreover, some researchers have
incorporated regularization terms into the dictionary learning frame-
work. These approaches construct redundant dictionaries to decom-
pose complex signals into sparse linear combinations. By integrating
prior knowledge, reconstruction accuracy is further enhanced.18

Examples include K-dictionary learning methods such as K-SVD,19

as well as the standard orthogonal matching pursuit (OMP) algo-
rithm.20 Although these approaches achieve satisfactory reconstruc-
tion to some extent, their optimization procedures remain intricate,
and the imposed constraints are relatively weak.13,19

In addition, Bayesian-based methods have garnered widespread
attention due to their reduced parameter selection complexity and
improved stability.21 These methods leverage Bayes’ theorem to inte-
grate prior information with observational data, iteratively updating
the posterior probability distribution to optimize parameter estimation
in sparse linear inverse problems, thereby enhancing reconstruction
accuracy. Initially, Ando proposed the Bayesian predictive information
criterion,22 which improved the accuracy of the expected log-likelihood
estimate by correcting the asymptotic bias of the posterior mean.
Guided by this criterion, block-sparse Bayesian learning methods
(SBL-LCGL),23 the block-sparse Bayesian learning method with
K-nearest neighbor strategy (KNN-GBSBL),24 and adaptive group
block-sparse Bayesian learning (AGBSBL)25 were introduced to
address sparse signal problems. Furthermore, the continuous develop-
ment of hierarchical Bayesian26 and variational Bayesian methods27

has provided more flexible and efficient solutions for high-
dimensional sparse reconstruction. However, Bayesian methods
heavily rely on prior information, and their convergence speed is rela-
tively slow in complex models or when applied to large-scale data sets.

Therefore, in this work, an adaptive online variational Bayesian
(AOVB-NGIG) method for FMT reconstruction is proposed to over-
come the above limitations. Specifically, to address the issue of com-
putational complexity, variational inference is employed to
reformulate the optimization process as a convex minimization
problem of the variational lower bound. This reformulation signifi-
cantly reduces computational costs. Additionally, the NGIG prior is
utilized to impose constraints on the solution space, integrating the

properties of both normal and generalized inverse Gaussian distribu-
tions to capture the sparsity and nonlinear characteristics inherent in
the data. Within the context of Bayesian inference, this prior strikes
a balance between model fitting accuracy and regularization, mitigat-
ing the risk of excessively sparse or overly smooth reconstructions.
Consequently, the approach ensures the preservation of critical
details and structural features within the reconstructed images.
Simultaneously, the adaptive gradient algorithm (Adagrad) is applied
to adjust the learning rate dynamically and to ensure optimized
parameter updates while preventing convergence to local optima.
The AOVB-NGIG method refines the learning process, accelerating
convergence while maintaining reduced computational demands and
preserving essential image features with high fidelity. A series of sim-
ulations and comparative experiments is conducted to validate the
reconstruction performance of the proposed method.

The structure of this paper is organized as follows. In Sec. II,
the FMT photon propagation model and the AOVB-NGIG method
are introduced. In Sec. III, the experimental setup is described. In
Sec. IV, the effectiveness of the proposed method is verified
through numerical simulations and fluorescence source implanta-
tion experiments on a mouse. Finally, in Sec. V, the findings of this
study are discussed and concluded.

II. METHODS

A. Photon propagation model

According to photon transport theory, the propagation of
light in biological tissues can be described by the radiative transfer
equation (RTE). However, the RTE equation is complex and
involves numerous parameters. Directly solving, it is not only com-
putationally intensive but also extremely challenging due to the
heterogeneity of biological tissues.28 Consequently, in steady-state
FMT, the coupled diffusion equation (DE)3 is frequently employed
to model the propagation of photons in biological tissues within
the near-infrared spectrum. The equation is expressed as follows:

∇[Dx∇Φx(r)]� μaxΦx(r) ¼ �S(r), x [ Ω,
∇[Dm∇Φm(r)]� μamΦm(r) ¼ �Φx(r)x(r)

0, x [ Ω,

�
(1)

where ∇ is the gradient operator, x and m represent the excitation
and emission processes, Dx and Dm are the diffusion coefficients
for the excitation light and emitted fluorescence, μax and μam are
the absorption coefficients for the excitation light and emitted fluo-
rescence, r denotes the fluorescence source position, S is the light
intensity distribution, Φx(r) and Φm(r) represent the light intensity
distributions for the excitation light and emitted fluorescence, x(r)
is the fluorescence probe distribution to be determined, and Ω is
the specified region.

Next, by applying the Robin boundary conditions,29 the finite
element method is used to discretize Eq. (1). This approach enables
the efficient solution of the light propagation problem in tissues
with complex geometries and boundary conditions. The transfor-
mation of Eq. (1) using the finite element method yields

FxΦx ¼ Sx , x [ Ω,
FmΦm ¼ FX0, X [ Ω,

�
(2)
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where Fx and Fm are the system matrices, Φx and Φm are the
photon densities during the excitation and emission processes, F is
the discretized symmetric matrix, and X is the fluorescence target
to be reconstructed.

By eliminating the non-measured values from the equation,
the following linear relationship is obtained as

Φ ¼ AX: (3)

Due to noise during data measurement and processing,
certain deviations may occur. Therefore, the final linear relation-
ship is derived as follows:

Φ ¼ AX þ ν, A?ν � N(0, γ2), (4)

where Φ is the measurable fluorescence information on the surface
of the organism, A is an m� n sparse matrix, where it represents
the fluorescence intensity detected at each excitation point during
the forward problem solution, X is the internal fluorescence source
distribution, and ν is the measured noise. A?ν denotes the inde-
pendence between A and ν, and γ is the scale factor of noise vari-
ance, where it characterizes the variance of noise in the direction
orthogonal to matrix A.

B. FMT reconstruction based on the AOVB-NGIG
method

Given the sparse distribution of fluorescent molecular probes
in the reconstruction domain of FMT, compressed sensing recon-
struction theory30 is leveraged. By incorporating the AOVB frame-
work, the optimization problem of the objective function is
reformulated into a convex optimization model that integrates least
squares loss with Bayesian inference. Considering the influence of
noise, a new objective function is constructed as follows:

L(X) ¼ min
X

kAX þ ν �Φk22 þ λD(q(X)jjp(X))� �
, (5)

where kAX þ ε� Φk22 is the least squares fitting term, which quan-
tifies the discrepancy between the model’s predicted values and the
observed measurements. D(q(X)jjp(X)) is the Kullback–Leibler (KL)
divergence of the variational distribution,27 where q(X) represents
the variational distribution used to approximate the posterior distri-
bution and p(X) denotes the prior distribution. λ is the regulariza-
tion parameter, which controls the balance between data fidelity and
regularization. According to Eq. (5), it can be observed that in the
process of variational Bayesian inference, the objective is to minimize
L(X), where it corresponds to minimizing the KL divergence
between the posterior distribution and the variational distribution.

To further refine the distribution of the fluorescence source X,
the AOVB inference approach was employed to derive the posterior
distribution from the observed data Φ. Within this framework, varia-
tional inference was initially utilized to estimate the posterior distri-
bution P(XjΦ) given the observed measurements. Based on the
Bayesian framework,21 the posterior distribution can be expressed as

P(XjΦ) ¼ P(ΦjX)P(X)
P(Φ)

, (6)

where P(XjΦ) is the posterior distribution of X, P(ΦjX) is the likeli-
hood function, P(X) is the prior distribution, and P(Φ) is the mar-
ginal likelihood function, where it is used for model normalization.

Next, the NGIG prior is employed to accurately capture the
sparsity of the fluorescence source. However, since the likelihood
function follows a Gaussian distribution, which is not conjugate to
the assumed prior, a hierarchical model26 is adopted to reduce the
computational complexity. In this context, the focus is placed on
the marginal distribution prior of the hierarchical model,

P(Xjθ) ¼
Ym

i¼1
N(Xij0, θi), (7)

P(θ) ¼
Ym

i¼1
GIG(θi; ν, δ, λ), (8)

where θ ¼ {θ1, θ2, . . . , θp} is a set of random variables, with
each θ following a normal distribution, i.e., θ � N(0, λ). Π
represents the product operation, Xi is the ith random variable, θi
is the variance, and ν, δ, and λ are the shape parameter,
scale parameter, and location parameter. Among these,
GIG(θi; ν, δ, λ)/ θv�1

i exp[�1/2(δ2/θi þ λ2θi)].
The conditional distribution of the joint distribution is pre-

cisely known, as follows:

Xjθ, Xn, Φn � N X; Kθ
n , C

θ
n

� �
, (9)

θijX, Xn, Φn � GIG θi; ν � 1/2,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ A2

i

q
, λ

� 	
: (10)

In Eq. (9), Kθ
n and Cθ

n are the parameters that need to be
updated iteratively online, with the computation formula provided
in Ref. 31,

Kθ
n ¼ XT

n Xn þ γ2D
1
θ

� 	� 	�1

XT
nΦn

¼ D(θ)XT
n γ2In þ XnD(θ)X

T
n

� ��1
Φn, (11)

Cθ
n ¼ 1

γ2
XT
n Xn þ D

1
θ

� 	� 	�1

¼ Im � D(θ)XT
n (γ

2In þ XnD(θ)X
T
n )

�1Xn
� �

D(θ), (12)

where Xn is the design matrix containing the observed data, XT
n is

the transpose of the matrix Xn, and γ2 is a coefficient for a penalty
term used to prevent overfitting. D(θ) and D(1/θ) are diagonal
matrices with diagonal elements θ and 1/θ, Im and In are identity
matrices of size m�m and n� n, where the diagonal elements are
all 1, and the off diagonal elements are 0.

In Bayesian inference, maximum a posteriori (MAP) estima-
tion27 can be employed to precisely solve for the parameters in
Eqs. (11) and (12). The AOVB framework combines prior informa-
tion with observed data, providing accurate MAP estimation and
variational approximation of the posterior. This is achieved using
the expectation-maximization (EM) algorithm.32 The EM algo-
rithm decomposes the original problem into two stages through an
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iterative optimization process: the expectation (E) step and the
maximization (M) step.

In the E-step, the expectation of the posterior distribution
P(XjΦ) needs to be calculated. During this process, the posterior
probability distribution in the E-step is defined as
qt(θ) ¼ P(θjXt , Φ). At the same time, Xtþ1 ¼ argmaxQ(XjXt) is
set, and by combining the likelihood function with the prior distri-
bution, the objective function can be derived as

Q(XjXt)¼
ð
log

P(Φ,X,θ)
P(θjXt ,Φ)

� 	
P(θjXt ,Φ)dθ

¼�
ð
log(P(X,Φnjθ,Xn))P θjXt ,Xn,Φnð Þdθþk Xt ,Xn,Φnð Þ

¼1
2
XTD

1
θt

� 	
Xþ 1

2γ2
jΦn�XnXj22þk Xt ,Xn,Φnð Þ, (13)

where 1/θt :¼ E[1/θt jXt , Xn, Φn] and Q(XjXt) is the variational
distribution, used to approximate the posterior distribution.
P(Φ, X, θ) is the joint probability distribution, and P(θjXt , Φ) is
the posterior distribution. Xt represents the variational parameters,
k is a constant, and dθ denotes the integral with respect to the
parameter θ.

In the M-step, the expectation function Q(XjXt) needs to be
maximized to update the parameters. The equation is as follows:

Xtþ1 ¼ arg max
X

[Q(XjXt)]: (14)

During the solving process, to avoid local optima, the adaptive
gradient algorithm (Adagrad)33 is applied to adjust Q(XjXt). The
Adagrad algorithm dynamically adjusts the learning rate for each
parameter based on its historical gradients. This results in smaller
learning rates for frequently updated parameters and larger learn-
ing rates for sparse updates. This adaptive mechanism effectively
accommodates varying update frequencies across parameters, elimi-
nating the need for manual learning rate adjustments and enhanc-
ing optimization efficiency. In Eq. (13), the optimization of the
parameter θ is primarily addressed. Thus, during the maximization
of the expectation function, the parameter θ undergoes continuous
online dynamic adjustments, including both gradient accumulation
and parameter updating, as illustrated in Eqs. (15) and (16),

st :¼ st�1 þ ∇θQ(XjXt)� ∇θQ(XjXt), (15)

θt :¼ θt�1 � ηffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(t) þ ϵ

p � ∇θQ(XjXt), (16)

where st and θt are the accumulated squared gradients (used to
adjust the learning rate) and the parameter values at the tth itera-
tion. ∇θQ(XjXt) is the gradient of the objective function Q(XjXt)
with respect to the parameter θ, and � is the symbol for element-
wise (Hadamard) multiplication, representing the square of the gra-
dient. η is the learning rate, and ϵ is a small constant 10−6 used to
prevent division by zero or to maintain numerical stability. By uti-
lizing the Adagrad algorithm, more stable parameter updates can

be achieved during the training process, thereby accelerating
convergence.

Building upon this, the EM framework further minimizes the
KL divergence of the posterior distribution by maximizing the evi-
dence lower bound (ELBO),23 thereby more effectively approximat-
ing the true posterior distribution. The relationship among the
three is shown in Eq. (17),

logP(Φ)�
ð
log

P(Φ, X, θ)
q(θ)q(X)

� 	
q(θ)q(X)dθdX

¼: KL[q(θ)q(X)jjP(X, θjΦ)]: (17)

Since the objective functions of q(θ) and q(X) are convex and
can be precisely minimized, iterative algorithms exist for qtþ1(θ)
and qtþ1(X),

qtþ1(θ)/ exp
ð
logP(Φ, X, θ)qt(X)dX

� 	

/ exp � 1
2

Xm

i¼1

Et X2
i


 �
θi

� 	
P(θjλ), (18)

qtþ1(X)/ exp
ð
logP(Φ, X, θ)qtþ1(θ)dθ

� 	

/ exp � 1
2

Xm

i¼1
X2
i Etþ1

1
θi

� 

� 1
2γ2

jΦn � XnXj22
� 	

,

(19)

where Et is the expectation of the intermediate variational distribu-
tion at iteration t, which corresponds to coordinate ascent varia-
tional inference.34

For the posterior probability distribution, the model is
enhanced through online updates and hyperparameter optimiza-
tion. Variational inference is then used to iteratively sample from
the conditional posterior distribution of each parameter, approxi-
mating the samples of the entire posterior distribution. By defining
the observation matrix Φ̂n and Xn, both past and current observa-
tion data are utilized for estimation, thus incorporating historical
information into the update process,

Φ̂n ¼ X̂n�1Rn�1
~Φn

� 	
[ R2M , Xn ¼ X̂n�1

~Xn

� 	
[ R2M�m: (20)

Therefore, the final parameter values after the update are

Ktþ1
n ¼Kn�1þD θtþ1

n

� �
XT
n γ2I2M þXnD(θ

tþ1
n )XT

n

� ��1
(Φ̂n�XnKn�1),

(21)

Ctþ1
n ¼ Ip � D(θtþ1

n )XT
n (γ

2I2M þ XnD(θ
tþ1
n )XT

n )
�1Xn

� �
D θtþ1

n

� �
,

(22)

where I is the identity matrix. During the iteration process, the
latest parameters are provided by the previous step, with the
parameters being continuously updated until the optimal values are
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obtained. The algorithm has a memory cost of only O(Mp), demon-
strating favorable performance.

In summary, the complete process for solving the parameters
using the AOVB-NGIG method is outlined in Algorithm 1.

Algorithm 1. AOVB-NGIG

Input: vector X, parameters ν, δ, and λ, measured surface photon
distribution Φ.
Initialization: T > 0, maximum number of iterations is
kmax = 1000, convergence tolerance is err = 1e− 6.
While t≤ T and d((θt , Kθ

n , C
θ
n), (θt�1, Kt�1

n , Ct�1
n )) . ν

i. Compute θtþ1
AOVB and θtþ1

EM ;
ii. Compute

Gtþ1
AOVB ¼ D(θtþ1

n )XT
n (γ

2I2M þ XnD(θtþ1
n )XT

n )
�1

Gtþ1
EM ¼ D(θtþ1

n )XT
n (γ

2I2M þ XnD(θtþ1
n )XT

n )
�1

iii. Compute
Ktþ1
n ¼ Kn�1 þ Gtþ1

AOVB(Φ̂n � XnKn�1)
Ctþ1
n ¼ (Ip � Gtþ1

EMXn)D(θtþ1
n )

θtþ1 ¼ θt�1 � ηffiffiffiffiffiffiffiffiffi
s(t)þε

p � ∇θQ(XjXt)
iv. t = t + 1.
End while
Output: At any given time, (K�

n , C
�
n) [ R2pþp2

After obtaining the optimal parameter updates, the posterior
distribution at the next time step is derived through MAP estima-
tion. Specifically, the fluorescence source distribution X, given the
current parameters and observation data, can be represented by a
generalized inverse Gaussian mixture distribution. Based on the
variational inference framework, the final posterior distribution is
as follows:

qtþ1(X) ¼ GIG Xi; ν � 1
2
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ Ct

n,ii þ Kt
n,i

� �2q
, λ

� 	
: (23)

By iterating repeatedly, the true fluorescence source distribu-
tion can be progressively approximated, thereby achieving high-
precision reconstruction. In each iteration, the current parameter
update θt and observation data Φ are utilized to continuously opti-
mize the posterior distribution through variational Bayesian infer-
ence. Ultimately, the final estimate of X is obtained as follows:

X�¼ arg max
X

P(XjΦ), (24)

where X� is the final estimate of X.

III. EXPERIMENT DESIGN

In this section, numerical simulations and fluorescence source
implantation experiments were performed to validate the recon-
struction performance of the AOVB-NGIG method. Furthermore,
CG-Tikhonov,35 IVTCG,16 and OMP-L1

20 methods were selected
for comparison in terms of accuracy and shape recovery. All experi-
ments and computations were executed on a personal computer
equipped with Intel® Core™ i5-10210U CPU (1.60 GHz) and 8 GB
RAM.

A. Evaluation indexes

To assess the reconstruction quality and accuracy of the
AOVB-NGIG method more precisely, several quantitative metrics
are employed. These include location error (LE),36 dice coefficient
(DICE),23 root mean square error (RMSE),37 and relative intensity
error (RIE).38

LE represents the localization error. It measures the Euclidean
distance between the reconstructed fluorescence source center and
the actual fluorescence source position. The value of LE ranges
from 0 to 1. A value closer to 0 indicates a higher localization preci-
sion of the algorithm,

LE ¼ kLr � Lsk22, (25)

where Lr and Ls are the centers of the reconstructed and actual
targets.

DICE is used to measure the overlap between two sets. Its
value ranges from 0 to 1. A DICE value closer to 1 indicates a
higher similarity between the reconstructed and actual targets,

DICE ¼ 2
jRr > Rsj
jRrj þ jRsj , (26)

where Rr and Rs are the regions of the reconstructed and actual
targets.

RMSE is utilized to assess the difference between the recon-
structed source center and the actual source center. The value
ranges from 0 to infinity. A smaller RMSE indicates superior recon-
struction quality,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N (Xr � Xs)
N

r
, (27)

where N is the number of nodes, Xr is the reconstructed biolumi-
nescence source intensity, and Xs is the actual value.

RIE is utilized to quantify the informational disparity between
the reconstructed and the true images. A lower RIE value, closer to
0, indicates a better restoration of the fluorescence source intensity,

RIE ¼ jIr � Isj
Is

, (28)

where Ir and Is are the intensities of the reconstructed and actual
sources.

B. Numerical simulation setup

In the numerical simulation, a cylindrical model with a radius
of 10 mm and a height of 30 mm was designed to represent biologi-
cal tissue. This model consists of five organs: muscle, lung, heart,
bone, and liver, as shown in Fig. 1(a). The detailed optical parame-
ters for each organ are provided in Ref. 37.

In the forward process, a tetrahedral element was used to sim-
ulate photon propagation. The intensity of each source is 1 nw/
mm3, and the surface fluorescence distribution was simulated using
the molecular optical simulation environment MOSE 2.339 based
on the Monte Carlo method, as shown in Fig. 1(e). In the inverse
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process, the geometry model was discretized into a uniform tetra-
hedral mesh using the COMSOL Multiphysics 6.1 platform
(COMSOL, Inc., Burlington, Massachusetts), as shown in Fig. 1(d).

We designed single-source and dual-source simulation experi-
ments to evaluate the performance of the AOVB-NGIG reconstruc-
tion method. In the single-source simulation experiment, one
spherical fluorescence source with a radius of 1 mm was placed at
(−6, 2, and 8) mm, as shown in Fig. 1(b). In the dual-source simula-
tion experiment, two spherical fluorescence sources with a radius of
1 mm were placed at the center coordinates of (−1, 1, and 11) mm
and (−1, 1, and 18)mm, as shown in Fig. 1(c). As noise is inevitable
in FMT, the anti-noise experiment was also designed to evaluate the
robustness of our method. Gaussian noise of 5%, 10%, 15%, and
20% was added to the measurement data based on the single-source
numerical simulation, and then reconstruction was performed to
assess the accuracy and robustness of the AOVB-NGIG method
under different noise levels.

C. Implantation experiment setup

To further assess the practicality of the AOVB-NGIG method
in vivo imaging, a fluorescence source implantation experiment was
designed. All experimental animal protocols were approved by the
Animal Ethics Committee of the Northwest University of China,
and all procedures were strictly adhered to the approved guidelines.
An adult BALB/C mouse was anesthetized for the fluorescence
source implantation experiment. To minimize discomfort, all
animal experiments were conducted under isoflurane gas anesthe-
sia. The dual-modality FMT/CT imaging system used for data col-
lection is shown in Fig. 2(a). This system consists of an optical
acquisition module, a micro-CT system, and a control module.
Specifically, the optical acquisition module includes an electron
multiplying charge coupled device (EMCCD) camera, a
continuous-wave optical laser, and optical filters. The micro-CT
system comprises a high-resolution flat-panel x-ray detector and an

FIG. 1. (a) The 3D view of the cylinder model. (b) Cylindrical phantom with single-target. (c) Cylindrical phantom with dual-target. (d) The 3D view of meshed biological
tissues. (c) Forward simulation of a cylindrical phantom with single-target. (e) Forward simulation of a cylindrical phantom with single-target and dual-target.
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FIG. 2. (a) FMT/CT dual-modal imaging system. (b) Fluorescence source implantation experimental process [FMT/CT dual-modal imaging system data acquisition (top),
data processing (bottom left), and FMT reconstruction (bottom right)].

FIG. 3. Numerical simulation experiment single-source reconstruction result. The first row shows the 3D reconstruction results corresponding to the four methods, while
the second row presents the cross-sectional view of the Y ¼ 2 mm plane, where the black circle represents the true position of the fluorescent source.
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x-ray tube. The control module includes an electrically controlled
rotating stage and an electrically controlled translation stage.

For data acquisition, a spherical fluorescent bead containing
Cy5.5 solution with a radius of 1 mm was initially injected into the
body of the mouse. After 6 h, laser light at 680 nm was emitted
using a continuous-wave optical source. Surface fluorescence image
with a 120° field of view was collected by a thermoelectric cooled
electron multiplying charge coupled device (EMCCD) camera
(−80 °C, iXonEM+888) with an exposure time of 1 s. Subsequently,
the micro-CT system (tube voltage of 60 kVp, x-ray power of
40W) was employed to perform CT imaging of the mouse and
obtain 3D structural data.

After data collection was completed, the data processing stage
began. Initially, we used Amira 2019.1 software (Amria, Visage

Imaging, Australia) to segment the major organs, including the
muscle, heart, lung, stomach, liver, and kidneys, and integrated them
into the mouse body model. The fluorescent images were then
mapped and registered onto the surface of the mouse body. The
workflow for the fluorescence source implantation experiment is
illustrated in Fig. 2(b). The fluorescence source was aligned and reg-
istered with the surface of the mouse trunk model. The true central
position of the fluorescent target is (12.5, 11.5, and 19.5) mm, and
the optical parameters for different organs were obtained from the
literature.40 It should be noted that due to the unknown intensity of
the real fluorescence source, photon count calibration with the
detected fluorescence source could not be performed. As a result, the
evaluation metric RIE could not be obtained in the fluorescence
source implantation mouse experiment.

TABLE I. Quantitative results of the single-source simulation experiment.

Method True (mm) Result (mm) LE (mm) DICE RMSE RIE

CG-Tikhonov (−6, 2, 8) (−5.159, 2.283, 8.026) 0.707 0.333 0.003 46 1.009
IVTCG (−6, 2, 8) (−5.585, 2.093, 7.687) 0.696 0.348 0.003 24 0.758
OMP-L1 (−6, 2, 8) (−5.483, 2.353, 8.259) 0.655 0.400 0.002 49 0.883
AOVB-NGIG (−6, 2, 8) (−5.827, 1.834, 7.994) 0.243 0.889 0.000 22 0.223

FIG. 4. Numerical simulation experiment dual-source reconstruction result. The first row shows the 3D reconstruction results corresponding to the four methods, while the
second row presents the cross-sectional view of the Y ¼ 1 mm plane, where the black circle represents the true position of the fluorescent source.
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TABLE II. Quantitative results of the dual-source simulation experiment.

Method True (mm) Result (mm) LE (mm) DICE RMSE RIE

CG-Tikhonov (−1, 1, 11) (−0.887, 1.351, 11.330) 0.878 0.129 0.006 01 0.974
(−1, 1, 18) (−1.033, 1.290, 18.233) 0.868 0.140 0.005 92 1.084

IVTCG (−1, 1, 11) (−0.787, 1.211, 11.115) 0.728 0.308 0.004 89 0.705
(−1, 1, 18) (−0.861, 1.287, 18.246) 0.798 0.222 0.005 27 0.790

OMP-L1 (−1, 1, 11) (−1.451, 1.214, 10.974) 0.670 0.381 0.002 91 0.647
(−1, 1, 18) (−1.133, 1.054, 17.858) 0.620 0.444 0.003 16 0.553

AOVB-NGIG (−1, 1, 11) (−0.914, 1.198, 11.058) 0.397 0.727 0.001 65 0.360
(−1, 1, 18) (−1.056, 1.218, 17.927) 0.447 0.766 0.002 86 0.423

FIG. 5. The quantitative analysis results of the four methods under various Gaussian noise intensities.
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IV. RESULTS

A. Numerical simulation results

1. Single-source simulation experiment

In the single-source simulation experiment, the 3D and sec-
tional views of the reconstructed results with different methods
were shown in Fig. 3. In the 3D view, the CG-Tikhonov and
IVTCG methods generated overly smooth artifacts, while the
OMP-L1 method produced excessively convergent fluorescence
source boundaries. In contrast, the AOVB-NGIG method yielded
more accurate morphology and fewer image artifacts. The quantita-
tive analysis of the reconstruction results of the four methods is
listed in Table I. From these results, the LE, RMSE, and RIE for the
AOVB-NGIG method were 0.223, 0.000 32, and 0.263. This indi-
cates that the reconstructed fluorescence source position is closer to
the actual fluorescence source, and the fluorescence yield is closer
to the true value. Additionally, the DICE is relatively high at 0.889,
which suggests a higher similarity between the reconstructed and
true fluorescence sources. These results confirm the superior per-
formance of the AOVB-NGIG method in fluorescence source
reconstruction, morphological preservation, and spatial resolution.

2. Dual-source simulation experiment

In the dual-source simulation experiment, the 3D and
sectional views of the reconstructed results with different methods
are shown in Fig. 4, and the corresponding quantitative
analysis results are summarized in Table II. Similar to the single-
source case, the AOVB-NGIG method still outperforms the
CG-Tikhonov, IVTCG, and OMP-L1 methods in terms of multi-
target resolution, with the reconstruction results being closer to
the true sources and exhibiting fewer artifacts. The results in
Table II indicate that the LE of the AOVB-NGIG method is sig-
nificantly smaller, with an average of only 0.392, approximately
half of that of the other methods. The DICE is also notably
higher than the other three methods, reaching 0.001 65 and
0.002 86, indicating superior source localization and higher source
overlap. At the same time, the RMSE and RIE are smaller, sug-
gesting that the predicted values of the reconstructed sources have
smaller spatial deviations. The results of the numerical simulation
experiment demonstrate that the AOVB-NGIG method maintains
strong source localization and reconstruction capabilities even
with multiple sources, and it can accurately differentiate the spe-
cific locations of the sources.

FIG. 6. Fluorescence source implantation experiment reconstruction results. The first row presents the 3D reconstruction results corresponding to the four methods. The
second row displays the cross-sectional view at the Z ¼ 19:5 mm plane, where the black circle indicates the actual location of the fluorescent source.
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3. Anti-noise simulation experiment

As described in Eq. (4) of Sec. II, noise is inevitable in FMT.
Therefore, a series of anti-noise simulation experiments was con-
ducted to verify the noise resistance and robustness of the
AOVB-NGIG method. The reconstruction performance of four
methods was compared under Gaussian noise levels of 5%, 10%,
15%, and 20%. The results are shown in Fig. 5. Additionally, LE,
DICE, RMSE, and RIE were selected as evaluation metrics to quan-
tify the precision and reliability of the AOVB-NGIG method during
the reconstruction process. Analysis of Fig. 5 shows that, under dif-
ferent noise levels, the LE values of all four methods remain relatively
stable. However, the LE range for the AOVB-NGIG method is
between 0.243 and 0.305mm, demonstrating superior performance
in comparison. Additionally, the AOVB-NGIG method achieves the
highest DICE, with its mean remaining stable around 0.857 across
various noise levels, indicating its ability to recover fluorescence dis-
tributions accurately. Furthermore, the variations in RMSE and RIE
are minimal, with ranges of 0.000 22–0.001 36 and 0.223–0.305mm,
and both values remain below the optimal values for the other three
methods under 0% noise. Quantitative results further confirm that,
in the presence of noise in the fluorescence source, the AOVB-NGIG
method outperforms the other methods in terms of reconstruction
performance, with superior stability and robustness.

B. Implantation experiment results

The 3D view and sectional view are displayed in Fig. 6, and
the quantitative evaluation results for the four methods are summa-
rized in Table III. As illustrated in Fig. 6, the most favorable perfor-
mance is achieved by the AOVB-NGIG method. The quantitative
evaluation further corroborates this finding, as indicated in
Table III. In the fluorescence source implantation experiment, the
AOVB-NGIG method achieved the smallest LE value of 0.317,
demonstrating a significantly higher localization accuracy.
Additionally, a higher DICE of 0.902 and a lower RMSE of
0.002 08 were obtained. Compared to CG-Tikhonov, IVTCG, and
OMP-L1, the AOVB-NGIG method exhibited more than twice the
accuracy, underscoring its superior reconstruction fidelity and
enhanced fluorescence source recovery capability. Collectively, the
fluorescence source implantation experiment further validated the
exceptional performance of the AOVB-NGIG approach in FMT
reconstruction.

V. DISCUSSION AND CONCLUSION

As a three-dimensional imaging modality, FMT enables the
quantitative reconstruction of fluorescence distribution within

biological tissues. However, its reconstruction process is con-
strained by ill-conditioned inverse problems, leading to insufficient
reconstruction accuracy. To better recover the three-dimensional
distribution of early-stage tumors, an AOVB-NGIG method is pro-
posed in this study to achieve high-precision morphological recon-
struction of tumor regions in FMT. This method employs the
NGIG prior to capturing prior information and utilizes variational
inference to decompose the original objective function into a more
tractable convex problem. Finally, the Adagrad algorithm is incor-
porated, allowing the AOVB-NGIG method to dynamically adjust
the learning rate throughout the iterative process, ensuring stable
convergence. This guarantees the sparsity of the solution and the
robustness of the reconstruction process.

To evaluate the performance of the proposed AOVB-NGIG
method, both numerical simulations and fluorescence source
implantation experiments with a live mouse were conducted, fol-
lowed by qualitative and quantitative comparisons with the
CG-Tikhonov, IVTCG, and OMP-L1 methods. The results of the
numerical simulation experiments demonstrate that under single-
source, dual-source, and noise-resistant conditions, the
AOVB-NGIG method achieves optimal results for LE, DICE,
RMSE, and RIE while also providing stable reconstruction out-
comes. In addition, the single-source implantation experimental
results demonstrate that, compared to other methods, the tumor
regions reconstructed by the AOVB-NGIG method more closely
align with the true distribution. This method is capable of more
accurately reconstructing the fluorescence source and achieving a
higher fluorescence yield. Overall, the AOVB-NGIG method dem-
onstrates significant advantages in terms of localization accuracy,
spatial resolution, fluorescence yield recovery, and morphological
restoration.

Although the AOVB-NGIG method has achieved outstanding
results in terms of reconstruction accuracy, localization precision,
relative sparsity, robustness, and morphological similarity, certain
limitations remain. First, variational inference is sensitive to initial
conditions, and the optimization process may become trapped in
local minima. Second, the parameter optimization requires substan-
tial memory. Finally, the validation was predominantly restricted to
implantation models and did not include more complex in vivo
conditions. To overcome these limitations, future studies will be
directed toward the integration of additional prior knowledge and
the refinement of optimization strategies. Moreover, experiments
employing mouse tumor burden models will be performed to more
accurately replicate physiological conditions. Overall, the
AOVB-NGIG method has yielded promising results in FMT, and
future investigations will further refine its shape reconstruction
accuracy and explore its potential in preclinical applications.

TABLE III. Quantitative results of the implantation experiment.

Method True (mm) Result (mm) LE (mm) DICE RMSE

CG-Tikhonov (12.5, 11.5, 19.5) (12.368, 11.170, 19.275) 0.896 0.330 0.005 37
IVTCG (12.5, 11.5, 19.5) (12.841, 11.307, 19.802) 0.883 0.395 0.003 79
OMP-L1 (2.5, 11.5, 19.5) (12.845, 11.098, 19.262) 0.759 0.581 0.004 42
AOVB-NGIG (12.5, 11.5, 19.5) (12.500, 11.499, 19.173) 0.317 0.902 0.002 08
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In summary, an AOVB-NGIG method that integrates the
NGIG prior with variational Bayesian inference is proposed for
FMT reconstruction. This approach significantly enhances recon-
struction accuracy while effectively reducing computational com-
plexity through variational inference. The algorithm is validated by
a series of numerical simulations and implantation experiment,
and its performance is compared with three conventional recon-
struction methods. The experimental results indicate that the
AOVB-NGIG method has yielded promising results in FMT, and
future investigations will further refine its shape reconstruction
accuracy and explore its potential in preclinical applications.
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