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A B S T R A C T

In evolutionary multi-objective optimization, the size of search space exponentially expands as the number
of decision variables increases, which makes the generation of promising candidate solutions more difficult.
For this, in this paper, we propose a bi-level offspring generation architecture, together with a deep offspring
sampling method. The offspring generation process is divided into two phases. The first phase uses the general
genetic operators to generate the offspring, and then in the second phase, the selected non-dominated solutions
are utilized by the proposed deep sampling method to produce offspring again. Specifically, the proposed deep
sampling method makes use of the selected non-dominated solutions to establish search directions at first, then
solutions are sampled on them. It is expected to take advantage of both offspring generation schemes, thereby
balancing the diversity and convergence of the population. Existing large-scale evolutionary algorithms can
easily be extended to our proposed bi-level architecture. The experimental results demonstrate the significant
advantages of the proposed architecture and sampling method, in comparison with several state-of-the-art
large-scale multi∖many-objective optimization problems in solving LSMOPs with up to 5000 decision variables.
1. Introduction

The concept of decision space scalability of multi-objective evolu-
tionary algorithms (MOEAs) concerning decision variables has been
investigated quite intensively in recent years [1]. And large-scale multi-
objective problems (LSMOPs), especially those involving hundreds or
thousands of decision variables, widely exist in real-world applications.
For example, in the field of machine learning, the training of deep neu-
ral networks (DNN) often involves determining millions of weights [2].
In network science, tens of thousands of location variables and power
allocation variables are involved in the design of telecommunication
networks [3]. Consistent with the fact that the volume of search space
exponentially expands as the decision variables increases, most meta-
heuristic algorithms suffer from the curse of dimensionality [4,5]. To
solve this problem, a variety of algorithms have been proposed for
LSMOPs. The existing algorithms can be roughly classified into the
following four categories.

1. Divide and Conquer
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The main purpose of this category is first to assign the deci-
sion variables into several low-dimensional subgroups that are
expected to be solvable, and then optimize each of them using a
subpopulation, separately. The algorithms that fall into this cat-
egory can be further classified into two types in terms of the way
they group decision variables, namely, the non-variable-analysis
grouping and variable-analysis grouping. For the former, the
classical grouping strategies mainly include random grouping,
ordered grouping, linear grouping and differential grouping [6–
13]. For the latter, decision variables are grouped into differ-
ent types based on their controlling properties, typically in-
cluding convergence-related variables and diversity-related vari-
ables [14–20].

2. Problem Transformation
[21] first proposed the problem transformation strategy (WOF)

for LSMOPs. It decomposes the decision variables into differ-
ent groups with each group affiliated with a weight variable.
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Then, the variables in each group are optimized simultane-
ously by optimizing the weight variable. [22] presented a differ-
ent problem transform method (LSMOF), which optimizes the
weight variables along different search directions in decision
space. [23] utilized a weight optimization framework with ran-
dom dynamic grouping to solve LSMOPs with 5000 dimensions
(WOF-MMOPSO-RDG). [24] adopted the problem reformation
method and decomposition-based method to solve LSMOPs in an
iterated manner (iLSMOA). The main advantage of this type of
algorithm is that the number of weight variables is much smaller
than the original variables, thus the search space can be largely
reduced.

3. Search Direction-based Approaches
This idea was originally applied by [22] and further improved
by [25]. To guide the search directions of the algorithm to-
ward the Pareto set (PS), a set of well converged and evenly
distributed candidate solutions are selected from the popula-
tion first. Then, different search directions are emitted from
the highest and lowest points of the search space to the can-
didate solutions, which are expected to intersect with the PS.
Random sampling along the search direction is then performed
at each iteration. They achieved good convergence with less
computational cost.

4. Other MOEAs
Unlike the most large-scale MOEAs that improve scalability
by constructing low-dimensional spaces. [26]proposed a com-
petitive swarm optimizer (LMOCSO) for large-scale MOPs, in
which they adopted a new particle updating strategy to generate
offspring. Afterwards, Ding proposed a multi-stage knowledge-
guided algorithm [27] for solving sparse LSMOPs. He et al.
proposed an adaptive offspring generation method to reproduce
promising offspring solutions [28]. In addition, GMOEA [29]
proposed by He et al. and MOEA-CSOD [30] proposed by Liang
et al. generate offspring using generative adversarial networks
and distributional adversarial networks, respectively, which are
trained on the solutions in the current population, to solve
LSMOPs.

Though many large-scale optimization algorithms have been proposed
so far, the development of large-scale MOEA is still in its infancy
and every algorithm has drawbacks. For example, one of the major
disadvantages of grouping strategies based on cooperative co-evolution
is that the performance of algorithms depends heavily on the grouping
mechanisms. In particular, if two or more highly correlated variables
are grouped into different groups, the search directions of the algo-
rithm may be misled, thus the performance of the algorithms could
degenerate. Moreover, some variable-analysis grouping strategies like
MOEA/DVA [14] and LMEA [15] could cause extra computational
costs, and their preponderance deteriorates as the number of decision
variables increases with limited computing resources. As for the prob-
lem transformation-based MOEAs, they may fall into local optima and
lack convergence capability because each variable cannot be changed
independently. Furthermore, the essence behind grouping and problem
transformation strategy is to reduce the dimension of problems by
dividing the original search space into smaller sub-spaces, and then
carry out optimization in them. However, it is not easy to find a
reasonable division of the variables, which often leads to inaccurate
search and relatively high number of fitness evaluations [15,17].

By establishing search directions in the search space, both LSMOF
[22] and LMOEA-DS [25] achieved good convergence with limited
fitness evaluations. However, the search directions in m-objective
LSMOPs could hardly intersect with the (𝑚 − 1)-dimensional PS in the
𝑑-dimensional decision space since 𝑚 ≪ 𝑑 [31]. Thus, extra evaluation
may also be wasted in sampling for inappropriate search directions.

It can be learned from the above discussions that selection of right
search directions and the appropriate offspring generation strategy
2

are instructive for MOEAs in solving LSMOPs. Given this, in this pa-
per, we propose a bi-level offspring generation architecture, together
with a deep offspring sampling method for large-scale multi-objective
evolutionary optimization. In our proposed architecture, the offspring
generation process is divided into two phases. In the first phase, we
use common genetic operators to generate the offspring. In the sec-
ond phase, those offspring selected from the first phase are utilized
to conduct the proposed deep sampling method further. The main
contributions of this paper are summarized as follows.

1. A bi-level offspring generation architecture, which divides the
offspring generation process into two phases, is proposed. The
first phase generates offspring, denoted as offspring I, using gen-
eral genetic operators aiming to speed up the convergence. Then,
the second phase generates another group offspring, denoted as
offspring II, via a deep sampling method to promote diversity.
Finally, offspring I, II, and the parent population are combined
for subsequent environment selection. Existing MOEAs can be
easily extended to this bi-level architecture. Our experimental
results show the advantages of the bi-level architecture MOEAs,
compared to their original versions.

2. We designed a non-dominated solution-based deep sampling
method, namely, DSNS, for bi-level architecture. In DSNS, non-
dominated sorting is first performed on offspring I. Then, the
solutions in the first front are selected to establish search di-
rections. Finally, a specified number of solutions are sampled
in the search directions. By using the selected non-dominated
solutions, the established search directions can track the PS in a
dynamic manner.

3. We extend several existing MOEAs to our proposed bi-level
offspring generation architecture and examine them on a va-
riety of LSMOPs in comparison with their original versions.
Besides, a new large-scale multi-objective algorithm, LMOEA-
DSNS, is proposed by extending LMOEA-DS [25] and modifying
the environment selection. The performance of LMOEA-DSNS is
examined on a variety of 3- to 12-objective large-scale problems
with up to 5000 decision variables in comparison with five
state-of-the-art algorithms.

The rest of this paper is organized as follows. In Section 2, we briefly
introduce the related work on LSMOPs. The motivation for this work is
also elaborated in this section. The framework of the proposed bi-level
offspring regeneration method is introduced detailedly in Section 3.
Section 4 analyzes the parameter settings, and illustrates the effective-
ness of the bi-level architecture, DSNS, and the proposed LMOEA-DSNS.
Finally, conclusions and future directions are given in Section 5.

2. Background

2.1. Large-scale multi-objective optimization

Without loss of generality, a LSMOP can be formulated as follows:
{

min𝑭 (𝐱) = (𝑓1 (𝑥) ,… , 𝑓𝑚 (𝑥))
𝐱 = (𝑥1,… , 𝑥𝑛) ∈ 𝛺

(1)

where 𝛺 is the feasible decision space. 𝑥 consists of 𝑛 variables and 𝑛
is greater than 100 [14,15,26]. 𝑭 (𝐱) consists of 𝑚 objective functions
hat need to be minimized simultaneously. Due to the contradiction
mong the objectives, a set of incomparable solutions called Pareto
ptimal solutions, representing the trade-off among different objectives,
an be obtained. In this work, we concentrate on LSMOPs with 3 to 12
bjectives and 500 to 5000 decision variables.



Swarm and Evolutionary Computation 75 (2022) 101152W. Liu et al.

w
d
s
l
o
(
𝑄
s
t
D
i
G
o
s

3

t
t
a
𝑁
E
f
𝑂
1
l
t
a
p

w

2.2. Theory of the manifold structure

Suppose the objective functions 𝑓𝑖(𝑥), 𝑖 = 1,… , 𝑚 are continuously
differentiable at 𝑥∗ ∈ 𝛺. If 𝑥∗ is a (local) Pareto optimal solution, there
will be a vector 𝛼 = (𝛼1, 𝑎2,… , 𝑎𝑚)𝑇 (‖𝛼‖2 = 1) satisfying

𝑚
∑

𝑖=1
𝛼𝑖∇𝑓𝑖(𝑥∗) = 0 (2)

The points satisfying Eq. (2) are Karush–Kuhn–Tucker points. Eq. (2)
has 𝑛 + 1 equality constraints and 𝑛 + 𝑚 variables 𝑥1,… , 𝑥𝑛, 𝛼1,… 𝛼𝑚.
Thus, under mild conditions, the distribution of the PS to LSMOP
is a continuous (𝑚 − 1)-dimensional manifold [32,33]. Specifically,
under mild conditions, the PS is a piece-wise continuous surface for a
continuous 3-objective problem and a piece continuous hyper-surface
for a continuous many-objective problem (𝑚 > 3). Test instances in the
LSMOP benchmark [34] satisfy this regularity property.

2.3. Motivation

The process of offspring generation in most MOEAs that utilize the
general methods like variation and crossover is directionless, such blind
search may slow down the convergence speed of MOEAs, especially
when solving large-scale multi-objective optimization problems.

For this, several search direction-based approaches like LSMOF [22]
and LMOEA-DS [25] have been proposed as reviewed above. Instead
of generating offspring indeterminately, they first establish direction
vectors in the solution space, aiming at intersecting with the PS. These
intersections are obviously optimal solutions. Then, sampling along the
search directions is conducted constantly to find them. In addition,
sampling on the search directions equals fixing the search directions
on several lines in the search space, thus the scale of the search
space can be reduced to a certain degree. The experimental results
demonstrated that this kind of sampling can considerably accelerate the
convergence speed. However, their potential pitfall is that establishing
search directions is restricted to the highest and lowest points, which
limits the flexibility of sampling solutions.

Thus, we are motivated to propose a bi-level offspring generation
architecture. In the proposed architecture, we divide the offspring gen-
eration process into two phases, where general genetic operators and a
non-dominated solution-based deep sampling method are used to gen-
erate offspring in the first and second phases, respectively. Thus, tak-
ing advantage of both offspring generation schemes, namely, the first
layer promotes convergence and the second layer promotes diversity,
to balance the exploration and exploitation during the evolutionary
process.

Moreover, to improve the efficiency of the search direction-based
sampling approach, this article proposes a new sampling method,
i.e., the DSNS. Instead of establishing search directions by the non-
dominated solutions and the lower and upper bound points, DSNS only
uses the non-dominated solutions. To be specific, we randomly choose
two non-dominated solutions to establish the search directions, aiming
at promoting the flexibility of sampling.

3. The proposed algorithm

This chapter consists of three parts. The first part mainly describes
the general framework of the two-layer offspring regeneration method.
The second part describes the details of the DSNS algorithm. In the
third part, a new algorithm LMOEA-DSNS is proposed to solve large-
scale multi-objective problems by embedding the bi-level offspring
regeneration method into LMOEA-DS and modifying the environment
3

selection algorithm. a
Algorithm 1: AlG_BI
Input: 𝑁 (population size)
Output: 𝑃 ′ (final population)

1 𝑃0 = Initialize(𝑁);
2 𝑡 = 0;
3 while total evaluations is not used up do
4 𝑄𝑡1 = Generate the offspring using 𝑃𝑡 ;
5 Perform non-dominated sorting and find the first front 𝑄𝑓 ;
6 if |𝑄𝑓 | = 1 then 𝑄𝑡2 = DSNS(𝑄𝑡1);
7 if |𝑄𝑓 | > 1 then
8 𝑄𝑡2 = DSNS(𝑄𝑓 );
9 𝑄𝑡 = 𝑄𝑡1 ∪𝑄𝑡2 // Combine 𝑄𝑡1 and 𝑄𝑡2 as final offspring;
10 𝑃𝑡+1= Environmental_Selection(𝑃𝑡, 𝑄𝑡);
11 𝑡 = 𝑡 + 1;
12 end
13 Output the final population 𝑃 ′

3.1. Main architecture

The details of the bi-level offspring generation method are presented
in Algorithm 1. In the first layer, the population 𝑄𝑡1 is generated by
general operators such as crossover and mutation that are used in the
original algorithms (steps 4). Then, non-dominated sorting is performed
on 𝑄𝑡1 and the solutions in the first front are selected as 𝑄𝑓 (steps 5).
The 𝑄𝑓 or 𝑄𝑡1 is then used by the proposed sampling method, namely
the DSNS that is described in Section B, to generate the second layer
offspring population. On the one hand, if there is only one solution in
the 𝑄𝑓 , namely, |𝑄𝑓 | is 1 (steps 6), then all offspring in the first layer

ill be used in DSNS. This is because the DSNS cannot establish search
irections by using one single solution. In this way, the diversity of sub-
equent sampling solutions can be increased, since solutions in the first
ayer are randomly chosen to establish the search directions. On the
ther hand, if |𝑄𝑓 | is greater than 1 (steps 7), only 𝑄𝑓 is used by DSNS
steps 8). After the DSNS is conducted, we get offspring 𝑄𝑡2. Finally,
𝑡1 and 𝑄𝑡2 are combined to carry out the subsequent environmental

election (steps 10). Specifically, many other MOEAs can be extended to
his bi-level offspring generation architecture by applying the proposed
SNS to sample solutions further. In the later sections, we embed DSNS

nto several state-of-the-art MOEAs, namely, NSGA-II [35], RVEA [36],
DE3 [37], LMOCSO, and LMOEA-DS, extending them into bi-level
ffspring generation architecture. The experimental results show their
uperior performance compared to their original versions.

.2. Directed sampling based on non-dominated solutions

Algorithm 2 presents the pseudocode of the DSNS for establishing
he search directions. In order to improve the diversity of the popula-
ion, a total of 𝐶2

𝑛 pairwise combinations of solutions are put into the
rchive 𝑂 first. Then, 𝑁𝑐 combinations are chosen randomly from it.
𝑐 empirically takes the number of non-dominated solutions in 𝑄𝑡1.
xperiments and detailed analysis on choosing the appropriate value
or 𝑁𝑐 can be found in Table 1 of the Supplementary. Assume 𝑂𝑡1 and
𝑡2 are two non-dominated solutions in the 𝑡th selected pair, where
≤ t ≤ |𝑂|, the midpoint 𝐜𝑖 between 𝑂𝑡1 and 𝑂𝑡2 is calculated first in

ine 9 of the Algorithm 2, and identified as the starting point that sends
wo search vectors to 𝑂𝑡1 and 𝑂𝑡2, respectively. Suppose 𝑂𝑡1, 𝑂𝑡2 are x𝑝
nd x𝑞 , respectively, where 𝑝, 𝑞 ∈ 1, 2,… , 𝑁𝑐 . The search vectors are
romising search directions, which can be defined as follows:

𝒗+𝑖 = x𝑝 − 𝐜𝑖

𝒗−𝑖 = x𝑞 − 𝐜𝑖
𝑓𝑜𝑟 𝑖 ∈ 1,… , 𝑁𝑐 (3)

here 𝒗+𝑖 and 𝒗−𝑖 represent the promising search direction from 𝐜𝑖 to x𝑝

nd x𝑞 , respectively. Fig. 1(a) illustrates how the search directions are
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Algorithm 2: DSNS
Input: 𝑄𝑡1 (the first non-dominated population), 𝜎 (the

parameter that determines the scope of the search
directions), L (the lower bound point of the decision
space), U (the upper bound point of the decision space),
𝑁𝑠 (the total number of solutions sampled on the two
search directions)

Output: 𝑄𝑡2 (the second non-dominated population)
1 𝑛 = The number of solutions in 𝑄𝑡1;
2 𝑁𝑐 = The number of selected non-dominated pairs, where

𝑁𝑐 = 𝑛 in this paper;
3 𝑂 = All pairwise combinations of solutions in 𝑄𝑡1;
4 𝐿𝑚𝑎𝑥 = ‖U − L‖;
5 c = ∅;
6 D = ∅;
7 for 𝑖 = 1, ..., 𝑁𝑐 do
8 𝑡 = Randomly choose a number in [1,|𝑂|];
9 c𝑖 = (𝑂𝑡1 + 𝑂𝑡2)∕2 // Calculate the midpoint of the two

solutions 𝑂𝑡1 and 𝑂𝑡2 in the 𝑡-th combinations from 𝑂;
10 D = D ∪ (𝑂𝑡1 − 𝑂𝑡2);
11 c = c ∪ c𝑖;
12 end
13 D′ = Normalize D;
14 𝑃𝑜𝑝𝑋 = ∅;
15 𝜆 = Generated 𝑁𝑠 random numbers between -1 and 1;
16 𝐿 = 𝐿𝑚𝑎𝑥 ∗ 𝜎 ∗ 𝜆;
17 for 𝑖 = 1, ..., 𝑁𝑐 do
18 S = 𝐿𝑖 ⋅D′ + c𝑖 // Sample 𝑁𝑠 solutions according to Eq. (4);
19 S′ = Repair S using Eq. (5);
20 𝑃𝑜𝑝𝑋 = 𝑃𝑜𝑝𝑋 ∪ S′;
21 end
22 𝑄𝑡2 = Ndsort(𝑃𝑜𝑝𝑋) // Non-dominated sorting on 𝑃𝑜𝑝𝑋;
23 Output 𝑄𝑡2

generated in 3-dimensional decision space. The blue surface in Fig. 1(a)
represents the true PS and the black solid triangle is the midpoint
between x𝑝 and x𝑞 . The red solid polygon is the intersection of 𝒗+𝑖 and
he true PS. Note that 𝒗+𝑖 and 𝒗−𝑖 are on the same line but in the opposite
irections. Therefore, the solution 𝑠𝑡𝑖, 𝑡 ∈ 1, 2,… , 𝑁𝑠 sampled on both
wo search directions can be calculated using the following formula.

𝑠𝑡𝑖 = 𝐜𝑖 + 𝜆 ⋅
x𝑝−x𝑞

‖

‖

‖

x𝑝−x𝑞
‖

‖

‖

⋅ 𝐿max ⋅ 𝜎 𝑡 ∈ 1, 2,… , 𝑁𝑠 (4)

where 𝜆 is a random number between −1 and 1, that determines the
sampling direction and scope. Note that the order of x𝑝 and x𝑞 in
(4) does not affect the sampling results. The 𝐿max = ‖𝐔 − 𝐋‖ is the
maximum length of the decision space. As shown in step 18 of the
algorithm 2, 𝐿 is multiplied by the unit vector 𝐷′ and then added to
𝐜𝑖 to get a series of vectors starting at 𝐜𝑖, where 𝐿 is the positive or
egative random numbers generated in step 16. So the coordinate of
ach solution can be determined. For example, in Fig. 1(c), 𝒗+𝑖 and 𝒗−𝑖
re two promising search directions defined by solution x𝑝 and x𝑞 in 2-
imensional decision space. 𝑠1𝑖 , 𝑠

2
𝑖 , 𝑠

3
𝑖 and 𝑠4𝑖 are four solutions sampled

n the search directions.
Due to the uncertainty of the search directions, infeasible solutions,

.e., solutions that extend the lower or upper bounds, may be generated
uring the sampling process. To reduce their number in advance, pa-
ameter 𝜎 ∈ (0, 1] is introduced to dynamically adjust the search range
long the search directions. As shown in Fig. 1(b), if the primary 𝐿𝑚𝑎𝑥 is

used, a large invalid search area, namely, line segment 𝐹𝐷 and 𝐺𝐸 will
be produced. As a result, many infeasible solutions will be generated
if sampling in those areas. If an appropriate parameter 𝜎 is chosen to
ine-tune the 𝐿𝑚𝑎𝑥, the invalid search area can be reduced to 𝐹𝐴 and
𝐺𝐵 as shown in Fig. 1(b), thus saving unnecessary computational cost.
4

In addition, 𝜆 is used to determine in which direction to sample, i.e., 𝐜𝑖𝐴
or 𝐜𝑖𝐵, and to further adjust the search range.

As for the infeasible solutions, such as 𝑠2𝑖 in Fig. 1(c), Eq. (5) is
used to repair them. In Eq. (5), 𝑠 represents an infeasible solution. 𝑠𝑑 ,
= 1, 2,… , 𝑛 is the 𝑑th decision variable of 𝑂, 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 are the

pper and lower bounds of the 𝑑th decision variable, respectively. After
epair, the infeasible solution 𝑠 will be pulled back into the feasible
egion.

𝑠𝑑
′
= max{min{𝑠𝑑 , 𝑑max}, 𝑑min} (5)

fter sampling, we end up with 𝑁𝑐 × 𝑁𝑠 promising solutions and the
ame number of fitness evaluations are used, as long as the selected
on-dominated solutions are well converged. Then, non-dominated
orting is done on them to produce the non-dominated solutions set
𝑡2. Finally, 𝑄𝑡1 and 𝑄𝑡2 are combined as guiding solutions 𝑄𝑡 for the

ollowing environment selection.
Note that the proposed sampling method DSNS is different from that

sed in DGEA. In DGEA, the search directions are established from the
tart point to the end point, which limits the search scope to around
hese two points. However, DSNS establishes the search directions at
he midpoint of the two random solutions. In addition, the search scope
pans through the entire decision space, so the sampled solutions are
n principle more diverse.

.3. Modified LMOEA-DS: LMOEA-DSNS

Algorithm 3: Environment_Selection
Input: 𝑄𝑡 (the guiding solutions), W (a set of reference

vectors), 𝑃𝑡 (the current parent population), 𝑁𝜀 (the
threshold that determine which environment selection
method will be used)

Output: 𝑃𝑡+1 (next generation)
1 𝑅𝑡 = 𝑄𝑡 ∪ 𝑃𝑡;
2 𝑅′

𝑡 = Perform reproduction operator on 𝑅𝑡;
3 𝑈𝑡 = 𝑅𝑡 ∪ 𝑅′

𝑡;
4 Normalize the objective values of the combined population 𝑈𝑡;
5 Assign each individual in 𝑈𝑡 to its closest reference vectors in

W and select the solution on each cluster with the best
performance;

6 if the number of the selected solutions is not less than 𝑁𝜀 then
7 𝑃𝑡+1 = the selected solutions;
8 else
9 𝑃𝑡+1 = the solutions selected by NSGA-II-based environment

selection on 𝑈𝑡;
10 end
11 Output 𝑃𝑡+1

The latest large-scale multi-objective algorithm, LMOEA-DS, uses
a similar method to LSMOF to establish search directions with fixed
lower and upper bounds and randomly pick points on them to produce
offspring with good convergence. Therefore, embedding the two-layer
search algorithm on it can further improve the performance of the
original algorithm to deal with large-scale multi-objective problems.
In addition, we slightly modify the environment selection method and
propose a new large-scale multi-objective algorithm: LMOEA-DSNS.

After the guiding solutions 𝑄𝑡 are obtained by the bi-level offspring
regeneration method, a modified complementary environment selec-
tion is used to maintain the balance between convergence and diversity
of the population. The steps of the environment selection method are
given in Algorithm 3. It mainly includes two parts, i.e., the reproduction
and selection. In the reproduction part, the crossover and mutation
operators are performed on the combined population 𝑅𝑡 = 𝑃𝑡 ∪ 𝑄𝑡,
getting the mutant population 𝑅′

𝑡. Then, in the selection part, the com-

plementary environment strategy from [25] is adopted, which includes
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Fig. 1. In (a), two search directions 𝒗+𝑖 and 𝒗−𝑖 emit from midpoint 𝐜𝑖, which are determined by the selected solutions x𝑝 and x𝑞 . (b) depicts of the search scope of the search
irections, where 𝐹𝐺 is the valid search area and the red line 𝐹𝐷 and 𝐺𝐸 are invalid search area outside the decision space. (c) depicts the sampling solutions on the two search
irections in a 2-D decision space, where L and U are the upper and lower boundary points, red solid polygons are the intersections between search directions and the PS, and 𝐜𝑖
s the midpoint determined by selected solutions x𝑝 and x𝑞 , 𝑠1𝑖 , 𝑠2𝑖 , 𝑠

3
𝑖 and 𝑠4𝑖 are generated solutions, and 𝑠2′𝑖 is the solution mapped from 𝑠2𝑖 to the decision space.
Table 1
Algorithm parameter settings for DGEA, LCSA, LMOCSO, WOF, LMOEA-DS and
LMOEA-DSNS

DGEA

Operation of the environmental selection RVEA
Number of reference vectors for offspring generation 10

LCSA

The optimization method NSGA-II
Crossover probability 0.9
Mutation probability 1∕𝐷a

LMOCSO

Penalty parameter 𝛼 in APD 2
Crossover probability 1.0
Mutation probability 1∕𝐷a

WOF

Number of evaluations for original problem 800
Number of evaluations for transformed problem 400
Internal optimization algorithm NSGA-II
Crossover probability 0.9
Mutation probability 1∕𝐷a

LMOEA-DS

Cluster number 10
The number of random sampling along each guiding direction 15
Threshold of environment selection 𝑁𝜀 2/3*𝑁a

Crossover probability 0.9
Mutation probability 1∕𝐷a

LMOEA-DSNS

Cluster number 10
The number of random sampling along each guiding direction 15
Threshold of environment selection 𝑁𝜀 2/3*𝑁a

Search directions range parameter 𝜎 0.4
Crossover probability 0.9
Mutation probability 1∕𝐷a

a𝐷 is the number of decision variables, 𝑁 is the population size.

two kinds of environment selections, namely, the decomposition-based
and NSGA-II-based environmental selections [35], to select the next
generation. The difference between the proposed method and that used
in [25] is that there is no crossover between the parent population
and the guiding solutions, instead, we combine them and perform the
crossover and mutation on the combined population subsequently. In
addition, the reproduction and selection procedures are only conducted
once in this work.
5

3.4. Advantages

The merits of DSNS are threefold. At first, compared to other solu-
tions, the non-dominated solutions in the current population are closest
to the PS. Therefore, the search directions, i.e., the lines in the search
space, established by any pair of the non-dominated solutions will also
be close to the PS, and solutions sampled on these search directions
will be close to the PS as well, even if they do not intersect with the
PS. Consequently, unnecessary computational costs can be saved and a
good convergence can be guaranteed, since the sampled solutions are
all close to the PS. Secondly, DSNS can guarantee a good diversity of
the sampled solutions. Imagine if the selected non-dominated solutions
are not much different between two generations, the search directions
established in [25] will be much the same. This will cause the sampled
solutions to be similar to the previous generations, thereby worsening
the diversity of the population. But in DSNS, the search directions are
determined by randomly paired non-dominated solutions. Therefore,
they can be hardly identical to previous generation even if the se-
lected non-dominated solutions are barely the same, thereby avoiding
diversity stagnating. Thirdly, the distribution of the PS of a problem
in the search space is usually unknown, and PS of different problems
may differ greatly. By using the non-dominated solutions to establish
the search directions, DSNS can dynamically track the PS of different
problems, thus making it more flexible and general.

4. Experimental studies

In this part, we conduct a series of experiments to investigate the
proposed bi-level offspring regeneration framework. The inverted gen-
erational distance (IGD) [38] and the hyper-volume (HV) are used to
evaluate the performance, where in IGD, 10 000 uniformly distributed
reference points are selected in the true Pareto front(PF) of each test
problem. In HV, the reference point is specified as (1.1, 1.1, . . . ,
1.1) in 3 and 5 objectives in the normalized objective space with
the ideal point (0, 0, . . . , 0) and the nadir point (1.0, . . . , 1.0), that
is, the reference point is 10% larger than the nadir point in every
dimension [39]. The smaller the IGD value, the better the performance
of the algorithm [40], while the HV indicator is the opposite.

A maximum number of evaluations 80 000 is adopted as the ter-
mination criterion for all the compared MOEAs. The population size
𝑁 is set at 153 for all LSMOPs. Each experiment is run 20 times
independently to obtain the statistical results. The Wilcoxon rank sum
test [41] with a significance level of 0.05 is adopted to assess the

significance of the results obtained by two different algorithms, where
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1000 dimensions. The best result in each row is highlighted

LMOCSO_BI LMOEA-DS LMOEA-DS_BI

6.3361e−1 (7.60e−2) 4.6657e−1 (3.44e−2) − 4.1255e−1 (3.89e−2)
3.9930e−2 (8.75e−4) 3.8212e−2 (1.15e−3) ≈ 3.7596e−2 (1.28e−3)
2.5692e+0 (3.16e+0) 8.6192e−1 (2.81e−3) − 8.5525e−1 (1.68e−2)
7.2125e−2 (1.95e−3) 6.8115e−2 (1.41e−3) ≈ 6.8658e−2 (2.09e−3)
6.4738e−1 (1.93e−1) 5.3235e−1 (1.03e−2) − 5.1570e−1 (5.06e−3)
5.0752e+0 (1.62e+1) 8.1333e−1 (4.35e−2) − 7.5116e−1 (4.86e−2)
9.0828e−1 (5.93e−2) 8.5880e−1 (2.03e−3) − 8.5271e−1 (1.04e−3)
2.5180e−1 (6.39e−2) 2.4226e−1 (4.60e−2) − 1.1765e−1 (3.21e−2)
7.2497e+1 (7.39e+1) 5.4103e−1 (3.07e−3) + 5.4410e−1 (1.58e−3)

1/6/2
Table 2
The statistical results (mean and standard values of IGD metric) obtained by NSGA-II, RVEA, GDE3, LSMOCSO, LMOEA-DS and their variant on 3-objective LSMOP1-9 with
in gray.

Problem 𝑀 𝐷 NSGA-II NSGA-II_BI RVEA RVEA_BI GDE3 GDE3_BI LMOCSO

LSMOP1 3 1000 6.0965e+0 (6.67e−1) − 1.6267e+0 (3.49e−1) 4.8145e+0 (3.77e−1) − 1.6517e+0 (1.95e−1) 2.6856e+0 (3.59e−1) − 6.3007e−1 (9.48e−2) 1.4616e+0 (1.01e−1) −
LSMOP2 3 1000 5.7495e−2 (1.83e−3) + 1.1333e−1 (2.71e−2) 4.3465e−2 (7.98e−5) − 4.2727e−2 (2.26e−4) 5.2972e−2 (6.81e−4) − 5.1361e−2 (9.52e−4) 4.0784e−2 (2.91e−4) −
LSMOP3 3 1000 1.7657e+1 (2.91e+0) − 1.1237e+1 (4.01e−1) 1.1406e+1 (1.90e+0) ≈ 1.1124e+1 (5.35e−1) 1.1320e+1 (6.23e−1) − 1.2644e+0 (3.41e−1) 1.3718e+1 (3.11e+0) −
LSMOP4 3 1000 1.2147e−1 (2.88e−3) + 1.4108e−1 (1.16e−2) 9.9521e−2 (9.21e−4) − 9.6136e−2 (8.51e−4) 1.2665e−1 (1.25e−3) − 9.8848e−2 (3.63e−3) 9.2827e−2 (6.82e−4) −
LSMOP5 3 1000 1.3003e+1 (7.49e−1) − 5.0236e+0 (8.27e−1) 7.8325e+0 (5.19e+0) ≈ 3.2607e+0 (3.68e−1) 6.4024e+0 (5.63e−1) − 6.8309e−1 (1.89e−1) 3.1333e+0 (1.11e−1) −
LSMOP6 3 1000 6.1889e+3 (1.33e+3) − 9.0055e+2 (2.51e+2) 2.0620e+3 (3.52e+2) − 8.0966e+2 (2.28e+2) 2.5171e+3 (1.12e+3) − 1.3374e+0 (3.05e−1) 4.2408e+2 (1.47e+2) −
LSMOP7 3 1000 1.1081e+0 (2.86e−3) − 1.0458e+0 (1.75e−2) 8.6805e−1 (7.64e−2) + 9.7730e−1 (3.95e−2) 1.0846e+0 (2.61e−3) − 9.0318e−1 (4.48e−2) 1.0551e+0 (2.10e−2) −
LSMOP8 3 1000 9.3618e−1 (5.57e−2) − 9.2023e−1 (5.44e−2) 8.2518e−1 (1.21e−1) − 5.4249e−1 (4.35e−3) 9.5151e−1 (2.51e−2) − 7.8873e−1 (1.76e−1) 5.9772e−1 (8.80e−2) −
LSMOP9 3 1000 1.2520e+1 (1.45e+0) + 2.2606e+1 (1.88e+0) 4.9603e+1 (7.33e+0) − 2.7616e+1 (3.26e+0) 2.8379e+1 (1.57e+0) + 3.4761e+1 (2.90e+0) 4.4560e+1 (1.83e+1) ≈

+∕ − ∕ ≈ 3/6/0 1/6/2 1/8/0 0/8/1
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the symbols (+), (−), and (≈) indicate that the results obtained by
he compared algorithms are significantly better than, worse than, and
imilar to the proposed algorithm, respectively.

In the rest of this section, the experiment is divided into three
arts for detailed comparison. In the first part, we embed the proposed
ffspring generation method in three representative MOEAs, namely,
SGA-II, RVEA, and GDE3, and two new large-scale multi-objective
lgorithms LMOCSO and LMOEA-DS, and compared them with their
riginal versions on nine LSMOPs. Then, the effectiveness of the com-
lementary environment selection on the modified algorithm, LMOEA-
SNS, is analyzed in the second part. Finally, LMOEA-DSNS is com-
ared with 5 state-of-the-art large-scale multi-objective optimization
lgorithms, namely, WOF-NSGA-II [21], LMOCSO [26], DGEA [28],
CSA [42], and LMOEA-DS, which are tailored for large-scale MOPs.
ote that because MOEA/DVA [14] and LMEA [15] perform poorly
ith a small number of fitness evaluations, the comparative results are
ot presented in this paper. The source codes of the above algorithms
re available in PlatEMO [43].

Specific parameter settings of compared large-scale algorithms are
ummarized in Table 1. They remain in the same settings suggested
y their authors. Specifically, to meet the termination criterion, the
umber of evaluations for the optimization of the original problem and
ach of the transformed problems in WOF-NSGA-II are set to 800 and
00, respectively. For DGEA [28], we embed it into the RVEA to exhibit
ts best performance.

.1. General performance

In the proposed DSNS, the parameter 𝜎 in Eq. (4) determines the
search range along the established search directions. To set a reason-
able value for 𝜎, the effects of 𝜎 = [0.2, 1] with increasing step 0.1 on 3-
and 5-objective LSMOP2, 5 and 8 with up to 5000 decision variables
are tested. The test results are depicted in Fig. 2. It can be observed
that different settings of 𝜎 do not significantly affect the performance of
MOEA-DSNS on 3- and 5-objective LSMOP2. But on 3- and 5-objective
SMOP5 and 8, it has the opposite effects. On the 3-objective LSMOP5
nd 8, the performance of LMOEA-DSNS gets worse as the value of 𝜎

increases, on the contrary, it gets better on 5-objective LSMOP5 and
8. Specifically, IGD values do not change significantly on 5-objective
LSMOP5 and 8 when 𝜎 = [0.4, 1]. As a compromise, we set 𝜎 to 0.4 in
the following experiments.

To investigate the effectiveness of the proposed bi-level offspring
architecture, we embed DSNS into three representative algorithms,
i.e., NSGA-II [35], RVEA [36], GDE3 [37], and two latest MOEAs,
LMOCSO and LMOEA-DS, which are tailored for large-scale multi-
objective problems. Pairwise comparisons between the bi-level versions
and their original versions are conducted. The experimental results
are presented in Table 2, where Alg_BI denotes the bi-level version of
the algorithm Alg, all the compared algorithms are examined on 3-
objective LSMOP1 to LSMOP9 with 1000 decision variables. As can
be seen from Table 2, Alg_BI algorithms perform better than their
original algorithms in most test instances. In particular, NSGA-II_BI and
RVEA_BI perform better than their original algorithms in 6 out of 9
instances. The GDE3_BI outperforms its original algorithm in LSMOP1-
8. And for large-scale multi-objective algorithms, the LMOCSO_BI and
LMOEA-DS_BI greatly improve the performance, they outperform their
original version, namely, LMOCSO and LMOEA-DS in 8 and 6 out of the
9 instances, respectively. To sum up, the proposed bi-level offspring
generation architecture can improve the performance of the existing
MOEAs in solving LSMOPs.

4.2. The effectiveness of the modified complementary environment selection

To verify the effectiveness of the modified complementary envi-
7

ronment selection, we compared LMOEA-DSNS with a variant of the
LMOEA-DSNS, termed as LMOEA-DSNS-double, which adopts the dou-
ble reproduction strategy as in LMOEA-DS. Table 3 lists the statis-
tical results obtained by LMOEA-DSNS and LMOEA-DSNS-double on
LSMOP2, LSMOP4, and LSMOP6 with up to 5000 variables. It can be
seen that LMOEA-DSNS performed significantly better and worse than
LMOEA-DSNS-double in 9 and 2 out of 12 instances, respectively. In
addition, the IGD results obtained by LMOEA-DSNS and LMOEA-DSNS-
double on all 3-, 5-objective LSMOP1-9 test problems are given in
Tables 2 and 3, respectively, in the Supplementary, which further prove
that the LMOEA-DSNS has better performance than LMOEA-DSNS-
double. This indicates that the modified complementary environment
selection is effective in the proposed framework. Furthermore, the
comparative results of the LMOEA-DS [25] and LMOEA-DS-one that
uses our environment selection strategy are provided in Table 4 of the
Supplementary, from which we can see that the LMOEA-DS-double also
outperforms LMOEA-DS. This further confirms the effectiveness of the
proposed modified complementary environment selection strategy.

4.3. Sensitivity analysis of IGD and HV reference point settings

Since the reference point settings for IGD and HV affect the fairness
of algorithm comparisons [44], the sensitivity of the IGD and HV
reference point settings is analyzed as follows.

The experimental results using 100 000 and 1 000 000 reference
points on 12-objective LSMOP1-9 problems with 500 and 1000 decision
variables are provided in Tables 11 and 12, respectively, in the Supple-
mentary. It is observed that the final average IGD values obtained by
LMOEA-DSNS are still better than those obtained by LCSA, LMOCSO,
WOF-NSGA-II, and LMOEA-DS. Compared to DGEA-RVEA, the LMOEA-
DSNS underperforms on LSMOP6 and LSMOP8. However, it still has
competitive performance on LSMOP1-5 and LSMOP9 test problems. In
general, there is little difference between the conclusions we can draw
from Tables 11 and 12 and those from Table 10 in the Supplementary,
the latter uses 10 000 reference points. In addition, to be consistent
with other compared algorithms, we also use 10 000 reference points
to calculate IGD values in our experiments.

The statistical results of the HV values obtained by the compared
algorithms with reference points r = (1.5, 1.5, . . . , 1.5) and r = (2.0,
2.0, . . . , 2.0) on 5-, 7-, 9-, 12-objective LSMOP1-9 problems with 500
and 2000 decision variables are given in Tables 13 and 14, and Tables
15 and 16, respectively, in the Supplementary. From comparisons
between Tables 13 and 14 (or Tables 15 and 16), we can see that
different specifications of reference point, i.e. r= (1.5, . . . ) and r=(2.0,
. . . ), have little effect on the comparative results among compared
algorithms. Furthermore, results in Tables 13–16 in the Supplementary
show that the proposed LMOEA-DSNS is still competitive with DGEA-
RVEA and LCSA, and outperforms the other three compared algorithms.
Interestingly, we found that the performance of LMOEA-DSNS becomes
slightly better on 2000-D problems compared to that of 500-D under
both reference point settings, but DGEA-RVEA shows the opposite. This
demonstrates that LMOEA-DSNS is more effective in high-dimensional
problems.

In addition, The statistical results of the HV values obtained by the
compared algorithms with reference point r = (1.1, 1.1, . . . , 1.1) on 3-
and 5-objective LSMOP1-9 problems with up to 5000 decision variables
are provided in Tables 6 and 7, respectively, in the Supplementary. As
observed from the results, LMOEA-DSNS shows significant advantages
over five competitors.

In conclusion, the performance of the proposed LMOEA-DSNS is
relatively robust under different IGD and HV reference point settings.

It eventually can be verified to be superior or competitive.
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Fig. 2. IGD metric value of LMOEA-DSNS with the value of 𝜎 from [0.2, 1] on 3- and 5-objective LSMOP2, LSMOP5 and LSMOP8 with 500 to 5000 decision variables.
Table 3
The statistical results (mean and standard values of IGD metric) obtained by LMOEA-
DSNS-double and LMOEA-DSNS on 3-objective LSMOP2, LSMOP4 and LSMOP6 with
500, 1000, 2000 and 5000 dimensions. The best result in each row is highlighted in
gray.

Problem 𝑀 𝐷 LMOEA-DSNS-double LMOEA-DSNS

LSMOP2

3 500 4.5289e−2 (1.87e−3) ≈ 4.5357e−2 (1.41e−3)
3 1000 3.7271e−2 (1.29e−3) − 3.6062e−2 (3.01e−4)
3 2000 3.3774e−2 (1.15e−3) − 3.2056e−2 (1.50e−4)
3 5000 3.1846e−2 (1.11e−3) − 3.0378e−2 (9.83e−5)

LSMOP4

3 500 1.0699e−1 (3.54e−3) + 1.1126e−1 (4.81e−3)
3 1000 6.8635e−2 (1.61e−3) + 7.0877e−2 (2.17e−3)
3 2000 4.7742e−2 (1.26e−3) − 4.6943e−2 (1.06e−3)
3 5000 3.6265e−2 (1.31e−3) − 3.4437e−2 (3.63e−4)

LSMOP6

3 500 8.4783e−1 (1.91e−1) − 7.3402e−1 (2.48e−2)
3 1000 7.7973e−1 (3.94e−2) − 7.5369e−1 (6.42e−2)
3 2000 7.8166e−1 (3.34e−2) − 7.4151e−1 (3.11e−2)
3 5000 8.3261e−1 (1.47e−1) − 7.3022e−1 (2.20e−2)

+∕ − ∕ ≈ 2/9/1

4.4. Comparisons with state-of-the-arts

To evaluate the overall performance of the LMOEA-DSNS, we com-
pared LMOEA-DSNS with the aforementioned five state-of-the-art large-
scale multi-objective optimization algorithms on 3-, 5-, 7-, 9-, and
12-objective LSMOP1-9 with up to 5000 variables. The IGD results on 3-
and 5-objective LSMOPs are presented in Tables 4 and 5, respectively.
The remaining comparisons on 7-, 9-, and 12-objective LSMOPs can be
found in Tables 8, 9, and 10 of the Supplementary.

Because LMOEA-DSNS is derived from LMOEA-DS [25], the com-
parative results can be analyzed from two perspectives, i.e., the com-
parison with LMOEA-DS and the comparisons with other large-scale
multi-objective algorithms. As shown in Tables 4 and 5, compared
to LMOEA-DS, LMOEA-DSNS obtains significantly better results on
21/36 and 28/36 3-objective and 5-objective instances, respectively,
in terms of the IGD values. LMOEA-DS outperforms LMOEA-DSNS
8

only on 3-objective LSMOP4 with 500 and 1000 decision variables, 3-
objective LSMOP7 with 5000 decision variables, 3-objective LSMOP9
test instances, and two 5-objective instances. In addition, it can be
seen from Tables 8, 9, and 10 of the Supplementary that LMOEA-
DSNS obtained 34/36, 25/36 and 36/36 better results in 7-, 9-, and
12-objective problems, respectively, than LMOEA-DS. The above results
demonstrate the superiority of LMOEA-DSNS compared to LMOEA-DS.

Compared to other algorithms, LMOEA-DSNS also has obvious ad-
vantages. It outperforms WOF in all 3-objective instances and 33/36
5-objective instances. Compared to two recently proposed large-scale
many-objective algorithms DGEA and LCSA, LMOEA-DSNS outperforms
them on 28/36 and 36/36 3-objective instances, respectively. DGEA-
RVEA outperforms LMOEA-DSNS only on LSMOP8 with 500 variables.
Regarding the 5-objective LSMOPs, LMOEA-DSNS outperforms DGEA
and LCSA on 25/36 and 26/36 instances, respectively. In particular,
LMOCSO performs worse than LMOEA-DSNS on all 3- and 5-objective
LSMOPs. From these results, we can see that the proposed LMOEA-
DSNS can also obtain better results than WOF, DGEA, LCSA, and
LMOCSO.

Additionally, LMOCSO fails on all 3- and 5-objective instances
compared to LMOEA-DSNS. They represent two different mechanisms
for solving large-scale problems. LMOCSO carries out local comparisons
between particles. Therefore, the search is circuitous, which can slow
down the convergence. However, LMOEA-DSNS, which is equipped
with the DSNS, establishes search directions that are likely to intersect
with the PS. By randomly sampling solutions on these search directions,
LMOEA-DSNS can quickly lock the point nearest to the PS in the
whole decision space. Therefore, it can achieve faster convergence than
LMOCSO.

The boxplots of the IGD values obtained by DGEA-RVEA, LCSA,
LMOCSO, WOF-NSGA-II, LMOEA-DS, and the proposed LMOEA-DSNS
on 12-objective LSMOP1-9 test problems with 5000 dimensions are
presented in Fig. 3. For clearer visualization, all the original IGD
values are processed with logarithmic transformation. We can see that
LMOEA-DSNS can obtain relatively low and stable IGD values on most

LSMOPs and obtain the best median results on 12-objective LSMOP1,
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Table 4
The statistical results (mean and standard values of IGD metric) obtained by LMOEA-DSNS and five compared algorithms on 500-, 1000-, 2000- and 5000-D 3-objective LSMOP1-9
problems. The best result in each row is highlighted in gray.

Problem 𝑀 𝐷 DGEA-RVEA LCSA LMOCSO WOF-NSGA-II LMOEA-DS LMOEA-DSNS

LSMOP1

3 500 7.1741e−1 (9.78e−2) − 6.3000e−1 (2.78e−2) − 1.3985e+0 (1.09e−1) − 5.3184e−1 (3.22e−2) − 4.5180e−1 (4.12e−2) − 4.0352e−1 (3.03e−2)
3 1000 7.1652e−1 (1.34e−1) − 7.7427e−1 (2.77e−2) − 1.5016e+0 (8.43e−2) − 6.0355e−1 (3.58e−2) − 4.6657e−1 (3.44e−2) − 4.2747e−1 (4.73e−2)
3 2000 7.2784e−1 (1.66e−1) − 8.4562e−1 (1.89e−2) − 1.5793e+0 (8.14e−2) − 6.3621e−1 (3.00e−2) − 5.0880e−1 (6.52e−2) − 4.2841e−1 (3.78e−2)
3 5000 7.5406e−1 (1.02e−1) − 8.6002e−1 (1.02e−3) − 1.5626e+0 (7.73e−2) − 7.0879e−1 (3.47e−2) − 5.2793e−1 (6.95e−2) − 4.2738e−1 (4.04e−2)

LSMOP2

3 500 5.2096e−2 (2.04e−3) − 7.9226e−2 (2.42e−3) − 5.1741e−2 (5.61e−4) − 7.9191e−2 (2.65e−3) − 4.5491e−2 (1.30e−3) ≈ 4.5357e−2 (1.41e−3)
3 1000 4.1084e−2 (1.02e−3) − 6.1620e−2 (2.71e−3) − 4.0786e−2 (3.84e−4) − 5.9341e−2 (1.81e−3) − 3.8212e−2 (1.15e−3) − 3.6062e−2 (3.01e−4)
3 2000 3.5479e−2 (3.21e−4) − 5.3130e−2 (2.32e−3) − 3.5485e−2 (1.53e−4) − 5.2758e−2 (3.20e−3) − 3.4714e−2 (1.07e−3) − 3.2056e−2 (1.50e−4)
3 5000 3.2736e−2 (2.16e−4) − 5.0658e−2 (2.91e−3) − 3.2766e−2 (3.64e−5) − 4.9702e−2 (2.19e−3) − 3.3478e−2 (9.10e−4) − 3.0378e−2 (9.83e−5)

LSMOP3

3 500 1.1127e+0 (1.03e+0) − 8.6072e−1 (1.14e−16) − 1.3712e+1 (2.50e+0) − 1.0894e+0 (8.89e−1) − 8.5993e−1 (2.54e−3) ≈ 8.5101e−1 (2.91e−2)
3 1000 1.0575e+0 (6.05e−1) − 8.6072e−1 (1.14e−16) − 1.3265e+1 (2.07e+0) − 9.8602e−1 (4.45e−1) − 8.6192e−1 (2.81e−3) ≈ 8.5692e−1 (1.56e−2)
3 2000 1.3704e+0 (1.27e+0) − 8.6072e−1 (1.14e−16) − 1.5309e+1 (3.59e+0) − 8.8926e−1 (6.75e−2) − 8.6171e−1 (3.37e−3) ≈ 8.5067e−1 (2.53e−2)
3 5000 1.3484e+0 (7.49e−1) − 8.6072e−1 (1.14e−16) − 1.3900e+1 (1.43e+0) − 9.8415e−1 (2.65e−1) − 8.6207e−1 (2.66e−3) − 8.5926e−1 (4.56e−3)

LSMOP4

3 500 1.2354e−1 (6.67e−3) − 2.1020e−1 (3.98e−3) − 1.5170e−1 (1.30e−3) − 2.0767e−1 (3.45e−3) − 1.0552e−1 (2.13e−3) + 1.1126e−1 (4.81e−3)
3 1000 7.7169e−2 (6.78e−3) − 1.3566e−1 (2.42e−3) − 9.2984e−2 (6.59e−4) − 1.3356e−1 (3.40e−3) − 6.8115e−2 (1.41e−3) + 7.0877e−2 (2.17e−3)
3 2000 5.2146e−2 (2.68e−3) − 8.7461e−2 (2.54e−3) − 5.9126e−2 (2.77e−4) − 8.7003e−2 (4.50e−3) − 4.8899e−2 (7.70e−4) − 4.6943e−2 (1.06e−3)
3 5000 3.7874e−2 (9.51e−4) − 5.9882e−2 (2.91e−3) − 3.9772e−2 (1.56e−4) − 5.7735e−2 (2.69e−3) − 3.7167e−2 (1.11e−3) − 3.4437e−2 (3.63e−4)

LSMOP5

3 500 7.3361e−1 (3.34e−1) − 5.4085e−1 (1.70e−5) − 2.9009e+0 (1.67e−1) − 5.3394e−1 (2.71e−2) − 5.2659e−1 (1.36e−2) ≈ 5.2642e−1 (1.03e−2)
3 1000 9.7423e−1 (5.67e−1) − 5.4087e−1 (3.18e−5) − 3.0758e+0 (1.08e−1) − 5.4621e−1 (2.74e−2) − 5.3235e−1 (1.03e−2) ≈ 5.2872e−1 (8.40e−3)
3 2000 7.6687e−1 (3.93e−1) − 5.4088e−1 (2.35e−5) − 3.2170e+0 (1.48e−1) − 5.4747e−1 (3.07e−2) − 5.3685e−1 (3.57e−3) − 5.2909e−1 (8.28e−3)
3 5000 1.1304e+0 (8.42e−1) − 5.4088e−1 (2.04e−5) − 3.3200e+0 (1.06e−1) − 5.4194e−1 (2.80e−3) − 5.3891e−1 (1.25e−3) − 5.3099e−1 (7.19e−3)

LSMOP6

3 500 2.8404e+1 (4.45e+1) ≈ 1.2898e+0 (1.17e−3) − 2.4955e+2 (7.56e+1) − 1.3116e+0 (4.93e−2) − 7.9523e−1 (5.36e−2) − 7.3402e−1 (2.48e−2)
3 1000 3.8045e+1 (6.68e+1) ≈ 1.3141e+0 (4.27e−4) − 3.7187e+2 (8.51e+1) − 1.3353e+0 (3.67e−2) − 8.1333e−1 (4.35e−2) − 7.5369e−1 (6.42e−2)
3 2000 2.1062e+1 (9.08e+1) ≈ 1.3248e+0 (1.55e−4) − 5.4114e+2 (1.61e+2) − 1.4292e+0 (1.62e−1) − 7.9769e−1 (4.02e−2) − 7.4151e−1 (3.11e−2)
3 5000 2.1428e+2 (7.00e+2) ≈ 1.3310e+0 (4.18e−5) − 5.2749e+2 (1.35e+2) − 1.5601e+0 (3.41e−1) − 7.6353e−1 (2.80e−2) − 7.3022e−1 (2.20e−2)

LSMOP7

3 500 9.7245e−1 (7.80e−2) − 9.1106e−1 (3.24e−3) − 1.1571e+0 (3.90e−2) − 8.8433e−1 (2.01e−2) − 8.8605e−1 (4.88e−3) − 8.7735e−1 (3.80e−3)
3 1000 9.3124e−1 (6.39e−2) − 8.7129e−1 (6.86e−4) − 1.0500e+0 (2.66e−2) − 8.6662e−1 (2.39e−2) − 8.5880e−1 (2.03e−3) − 8.5431e−1 (1.81e−3)
3 2000 9.1658e−1 (6.74e−2) − 8.5244e−1 (3.53e−4) − 9.9966e−1 (7.63e−3) − 8.6687e−1 (3.15e−2) − 8.4559e−1 (8.43e−4) − 8.4367e−1 (6.75e−4)
3 5000 8.6485e−1 (6.21e−2) ≈ 8.4212e−1 (2.53e−4) − 9.6666e−1 (4.23e−3) − 8.4904e−1 (2.56e−2) − 8.3497e−1 (1.82e−2) + 8.3847e−1 (2.62e−4)

LSMOP8

3 500 1.8617e−1 (3.59e−2) + 3.5776e−1 (7.02e−3) − 6.2923e−1 (9.26e−2) − 3.4771e−1 (2.28e−2) − 2.7908e−1 (4.31e−2) − 2.2576e−1 (6.92e−2)
3 1000 2.9837e−1 (2.14e−1) ≈ 3.3684e−1 (2.61e−2) − 6.3800e−1 (1.37e−1) − 2.8859e−1 (4.44e−2) − 2.4226e−1 (4.60e−2) ≈ 2.1839e−1 (4.44e−2)
3 2000 2.8759e−1 (1.73e−1) ≈ 3.3120e−1 (2.64e−2) − 5.9378e−1 (8.79e−2) − 3.1175e−1 (3.96e−2) − 2.2370e−1 (3.53e−2) ≈ 2.0679e−1 (4.86e−2)
3 5000 5.0628e−1 (2.69e−1) − 3.1574e−1 (2.86e−2) − 6.0589e−1 (1.20e−1) − 2.9636e−1 (4.32e−2) − 2.2416e−1 (2.10e−2) − 1.9918e−1 (3.43e−2)

LSMOP9

3 500 2.0995e+1 (7.95e+0) − 1.5379e+0 (1.68e−4) − 2.9601e+0 (3.81e+0) − 1.1450e+0 (2.54e−4) − 5.4404e−1 (2.90e−3) + 5.4726e−1 (2.26e−3)
3 1000 3.5924e+1 (1.32e+1) − 1.5379e+0 (4.56e−16) − 5.6852e+1 (2.85e+1) − 1.1447e+0 (2.84e−4) − 5.4103e−1 (3.07e−3) + 5.4414e−1 (2.17e−3)
3 2000 4.8830e+1 (1.01e+1) − 1.5379e+0 (4.56e−16) − 8.4148e+1 (2.87e+1) − 1.1445e+0 (2.57e−4) − 5.4039e−1 (2.83e−3) + 5.4222e−1 (2.41e−3)
3 5000 5.4675e+1 (6.45e+0) − 1.5379e+0 (4.56e−16) − 8.0569e+1 (3.49e+1) − 1.1797e+0 (1.08e−1) − 5.3878e−1 (2.50e−3) + 5.4070e−1 (2.60e−3)

+∕ − ∕ ≈ 1/28/7 0/36/0 0/36/0 0/36/0 7/21/8
Table 5
The statistical results (mean and standard values of IGD metric) obtained by LMOEA-DSNS and 5 compared algorithms on 500-, 1000-, 2000- and 5000-D 5-objective LSMOP1-9
problems. The best result in each row is highlighted in gray.

Problem 𝑀 𝐷 DGEA-RVEA LCSA LMOCSO WOF-NSGA-II LMOEA-DS LMOEA-DSNS

LSMOP1

5 500 8.5571e−1 (1.43e−1) ≈ 9.4187e−1 (4.72e−3) − 1.2339e+0 (3.54e−1) − 9.5426e−1 (6.28e−2) − 9.6159e−1 (8.93e−2) − 8.2577e−1 (1.15e−1)
5 1000 8.9101e−1 (1.11e−1) ≈ 9.4124e−1 (1.39e−3) − 1.5525e+0 (2.42e−1) − 9.6991e−1 (1.07e−1) − 9.4292e−1 (4.14e−2) − 8.5748e−1 (1.03e−1)
5 2000 8.7585e−1 (1.26e−1) ≈ 9.3982e−1 (1.35e−3) − 1.7570e+0 (1.42e−1) − 9.3790e−1 (1.77e−2) − 9.3382e−1 (1.70e−2) − 9.1125e−1 (1.65e−2)
5 5000 8.9684e−1 (1.19e−1) ≈ 9.3991e−1 (8.88e−4) − 1.7928e+0 (3.13e−1) − 9.3985e−1 (3.40e−2) − 9.6568e−1 (1.41e−1) − 8.4797e−1 (1.28e−1)

LSMOP2

5 500 1.7106e−1 (2.21e−3) − 1.8665e−1 (5.67e−3) − 1.7300e−1 (1.02e−3) − 1.8851e−1 (5.81e−3) − 1.3846e−1 (2.78e−3) − 1.3564e−1 (1.05e−3)
5 1000 1.4653e−1 (7.78e−4) − 1.6131e−1 (3.95e−3) − 1.4712e−1 (5.78e−4) − 1.6308e−1 (2.69e−3) − 1.2769e−1 (2.68e−3) − 1.2535e−1 (1.00e−3)
5 2000 1.3584e−1 (5.93e−4) − 1.5189e−1 (5.40e−3) − 1.3576e−1 (4.29e−4) − 1.5188e−1 (5.31e−3) − 1.2376e−1 (2.27e−3) ≈ 1.2325e−1 (9.00e−4)
5 5000 1.2970e−1 (4.14e−4) − 1.4465e−1 (3.52e−3) − 1.2945e−1 (4.18e−4) − 1.4690e−1 (5.21e−3) − 1.2251e−1 (2.15e−3) + 1.2349e−1 (1.03e−3)

LSMOP3

5 500 3.3327e+0 (3.13e+0) − 9.5883e−1 (0.00e+0) ≈ 1.6007e+1 (6.34e+0) − 2.0177e+0 (1.27e+0) − 9.8316e−1 (3.85e−2) − 9.5882e−1 (2.41e−5)
5 1000 4.6225e+0 (3.83e+0) − 9.5883e−1 (0.00e+0) ≈ 3.1775e+1 (5.77e+1) − 1.6018e+0 (7.78e−1) − 1.0009e+0 (9.16e−2) − 9.5883e−1 (3.32e−6)
5 2000 4.0604e+0 (3.72e+0) − 9.5883e−1 (0.00e+0) ≈ 3.5824e+1 (4.31e+1) − 2.3741e+0 (1.64e+0) − 1.0058e+0 (1.06e−1) − 9.5883e−1 (0.00e+0)
5 5000 3.0350e+0 (3.39e+0) − 9.5883e−1 (0.00e+0) ≈ 3.2510e+1 (3.66e+1) − 1.8425e+0 (1.36e+0) − 1.0229e+0 (1.27e−1) − 9.5883e−1 (6.88e−7)

LSMOP4

5 500 2.7639e−1 (5.19e−3) − 3.2331e−1 (8.14e−3) − 2.9176e−1 (3.83e−3) − 3.2676e−1 (1.09e−2) − 2.7268e−1 (8.13e−3) − 2.6448e−1 (1.35e−2)
5 1000 2.1433e−1 (2.83e−3) − 2.4477e−1 (5.01e−3) − 2.2660e−1 (2.56e−3) − 2.5209e−1 (6.64e−3) − 1.8783e−1 (2.69e−3) − 1.7983e−1 (3.52e−3)
5 2000 1.7405e−1 (2.09e−3) − 1.9401e−1 (5.40e−3) − 1.7964e−1 (9.93e−4) − 1.9503e−1 (5.17e−3) − 1.5099e−1 (2.54e−3) − 1.4288e−1 (2.17e−3)
5 5000 1.4513e−1 (1.01e−3) − 1.6373e−1 (5.46e−3) − 1.4640e−1 (4.98e−4) − 1.6147e−1 (5.48e−3) − 1.2863e−1 (2.81e−3) − 1.2526e−1 (1.22e−3)

LSMOP5

5 500 4.2766e−1 (1.91e−1) − 4.6753e−1 (1.71e−2) − 2.0404e+0 (3.73e−1) − 6.0439e−1 (1.85e−1) − 4.9379e−1 (1.91e−2) − 4.1064e−1 (3.90e−2)
5 1000 6.6795e−1 (2.91e−1) − 4.6671e−1 (4.21e−2) − 2.9903e+0 (3.37e−1) − 5.8199e−1 (1.74e−1) − 4.9470e−1 (2.18e−2) − 4.1787e−1 (3.55e−2)
5 2000 6.8647e−1 (2.43e−1) − 4.5237e−1 (1.50e−2) − 3.3412e+0 (3.47e−1) − 7.6721e−1 (5.82e−1) − 4.8984e−1 (1.83e−2) − 3.9818e−1 (3.05e−2)
5 5000 8.1443e−1 (3.00e−1) − 4.4707e−1 (2.10e−2) − 3.4652e+0 (4.75e−1) − 7.2762e−1 (8.40e−1) − 4.9181e−1 (2.81e−2) − 3.9384e−1 (2.95e−2)

LSMOP6

5 500 1.2623e+0 (5.80e−1) ≈ 1.2179e+0 (4.24e−2) − 5.4600e+1 (4.50e+1) − 2.5594e+0 (2.81e+0) − 1.2386e+0 (4.67e−2) − 1.0649e+0 (7.54e−2)
5 1000 1.8141e+0 (9.61e−1) − 1.2633e+0 (4.80e−2) − 2.3462e+2 (1.67e+2) − 6.8382e+0 (1.44e+1) − 1.2372e+0 (1.20e−1) − 1.0508e+0 (7.81e−2)
5 2000 2.1099e+0 (1.33e+0) − 1.2620e+0 (2.71e−2) − 3.8003e+2 (2.79e+2) − 6.9097e+0 (1.04e+1) − 1.2732e+0 (1.30e−1) − 1.0703e+0 (7.15e−2)
5 5000 2.5708e+0 (1.31e+0) − 1.2591e+0 (2.91e−2) − 4.3840e+2 (2.58e+2) − 4.6782e+0 (5.84e+0) − 1.2188e+0 (1.28e−1) − 1.0882e+0 (3.81e−2)

LSMOP7

5 500 1.1205e+0 (9.08e−2) ≈ 1.1047e+0 (1.31e−2) ≈ 2.2107e+0 (2.08e−1) − 1.4698e+0 (2.45e−1) − 1.2206e+0 (8.75e−2) ≈ 1.1830e+0 (1.45e−1)
5 1000 1.0837e+0 (7.71e−2) ≈ 1.0343e+0 (9.29e−3) + 1.7903e+0 (4.79e−2) − 1.2352e+0 (1.21e−1) − 1.1278e+0 (4.82e−2) ≈ 1.1103e+0 (7.80e−2)
5 2000 1.0329e+0 (6.72e−2) + 9.9936e−1 (7.25e−3) + 1.3598e+0 (1.88e−2) − 1.1786e+0 (1.23e−1) − 1.0876e+0 (3.11e−2) ≈ 1.0872e+0 (8.50e−2)
5 5000 1.0027e+0 (6.92e−2) + 9.7944e−1 (6.56e−3) + 1.1642e+0 (2.95e−2) − 1.1202e+0 (8.38e−2) ≈ 1.0489e+0 (2.60e−2) + 1.0851e+0 (4.31e−2)

LSMOP8

5 500 3.8873e−1 (7.73e−2) ≈ 3.8363e−1 (1.52e−2) − 9.9215e−1 (3.25e−2) − 4.3021e−1 (8.43e−2) − 4.2538e−1 (2.09e−2) − 3.6603e−1 (3.52e−2)
5 1000 5.0444e−1 (2.06e−1) ≈ 3.7729e−1 (7.38e−3) − 1.0522e+0 (3.78e−2) − 5.0051e−1 (1.78e−1) − 4.1017e−1 (1.67e−2) − 3.6331e−1 (4.05e−2)
5 2000 6.3909e−1 (1.40e−1) − 3.8056e−1 (1.51e−2) ≈ 1.0888e+0 (5.45e−2) − 5.9980e−1 (2.61e−1) ≈ 4.2344e−1 (1.91e−2) ≈ 5.0738e−1 (2.11e−1)
5 5000 7.2486e−1 (1.04e−1) − 3.7253e−1 (8.39e−3) ≈ 1.0565e+0 (1.07e−1) − 5.2629e−1 (2.30e−1) ≈ 4.4629e−1 (4.95e−2) ≈ 4.9766e−1 (2.02e−1)

LSMOP9

5 500 2.1930e+1 (3.02e+0) − 3.0005e+0 (1.37e−15) − 3.4203e+0 (9.69e−1) − 1.8283e+0 (1.71e−1) − 4.3396e−1 (7.84e−2) − 3.2842e−1 (2.75e−2)
5 1000 6.3529e+1 (7.79e+0) − 3.0005e+0 (1.37e−15) − 1.6842e+2 (8.64e+1) − 1.8154e+0 (1.59e−1) − 4.2122e−1 (5.96e−2) − 3.1839e−1 (3.22e−2)
5 2000 1.0802e+2 (1.34e+1) − 3.0005e+0 (1.37e−15) − 3.4067e+2 (7.21e+1) − 1.8602e+0 (4.19e−2) − 3.9171e−1 (5.38e−2) − 3.1709e−1 (3.64e−2)
5 5000 1.4284e+2 (1.07e+1) − 3.0005e+0 (1.37e−15) − 3.2866e+2 (6.54e+1) − 2.0771e+0 (1.99e−1) − 3.9562e−1 (6.15e−2) − 3.1432e−1 (1.92e−2)

+∕ − ∕ ≈ 2/25/9 3/26/7 0/36/0 0/33/3 2/28/6
2, 3, 4, 5, 8 and 9. This indicates the robust performance of LMOEA-
DSNS. For LSMOP6, the performance of LMOEA-DSNS is worse than
the compared MOEAs. This is presumably due to the highly complex
landscape of LSMOP6 in the high-dimensional objective space, which
may mislead the algorithm to local optima at a late stage of evolution.
9

Finally, the comparative results on 7-, 9-, and 12-objective LSMOPs
are summarized in Table 6. In Table 6, the proposed LMOEA-DSNS
obtained overall better results on 7-, 9-, and 12-objective LSMOPs
than DGEA-REVA, WOF-NSGA-II, LMOCSO, LCSA, and LMOEA-DS.
Especially for the 12-objective LSMOPs, LMOEA-DSNS outperforms
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Fig. 3. The boxplots of LMOEA-DSNS and other five algorithms on 12-objective LSMOP1-9 with 5000 decision variables.
Table 6
The summary of the statistical results obtained by LMOEA-DSNS and 5 compared
algorithms on 500-, 1000-, 2000- and 5000-D 7-, 9- and 12-objective LSMOP1-9
problems, where LMOEA-DSNS is better than (+), worst than (−) and comparable
to (≈) each of 5 compared algorithms according to the Wilcoxon Rank sum test with
bonferroni correction.

LMOEA-
DSNS

DGEA-
RVEA

LCSA LMOCSO WOF-
NSGA-II

LMOEA-
DS

7
+ 14/36 16/36 26/36 36/36 34/36
≈ 9/36 5/36 6/36 0/36 2/36
– 13/36 15/36 4/36 0/36 0/36

9
+ 16/36 17/36 29/36 33/36 25/36
≈ 5/36 11/36 3/36 1/36 10/36
– 15/36 8/36 4/36 2/36 1/36

12
+ 21/36 27/36 32/36 33/36 36/36
≈ 8/36 3/36 2/36 2/36 0/36
– 7/36 6/36 2/36 2/36 0/36

DGEA-REVA, WOF-NSGA-II, LMOCSO, LCSA, and LMOEA-DS on 21/36,
33/36, 32/36, 27/36, and 36/36, respectively. In summary, these
results indicate that the proposed LMOEA-DSNS has good competitive
performance and is effective in handling large-scale many-objective
optimization problems.
10
5. Conclusion

In this article, we have proposed a bi-level offspring generation
architecture and a deep sampling method for large-scale multi∖many-
objective optimization. In the proposed architecture, the offspring gen-
eration process is divided into two phases, where the first phase gener-
ates offspring via general genetic operators to preserve convergence,
and the second phase uses the proposed sampling method DSNS to
generate offspring with good diversity. The existing MOEAs can be
extended to our proposed bi-level architecture. On this basis, a new
large-scale multi-objective algorithm, LMOEA-DSNS, was proposed.

The experimental results demonstrated that our proposed bi-level
offspring regeneration architecture can improve the performance of
existing MOEAs dramatically in comparison with their original ver-
sions. Moreover, the proposed LMOEA-DSNS also showed advantages
over five advanced large-scale MOEAs on 3- to 12-objective large-scale
multi∖many-objective problems with up to 5000 dimensions.

However, as observed from the experimental results given in Tables
8, 9, and 10 of the Supplementary, the performance of the proposed
DSNS was diminished in solving LSMOPs with mixed and convex
landscapes (i.e., LSMOP6 and LSMOP8) in a high-dimensional objective
space. For this issue, we will study how to adjust the sampling range
adaptively, to better track complex PS landscapes by producing fewer
invalid solutions.
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In addition, the solution-sorting methods of LMOEA-DSNS will be
further studied by considering a new fractional dominance method [45]
and the voting mechanism [46] to strengthen convergence. Finally, it
is of considerable interest to test the adaptability and scalability of
the performance of the proposed algorithm in different large-scale test
problems and real-world problems in the future.
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