
Accepted Manuscript

A parallel arithmetic for hardware realization of digital filters

Chunxiao Fan, Fu Li, Xin Cao, Biao Qian, Peipei Song

PII: S0026-2692(18)30715-8

DOI: https://doi.org/10.1016/j.mejo.2018.11.012

Reference: MEJ 4451

To appear in: Microelectronics Journal

Received Date: 18 September 2018

Revised Date: 21 November 2018

Accepted Date: 27 November 2018

Please cite this article as: C. Fan, F. Li, X. Cao, B. Qian, P. Song, A parallel arithmetic for
hardware realization of digital filters, Microelectronics Journal (2019), doi: https://doi.org/10.1016/
j.mejo.2018.11.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.mejo.2018.11.012
https://doi.org/10.1016/j.mejo.2018.11.012
https://doi.org/10.1016/j.mejo.2018.11.012

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

This work was supported in part by the NSFC (No. 61802105, 61701403, 61672404, 61632019, 61751310,
61472301, 61875157 and 61572387), the Fundamental Research Funds of the Central Universities of China (No.
2192018JZ2018HGBZ0154, SA-ZD160203, JBG160228, JBG160213, K5051399020 and K5051202050), the
China Post-doctoral Science Foundation (No. 2018M643719), the Scientific Research Program Funded by Shaanxi
Provincial Education Department (No. 18JK0767), and Natural Science Basic Research Plan in Shaanxi Province
of China (Program No. 2017JQ6006 and 2016ZDJC-08).
* Corresponding author: Fu Li (e-mail: fuli@mail.xidian.edu.cn).

A Parallel Arithmetic for

Hardware Realization of Digital Filters

Chunxiao Fan 1, Fu Li 2*, Xin Cao 3, Biao Qian 1, Peipei Song 1

1 School of Computer Science and Information Engineering, Hefei University of Technology, Hefei,

Anhui 230601, China

2 School of Artificial Intelligence, Xidian University, Xi’an, Shaanxi 710071, China

3 School of Information Science and Technology, Northwest University, Xi’an, Shaanxi 710069, China

Abstract: Distributed Arithmetic (DA) is a classic technique for the hardware realization of

digital filters. We present a novel parallel arithmetic operation to overcome two drawbacks in

existing DA and DA-based methods: 1) the throughput is difficult to improve and 2) hardware

resource consumption increases exponentially with the length of filter order. The fundamental

difference between the proposed and existing methods is that the proposed method factors the

filter coefficients to find several simple basic operations, which can circumvent the inherent

bit-serial nature of DA methods and achieve the whole operation in one clock cycle. Additionally,

the number of possible basic operations increases linearly with the length of filter order, which

means we can relieve the exponentially increasing hardware resource consumption. The proposed

method is evaluated through two experiments, and the results demonstrate that the proposed

technique outperforms existing DA and DA-based methods in terms of throughput and resource

consumption.

Index Terms: Distributed Arithmetic, digital filter, convolution, hardware realization, VLSI.

I. Introduction

Digital filtering is a basic operation in digital signal processing. Distributed Arithmetic (DA)

was proposed in the 1970s [1, 2] for the hardware realization design of digital filters to reduce the

cost and power consumption [3–12]. With DA, the total gate count in digital filters can be reduced

by as much as 80% [13]. In addition, the acceleration of deep neural networks recently attracts

much attention, DA can also be an efficient method to achieve the convolution operation in

hardware acceleration.

The principle of DA is to factor inputs according to the binary representation, and the possible

relevant operations are selected as intermediate arithmetic operations. In order to reduce hardware

resource consumption, these operations are pre-computed offline and stored in memory structures.

However, because of the inherent bit-serial nature of DA methods, the throughput is difficult to

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

improve and multiple clock cycles are needed to calculate the inner-product results. The memory

requirements increase exponentially with the length of filter order, which results in the

exponentially increasing of hardware resource consumption. In a complex digital filter, the

memory structure consumes lots of hardware resources.

Many approaches have been proposed to overcome these drawbacks [13–18]. In order to

improve the throughput, [14] and [15] attempted to partition the filter input into several sub-inputs

and process them using several memory structures in parallel. [13] and [16–18] describe methods

that can reduce memory size by using ingenious representations. Several intermediate arithmetic

operations are combined and the intermediate results which stored in ROM are anti-symmetric.

The memory size in these methods can be reduced by as much as 50%. However, none of these

techniques can avoid these drawbacks.

In our previous work [19], we proposed an improved signed digit (ISD) representation to

eliminate computational redundancy among different multipliers. In order to overcome the

drawbacks of DA, the ISD representation is adopted and applied to calculate the product of several

inputs and filter coefficients in parallel. In this paper, we present a parallel arithmetic operation for

the hardware realization of digital filters. The fundamental difference between the proposed

method and existing methods is that the proposed method factors filter coefficients to find basic

operations. This means that the inherent bit-serial nature of DA and DA-based techniques can be

circumvented to avoid time delay. The intermediate arithmetic operations after factorization

increase linearly with the length of filter order, which means we can avoid exponentially

increasing memory size and reduce hardware resource consumption.

The remainder of this paper is organized as follows. In Section II, the principles of DA and

DA-based methods are reviewed. The mathematical model for our proposed method is described

in Section III. Section IV presents two experiments to verify the proposed method. Our work is

concluded in Section V.

II. Review of Distributed Arithmetic

DA is widely used in the hardware realization of digital filters. In DA, all possible intermediate

arithmetic operations are stored in a memory structure. These stored values can be used to

calculate the final results by using repeated additions and shifting operations. In the hardware

realization of digital filters, there are no multiplications, but several memory structures are

required.

A digital filter of length K is used to calculate the inner-product of an impulse response
vector kh (0,1,..., 1k K= −) and an input vector n ki − (0,1,..., 1k K= −). It can be represented as:

1

0

K

k n k
k

y h i
−

−
=

=∑
(1)

For simplification, the time index n of n ki − is removed and n ki − is represented by its two's

complement binary number kx , as shown in (2). kx consists of N bits of data and a 1-bit

sign.
1

0

1

0

2 2
N

N n
k kN kn

n

K

k k
k

x b b

y h x

−

=

−

=

= − +

=

∑

∑

(2)

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT
In the circuit, kh is represented in two's complement form as kC . Using (2), we can get (3).

1

0

1 1

0 0

11 1

0 00

 [2 2]

[()2 2]

K

k k
k

K N
N n

k kN kn
k n

NK K
N n

k kN k kn
k kn

y C x

C b b

C b C b

−

=

− −

= =

−− −

= ==

=

= − +

= − +

∑

∑ ∑

∑ ∑∑

 (3)

Therefore, the inner-product is transformed to solve (4), which defines a distributed arithmetic

computation.
1

0

K

k kn
k

C b
−

=
∑ (4)

Because knb is the n -th bit in the binary representation of kx , it can only take on values of 0

and 1. This means that (4) has 2K possible results, which is a finite number. The values can be

pre-computed offline and stored in ROM as intermediate arithmetic operations and the memory

size is equal to 2K . The inner-product can then be computed by using repeated additions and

shifting operations based on (3). So, the hardware realization processes one bit at a time (1-BAAT)

and completing the entire operation requires 1N + cycles.

For a more efficient hardware realization, many improved technologies are proposed to reduce

the needed memory size and clock cycles. In order to reduce memory size, memory reduced
DA-based (MR-DA) methods were proposed [13, 16–18]. In these methods, kx is represented as:

1
[()]

2k k kx x x= − − (5)

kx− can be represented in two's-complement notation as:
1

0

2 2 1
N

N n
k kN kn

n

x b b
−

=

− = − + +∑ (6)

By substituting kx− into (6), (5) becomes (7).
1

0

1
[()2 ()2 1)]

2

N
N n

k kN kN kn kn
n

x b b b b
−

=

= − − + − −∑ (7)

For convenience, a new variable kna is defined as:

(), .

, .
kN kN

kn

kn kn

b b n N
a

b b n N

− − ==
− ≠

 (8)

Using this definition, we find that {1, 1}kna ∈ − . Therefore, (3) can be transformed as:

1

0

1

0 0

1 1

0 0 0

1
 { [2 1]}

2

1 1
 ()2 ()

2 2

K

k k
k

K N
n

k kn
k n

N K K
n

k kn k
n k k

y C x

C a

C a C

−

=
−

= =
− −

= = =

=

= −

= −

∑

∑ ∑

∑ ∑ ∑

 (9)

Thus, the intermediate arithmetic operations become:
1 1

0 0

 and
K K

k kn k
k k

C a C
− −

= =
∑ ∑ (10)

As {1, 1}kna ∈ − , the possible values of
1

0

1

2

K

k kn
k

C a
−

=
∑ are anti-symmetric. This means that the

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

intermediate arithmetic operations have 12K − possible values, which reduces the required

memory size by half.

To reduce the necessary clock cycles, several improved methods [14, 15] increase the memory

size by L times and partition each input into L sub-inputs. These methods can process L bits

at a time (L -BAAT) and the operation speed is increased by a factor of L . However, the

additional memory structures used by these methods consume more hardware resources than

traditional DA.

Therefore, the hardware realization of digital filters with DA requires memory structures and

memory size increases exponentially as the length of the filter order K increases. Additionally,

completing the entire operation requires 1N + cycles. Many improved methods have been

proposed to reduce the needed memory size and clock cycles. However, in these DA-based

methods, none can accomplish this goal efficiently, and it becomes a tradeoff between the

throughput and memory size.

III. Principle of the Proposed Parallel Arithmetic Operation

In DA and DA-based methods, the operations for different inputs are factorized together and

several intermediate arithmetic operations are selected to be pre-computed. These intermediate

arithmetic operations are analyzed in a bit-serial manner, which causes the problem that

inner-product is achieved in multiple clock cycles. Additionally, the number of intermediate

arithmetic operations increases exponentially, which causes memory size to increase

exponentially.

In this paper, we propose a novel parallel arithmetic operation for digital filters in which

coefficients are factorized to find basic operations. In the proposed method, multiple bits of input

data can be processed in parallel to improve throughput. The number of intermediate arithmetic

operations is also much less than that in DA, which significantly reduces hardware resource

consumption.

The proposed technique is based on the ISD representation presented in our previous work [19].

Using the ISD representation, we can prove that every constant can be represented as a sum of

{2 1, }m m Z± ∈ and their shifts as:

0

2 (2 1), , , {0,1}mp m
m m m

m

n a n Z p Z a
∞

=

= × × ± ∀ ∈ ∃ ∈ ∈∑ (11)

In a circuit, the bit width of every coefficient is finite. We use L to represent the bit width of

kC .
1

0

2 (2 1), , {0,1}km

L
p m

k km km km
m

C a p Z a
−

=

= × × ± ∈ ∈∑ (12)

Using (12), (3) can be transformed into (13).

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT
1

0

1 1

00

11

0 0

 2 (2 1)]

 [2 (2 1)]

, {0,1}, {0,1}

[km

km

K

k k
k

K L
p m

km k
mk

LK
p m

km k
k m

km km kn

y C x

a x

a x

p Z a b

−

=
− −

==
−−

= =

=

= × × ±

= × × ± ×

∈ ∈ ∈

∑

∑∑

∑∑

 (13)

Let 2 kmp
km kmc a= × . Because {0,1}kma ∈ , we can find {0,2 },q

kmc q Z∈ ∈ . Therefore, the

inner-product can be transformed as follows:
11

0 0

[(2 1)], {0,2 },
LK

m q
km k km

k m

y c x c q Z
−−

= =

= × ± × ∈ ∈∑∑ (14)

For the sake of representation efficiency, (14) is represented in matrix form as follows:

00 01 0(2 1) 0

10 11 1(2 1) 1

0 1 (1)

(1)0 (1)1 (1)(2 1) (2 1)

...

...
 ...

...

...

L

L

K

K K K L L

y

c c c d

c c c d
x x x

c c c d

−

−
−

− − − − −

=

 = × ×

XCD

 (15)

In (15), the elements in D are 2 1,m m Z± ∈ , which have 2L possible values and can be

achieved by one adder. Therefore, they can be regarded as intermediate arithmetic operations, and

achieved using the vector adders array as Figure 1 (a). {0,2 },q
kmc q Z∈ ∈ , and the exact value is

related to kC . They can be regarded as the own arithmetic operations in different productions,

and achieved using the binary tree adders array as Figure 1 (b). Thus, the inner-product can be

accomplished using a vector adders array and several binary tree adders arrays. Based on these

structures and pipeline design method, the throughput of digital filter can be improved.

Figure 1. Adders Array Structure in Proposed Method

In the proposed method, different bits of kx can be processed in parallel. Additionally, the

intermediate arithmetic operations 2 1m ± only have 2L possible results. The intermediate

arithmetic operations can be calculated efficiently using only addition and shifting operations.

Therefore, the proposed method eliminates the need for complex memory structures and

efficiently reduces hardware resource consumption. The whole operation needs up to 2 1LK −

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

additions, which means the proposed method can avoid exponentially increasing hardware

resource consumption. And in most cases, the matrix of C is sparse, so the necessary additions

can be further reduced.

IV. Performance Evaluation of the Proposed Approach

In this section, we evaluate the performance of proposed approach through two experiments: 1)

a simple finite impulse response (FIR) digital filter and 2) random filters with variant orders.

Experiment I is used to verify the performance of proposed method in improving throughput, and

Experiment II is to show the improvement of hardware resource consumption reduction when the

length of filter order increases.

A. Experiment I: A Common FIR Digital Filter

A common FIR digital filter with four orders is used as an example to demonstrate hardware

realization using DA and the proposed method. The parameters are: 4K = , 1 8N + = (7bits of
data and a 1-bit sign), 0 0.72h = , 1 0.30h = − , 2 0.95h = and 3 0.11h = . In this example, all filter

coefficients can be left-shifted by 8 bits, meaning 0 184C = , 1 76C = − , 2 243C = and 3 28C = .

The memory structure in the traditional DA method stores 2 16K = possible intermediate

arithmetic operations, as shown in Table I. The hardware realization is presented in Figure 2.

Table I Values in ROM for DA

Address
Input Code

Memory Contents
0nb 1nb 2nb 3nb

0x00 0 0 0 0 0

0x01 0 0 0 1 3 28C =

0x02 0 0 1 0 2 243C =

0x03 0 0 1 1 2 3 271C C+ =

0x04 0 1 0 0 1 76C = −

0x05 0 1 0 1 1 3 48C C+ = −

0x06 0 1 1 0 1 2 167C C+ =

0x07 0 1 1 1 1 2 3 195C C C+ + =

0x08 1 0 0 0 0 184C =

0x09 1 0 0 1 0 3 212C C+ =

0x0A 1 0 1 0 0 2 427C C+ =

0x0B 1 0 1 1 0 2 3 455C C C+ + =

0x0C 1 1 0 0 0 1 108C C+ =

0x0D 1 1 0 1 0 1 3 136C C C+ + =

0x0E 1 1 1 0 0 1 2 351C C C+ + =

0x0F 1 1 1 1 0 1 2 3 379C C C C+ + + =

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 2. Hardware realization of traditional DA

In MR-DA, the intermediate arithmetic operations have 12 8K − = possible values, as shown in

Table II. Its hardware realization is presented in Figure 3. In this realization, the memory size is

reduced by half, but the controlling and addressing units become more complex than those in

direct DA.

Table II Values in ROM for MR-DA

Address
Input Code

Memory Contents
0nb 1nb 2nb 3nb

0x00 0 0 0 0 0 1 2 3 379C C C C+ + + =

0x01 0 0 0 1 0 1 2 3 323C C C C+ + − =

0x02 0 0 1 0 0 1 2 3 107C C C C+ − + = −

0x03 0 0 1 1 0 1 2 3 163C C C C+ − − = −

0x04 0 1 0 0 0 1 2 3 531C C C C− + + =

0x05 0 1 0 1 0 1 2 3 475C C C C− + − =

0x06 0 1 1 0 0 1 2 3 45C C C C− − + =

0x07 0 1 1 1 0 1 2 3 11C C C C− − − = −

Figure 3. Hardware realization of MR-DA

The inner-product can also be calculated using the hardware realization of 8 -BAAT DA with

8 -times the memory, as shown in Figure 4.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 4. Hardware realization of 8-BAAT DA

In the proposed method, we need to find an efficient CD to simplify the circuit. Considering

the computational complexity in finding an optimal CD , we use a greedy strategy and select the

smallest number of intermediate operations first. We find that the set 1 1 2{2 1,2 1,2 1}− + + and

their shifts can represent all the coefficients, so we use it as C . We then select the D that uses

the smallest number of additions among all the possible results.

Thus, in this example, (15) is transformed into (16).

[]

3 6

6 2

0 1 2 3 8 0 1

2 3

2 2 0
1

2 2 0
3

2 2 2
5

2 2 0

y x x x x

 −
 − − = = × × − −

XCD (16)

Based on (16), the inner-product can be calculated as shown in Figure 5. We find that the

proposed method uses only 10 adders/subtractors to implement the digital filter.

Figure 5. Hardware realization of the proposed method

In order to compare the performance of the various methods, all the four structures were

written in a hardware description language and synthesized using the Synopsys Design Compiler

for ASIC implementation with the CMOS 90-nm library. The statistics running at 1 GHz are listed

in Table III, including necessary cells, operating area, bits processed at a time (BAAT), average

clock cycles (ACC) to get one inner-product result and throughput.

Table III Performance Comparison of Four Hardware Realizations for Experiment I

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Design Cells Area BAAT ACC Throughput

Direct DA 728 4001 1 8 4 Gbps

MR-DA 467 4120 1 8 4 Gbps

8-BAAT DA 755 6888 8 1 32 Gbps

Proposed 514 5544 8 1 32 Gbps

In Table III, we can see that the proposed method for realization performs excellently. It

requires the least cells among all the realizations except MR-DA. But both of Direct DA and

MR-DA can only process 1 bit of each input at a time with the lowest throughput. The 8-BAAT

DA and proposed realizations can circumvent the inherent bit-serial nature and process different
bits of kx in parallel. With pipeline structure, the average clock cycles to get one inner-product

result can be reduced to 1 and the throughput increases to 32 Gbps efficiently. Compared with

8-BAAT DA, the proposed realization needs less cells and smaller area. Therefore, the proposed

realization can improve the throughput of direct DA and MR-DA. In addition, the necessary cell is

less and area is smaller than those in 8-BAAT DA. In this experiment, compared to the 8-BAAT

DA, the proposed method reduces the necessary cells and area by approximately 32 and 20%,

respectively.

B. Experiment II: Random Filters with Variant Orders

For a more thorough analysis, the performance of proposed method is evaluated on random

filters. These filters perform 16-bit quantization with variant orders, which range from 1 to 255,

and we test 10 different random filters in each order. The average number of necessary additions is

plotted in Figure 6.

Figure 6. Average number of necessary additions for the proposed method

In Figure 6, we can find that the average number of necessary additions for the proposed

method increases linearly. It needs 4 more additions on average when filter order increases by one.

However, in the DA-based methods, memory size increases exponentially with variant order. With

increasing filter order length, the hardware structure becomes increasingly difficult to synthesize

because of the massive memory requirements. For example, when the length of the filter order is

equal to 32, the memory size in MR-DA is (32 1)2 2,147,483,648− = , which is impossible to realize

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

in circuitry. We only synthesize the realization with orders ranging from 1 to 14, which

demonstrates the performance of the proposed method. The base-10 logarithms of the average cell

numbers in different realizations are presented in Figure 7.

Figure 7. Base-10 logarithms of average cell numbers in different realizations

In Figure 7, one can see that the necessary cells of DA and DA-based realizations increased

rapidly. When the length of the filter order is greater than 10, the proposed method requires the

least cells among these hardware realizations and it increases linearly with the length of filter

order. Therefore, the proposed method can reduce the hardware consumption in the realization of

complex filters, and the reduction performance increases with filter length. This indicates that the

proposed method can successfully overcome the problem of exponentially increasing hardware

resource consumption with an increasing length of filter order.

V. Conclusion

We proposed a parallel arithmetic operation for the hardware realization of digital filters. In the

proposed method, filter coefficients are factorized to find basic operations, meaning the inherent

bit-serial nature of DA methods can be circumvented. Using these basic operations, the

inner-product can be computed in parallel to improve throughput. The number of necessary

additions increases linearly with the length of filter order, which allows us to avoid the problem of

exponentially increasing hardware resource consumption. In order to verify the performance of the

proposed method, the hardware realizations of different methods were evaluated through two

experiments. The experimental results demonstrated that the proposed method can accomplish

digital filtering in a single cycle on average and that its hardware resource consumption increases

linearly, which is more efficient than existing DA-based methods. Therefore, the proposed method

can overcome the drawbacks of existing DA and DA-based methods and is suitable for the

hardware realization of digital filters.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

REFERENCES

[1] A. Peled and B. Liu, “A new approach to the realization of nonrecursive digital filters,” IEEE Transactions on

Audio & Electroacoustics, vol. 21, no. 6, pp. 477–484, 1973.

[2] A. Peled and B. Liu, “A new hardware realization of digital filters,” IEEE Transactions on Acoustics Speech &

Signal Processing, vol. 22, no. 6, pp. 456–462, 1974.

[3] S. White, “Applications of digital signal processing to control systems,” in Proc. 8th Asilomar Conference on

Circuits, Systems, and Computers, 1974, pp. 278–284.

[4] S. Zohar, “A vlsi implementation of a correlator/digital-filter based on distributed arithmetic,” IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 1, pp. 156–160, 1989.

[5] S. G. Smith and S. A. White, “Hardware approaches to vector plane rotation,” in International Conference on

Acoustics, Speech, and Signal Processing, vol. 4, 1988, pp. 2128–2131.

[6] V. K. Sharma, K. K. Mahapatra, and U. C. Pati, “An efficient distributed arithmetic based vlsi architecture for

dct,” in International Conference on Devices and Communications, 2011, pp. 1–5.

[7] K. Xu, “Monolithically integrated si gate-controlled light-emitting device: science and properties,” Journal of

Optics, vol. 20, no. 2, 2018.

[8] B. Jalali and Y. Han, “Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical

considerations,” Journal of Lightwave Technology, vol. 21, no. 12, pp. 3085–3103, 2003.

[9] Y. H. Chen, T. Y. Chang, and C. Y. Li, “High throughput da-based dct with high accuracy error-compensated

adder tree,” IEEE Transactions on Very Large Scale Integration Systems, vol. 19, no. 4, pp. 709–714, 2012.

[10] P. K. Meher, “Hardware-efficient systolization of da-based calculation of finite digital convolution,” IEEE

Transactions on Circuits & Systems II Express Briefs, vol. 53, no. 8, pp. 707–711, 2006.

[11] Y. P. Sang and P. K. Meher, “Efficient fpga and asic realizations of a da-based reconfigurable fir digital filter,”

IEEE Transactions on Circuits & Systems II Express Briefs, vol. 61, no. 7, pp. 511–515, 2014.

[12] C. S. Vinitha and R. K. Sharma, “Memory-based vlsi architectures for digital filters: A survey,” in IEEE Uttar

Pradesh Section International Conference on Electrical, Computer and Electronics Engineering, 2017.

[13] S. A. White, “Applications of distributed arithmetic to digital signal processing: a tutorial review,” IEEE

ASSP Magazine, vol. 6, no. 3, pp. 4–19, July 1989.

[14] H. Schroder, “High word-rate digital filters with programmable table look-up,” IEEE Transactions on Circuits

and Systems, vol. 24, no. 5, pp. 277–279, 1977.

[15] C. Burrus, “Digital filter realization by distributed arithmetic,” in International Symposium on Circuits and

Systems, Munich, 1976.

[16] M. Buttner and H. W. Schuessler, “On structures for the implementation of the distributed arithmetic,” NTZ

Communication Journals, vol. 6, 1975.

[17] K. Kammeyer, “Digital filter realization in distributed arithmetic,” in Proc. European Conf. on Circuit Theory

and Design, 1976.

[18] K.-P. Yiu, “On sign bit assignment for a vector multiplier,” Proceedings of the IEEE, vol. 64, no. 3, pp. 372–

373, 1976.

[19] C. Fan, Y. Niu, G. Shi, F. Li, F. Qi, X. Xie, and D. Jiao, “An improved signed digit representation approach

for constant vector multiplication,” IEEE Transactions on Circuits & Systems II Express Briefs, vol. 63, no. 10, pp.

999–1003, 2016.

