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Abstract: Distributed Arithmetic (DA) is a classic technique for the hardware realization of 

digital filters. We present a novel parallel arithmetic operation to overcome two drawbacks in 

existing DA and DA-based methods: 1) the throughput is difficult to improve and 2) hardware 

resource consumption increases exponentially with the length of filter order. The fundamental 

difference between the proposed and existing methods is that the proposed method factors the 

filter coefficients to find several simple basic operations, which can circumvent the inherent 

bit-serial nature of DA methods and achieve the whole operation in one clock cycle. Additionally, 

the number of possible basic operations increases linearly with the length of filter order, which 

means we can relieve the exponentially increasing hardware resource consumption. The proposed 

method is evaluated through two experiments, and the results demonstrate that the proposed 

technique outperforms existing DA and DA-based methods in terms of throughput and resource 

consumption. 

 

Index Terms: Distributed Arithmetic, digital filter, convolution, hardware realization, VLSI. 

 

I. Introduction 

Digital filtering is a basic operation in digital signal processing. Distributed Arithmetic (DA) 

was proposed in the 1970s [1, 2] for the hardware realization design of digital filters to reduce the 

cost and power consumption [3–12]. With DA, the total gate count in digital filters can be reduced 

by as much as 80% [13]. In addition, the acceleration of deep neural networks recently attracts 

much attention, DA can also be an efficient method to achieve the convolution operation in 

hardware acceleration. 

The principle of DA is to factor inputs according to the binary representation, and the possible 

relevant operations are selected as intermediate arithmetic operations. In order to reduce hardware 

resource consumption, these operations are pre-computed offline and stored in memory structures. 

However, because of the inherent bit-serial nature of DA methods, the throughput is difficult to 
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improve and multiple clock cycles are needed to calculate the inner-product results. The memory 

requirements increase exponentially with the length of filter order, which results in the 

exponentially increasing of hardware resource consumption. In a complex digital filter, the 

memory structure consumes lots of hardware resources. 

Many approaches have been proposed to overcome these drawbacks [13–18]. In order to 

improve the throughput, [14] and [15] attempted to partition the filter input into several sub-inputs 

and process them using several memory structures in parallel. [13] and [16–18] describe methods 

that can reduce memory size by using ingenious representations. Several intermediate arithmetic 

operations are combined and the intermediate results which stored in ROM are anti-symmetric. 

The memory size in these methods can be reduced by as much as 50%. However, none of these 

techniques can avoid these drawbacks. 

In our previous work [19], we proposed an improved signed digit (ISD) representation to 

eliminate computational redundancy among different multipliers. In order to overcome the 

drawbacks of DA, the ISD representation is adopted and applied to calculate the product of several 

inputs and filter coefficients in parallel. In this paper, we present a parallel arithmetic operation for 

the hardware realization of digital filters. The fundamental difference between the proposed 

method and existing methods is that the proposed method factors filter coefficients to find basic 

operations. This means that the inherent bit-serial nature of DA and DA-based techniques can be 

circumvented to avoid time delay. The intermediate arithmetic operations after factorization 

increase linearly with the length of filter order, which means we can avoid exponentially 

increasing memory size and reduce hardware resource consumption. 

The remainder of this paper is organized as follows. In Section II, the principles of DA and 

DA-based methods are reviewed. The mathematical model for our proposed method is described 

in Section III. Section IV presents two experiments to verify the proposed method. Our work is 

concluded in Section V.  

II. Review of Distributed Arithmetic 

DA is widely used in the hardware realization of digital filters. In DA, all possible intermediate 

arithmetic operations are stored in a memory structure. These stored values can be used to 

calculate the final results by using repeated additions and shifting operations. In the hardware 

realization of digital filters, there are no multiplications, but several memory structures are 

required. 

A digital filter of length K  is used to calculate the inner-product of an impulse response 
vector kh ( 0,1,..., 1k K= − ) and an input vector n ki − ( 0,1,..., 1k K= − ). It can be represented as: 

1

0
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=∑  
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For simplification, the time index n  of n ki −  is removed and n ki −  is represented by its two's 

complement binary number kx , as shown in (2). kx  consists of N  bits of data and a 1-bit 

sign.  
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In the circuit, kh  is represented in two's complement form as kC . Using (2), we can get (3). 
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Therefore, the inner-product is transformed to solve (4), which defines a distributed arithmetic 

computation. 
1

0

K

k kn
k

C b
−

=
∑  (4) 

Because knb  is the n -th bit in the binary representation of kx , it can only take on values of 0 

and 1. This means that (4) has 2K  possible results, which is a finite number. The values can be 

pre-computed offline and stored in ROM as intermediate arithmetic operations and the memory 

size is equal to 2K . The inner-product can then be computed by using repeated additions and 

shifting operations based on (3). So, the hardware realization processes one bit at a time (1-BAAT) 

and completing the entire operation requires 1N +  cycles. 

For a more efficient hardware realization, many improved technologies are proposed to reduce 

the needed memory size and clock cycles. In order to reduce memory size, memory reduced 
DA-based (MR-DA) methods were proposed [13, 16–18]. In these methods, kx  is represented as: 

1
[ ( )]

2k k kx x x= − −  (5) 

kx−  can be represented in two's-complement notation as: 
1
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By substituting kx−  into (6), (5) becomes (7). 
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For convenience, a new variable kna  is defined as: 
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Using this definition, we find that {1, 1}kna ∈ − . Therefore, (3) can be transformed as: 
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Thus, the intermediate arithmetic operations become: 
1 1

0 0

 and 
K K
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As {1, 1}kna ∈ − , the possible values of 
1

0
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∑  are anti-symmetric. This means that the 
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intermediate arithmetic operations have 12K −  possible values, which reduces the required 

memory size by half. 

To reduce the necessary clock cycles, several improved methods [14, 15] increase the memory 

size by L  times and partition each input into L  sub-inputs. These methods can process L  bits 

at a time (L -BAAT) and the operation speed is increased by a factor of L . However, the 

additional memory structures used by these methods consume more hardware resources than 

traditional DA. 

Therefore, the hardware realization of digital filters with DA requires memory structures and 

memory size increases exponentially as the length of the filter order K  increases. Additionally, 

completing the entire operation requires 1N +  cycles. Many improved methods have been 

proposed to reduce the needed memory size and clock cycles. However, in these DA-based 

methods, none can accomplish this goal efficiently, and it becomes a tradeoff between the 

throughput and memory size. 

III. Principle of the Proposed Parallel Arithmetic Operation 

In DA and DA-based methods, the operations for different inputs are factorized together and 

several intermediate arithmetic operations are selected to be pre-computed. These intermediate 

arithmetic operations are analyzed in a bit-serial manner, which causes the problem that 

inner-product is achieved in multiple clock cycles. Additionally, the number of intermediate 

arithmetic operations increases exponentially, which causes memory size to increase 

exponentially.  

In this paper, we propose a novel parallel arithmetic operation for digital filters in which 

coefficients are factorized to find basic operations. In the proposed method, multiple bits of input 

data can be processed in parallel to improve throughput. The number of intermediate arithmetic 

operations is also much less than that in DA, which significantly reduces hardware resource 

consumption.  

The proposed technique is based on the ISD representation presented in our previous work [19]. 

Using the ISD representation, we can prove that every constant can be represented as a sum of 

{2 1, }m m Z± ∈  and their shifts as: 

0

2 (2 1), , , {0,1}mp m
m m m

m

n a n Z p Z a
∞

=

= × × ± ∀ ∈ ∃ ∈ ∈∑  (11) 

In a circuit, the bit width of every coefficient is finite. We use L  to represent the bit width of 

kC . 
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Using (12), (3) can be transformed into (13). 
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Let 2 kmp
km kmc a= × . Because {0,1}kma ∈ , we can find {0,2 },q

kmc q Z∈ ∈ . Therefore, the 

inner-product can be transformed as follows: 
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For the sake of representation efficiency, (14) is represented in matrix form as follows: 
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In (15), the elements in D  are 2 1,m m Z± ∈ , which have 2L  possible values and can be 

achieved by one adder. Therefore, they can be regarded as intermediate arithmetic operations, and 

achieved using the vector adders array as Figure 1 (a). {0,2 },q
kmc q Z∈ ∈ , and the exact value is 

related to kC . They can be regarded as the own arithmetic operations in different productions, 

and achieved using the binary tree adders array as Figure 1 (b). Thus, the inner-product can be 

accomplished using a vector adders array and several binary tree adders arrays. Based on these 

structures and pipeline design method, the throughput of digital filter can be improved. 

 

 
Figure 1. Adders Array Structure in Proposed Method 

 

In the proposed method, different bits of kx  can be processed in parallel. Additionally, the 

intermediate arithmetic operations 2 1m ±  only have 2L  possible results. The intermediate 

arithmetic operations can be calculated efficiently using only addition and shifting operations. 

Therefore, the proposed method eliminates the need for complex memory structures and 

efficiently reduces hardware resource consumption. The whole operation needs up to 2 1LK −  
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additions, which means the proposed method can avoid exponentially increasing hardware 

resource consumption. And in most cases, the matrix of C  is sparse, so the necessary additions 

can be further reduced. 

IV. Performance Evaluation of the Proposed Approach 

In this section, we evaluate the performance of proposed approach through two experiments: 1) 

a simple finite impulse response (FIR) digital filter and 2) random filters with variant orders. 

Experiment I is used to verify the performance of proposed method in improving throughput, and 

Experiment II is to show the improvement of hardware resource consumption reduction when the 

length of filter order increases. 

A. Experiment I: A Common FIR Digital Filter 

A common FIR digital filter with four orders is used as an example to demonstrate hardware 

realization using DA and the proposed method. The parameters are: 4K = , 1 8N + =  (7bits of 
data and a 1-bit sign), 0 0.72h = , 1 0.30h = − , 2 0.95h =  and 3 0.11h = . In this example, all filter 

coefficients can be left-shifted by 8 bits, meaning 0 184C = , 1 76C = − , 2 243C =  and 3 28C = . 

The memory structure in the traditional DA method stores 2 16K =  possible intermediate 

arithmetic operations, as shown in Table I. The hardware realization is presented in Figure 2. 

 

Table I Values in ROM for DA 

Address 
Input Code 

Memory Contents 
0nb  1nb  2nb  3nb  

0x00 0 0 0 0 0  

0x01 0 0 0 1 3 28C =  

0x02 0 0 1 0 2 243C =  

0x03 0 0 1 1 2 3 271C C+ =  

0x04 0 1 0 0 1 76C = −  

0x05 0 1 0 1 1 3 48C C+ = −  

0x06 0 1 1 0 1 2 167C C+ =  

0x07 0 1 1 1 1 2 3 195C C C+ + =  

0x08 1 0 0 0 0 184C =  

0x09 1 0 0 1 0 3 212C C+ =  

0x0A 1 0 1 0 0 2 427C C+ =  

0x0B 1 0 1 1 0 2 3 455C C C+ + =  

0x0C 1 1 0 0 0 1 108C C+ =  

0x0D 1 1 0 1 0 1 3 136C C C+ + =  

0x0E 1 1 1 0 0 1 2 351C C C+ + =  

0x0F 1 1 1 1 0 1 2 3 379C C C C+ + + =  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
Figure 2. Hardware realization of traditional DA 

 

In MR-DA, the intermediate arithmetic operations have 12 8K − =  possible values, as shown in 

Table II. Its hardware realization is presented in Figure 3. In this realization, the memory size is 

reduced by half, but the controlling and addressing units become more complex than those in 

direct DA. 

 

Table II Values in ROM for MR-DA 

Address 
Input Code 

Memory Contents 
0nb  1nb  2nb  3nb  

0x00 0 0 0 0 0 1 2 3 379C C C C+ + + =  

0x01 0 0 0 1 0 1 2 3 323C C C C+ + − =  

0x02 0 0 1 0 0 1 2 3 107C C C C+ − + = −  

0x03 0 0 1 1 0 1 2 3 163C C C C+ − − = −  

0x04 0 1 0 0 0 1 2 3 531C C C C− + + =  

0x05 0 1 0 1 0 1 2 3 475C C C C− + − =  

0x06 0 1 1 0 0 1 2 3 45C C C C− − + =  

0x07 0 1 1 1 0 1 2 3 11C C C C− − − = −  

 

 
Figure 3. Hardware realization of MR-DA 

 

The inner-product can also be calculated using the hardware realization of 8 -BAAT DA with 

8 -times the memory, as shown in Figure 4. 
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Figure 4. Hardware realization of 8-BAAT DA 

 

In the proposed method, we need to find an efficient CD  to simplify the circuit. Considering 

the computational complexity in finding an optimal CD , we use a greedy strategy and select the 

smallest number of intermediate operations first. We find that the set 1 1 2{2 1,2 1,2 1}− + +  and 

their shifts can represent all the coefficients, so we use it as C . We then select the D  that uses 

the smallest number of additions among all the possible results. 

Thus, in this example, (15) is transformed into (16). 

[ ]

3 6

6 2

0 1 2 3 8 0 1

2 3

2 2 0
1

2 2 0
3

2 2 2
5

2 2 0

y x x x x

 −
  − −   = = × ×   − −
    

  

XCD  (16) 

Based on (16), the inner-product can be calculated as shown in Figure 5. We find that the 

proposed method uses only 10 adders/subtractors to implement the digital filter. 

 

 
Figure 5. Hardware realization of the proposed method 

 

In order to compare the performance of the various methods, all the four structures were 

written in a hardware description language and synthesized using the Synopsys Design Compiler 

for ASIC implementation with the CMOS 90-nm library. The statistics running at 1 GHz are listed 

in Table III, including necessary cells, operating area, bits processed at a time (BAAT), average 

clock cycles (ACC) to get one inner-product result and throughput. 

 

Table III Performance Comparison of Four Hardware Realizations for Experiment I 
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Design Cells Area BAAT ACC Throughput 

Direct DA 728 4001 1 8 4 Gbps 

MR-DA 467 4120 1 8 4 Gbps 

8-BAAT DA 755 6888 8 1 32 Gbps 

Proposed 514 5544 8 1 32 Gbps 

 

In Table III, we can see that the proposed method for realization performs excellently. It 

requires the least cells among all the realizations except MR-DA. But both of Direct DA and 

MR-DA can only process 1 bit of each input at a time with the lowest throughput. The 8-BAAT 

DA and proposed realizations can circumvent the inherent bit-serial nature and process different 
bits of kx  in parallel. With pipeline structure, the average clock cycles to get one inner-product 

result can be reduced to 1 and the throughput increases to 32 Gbps efficiently. Compared with 

8-BAAT DA, the proposed realization needs less cells and smaller area. Therefore, the proposed 

realization can improve the throughput of direct DA and MR-DA. In addition, the necessary cell is 

less and area is smaller than those in 8-BAAT DA. In this experiment, compared to the 8-BAAT 

DA, the proposed method reduces the necessary cells and area by approximately 32 and 20%, 

respectively. 

B. Experiment II: Random Filters with Variant Orders 

For a more thorough analysis, the performance of proposed method is evaluated on random 

filters. These filters perform 16-bit quantization with variant orders, which range from 1 to 255, 

and we test 10 different random filters in each order. The average number of necessary additions is 

plotted in Figure 6. 

 

 

Figure 6. Average number of necessary additions for the proposed method 

 

In Figure 6, we can find that the average number of necessary additions for the proposed 

method increases linearly. It needs 4 more additions on average when filter order increases by one. 

However, in the DA-based methods, memory size increases exponentially with variant order. With 

increasing filter order length, the hardware structure becomes increasingly difficult to synthesize 

because of the massive memory requirements. For example, when the length of the filter order is 

equal to 32, the memory size in MR-DA is (32 1)2 2,147,483,648− = , which is impossible to realize 
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in circuitry. We only synthesize the realization with orders ranging from 1 to 14, which 

demonstrates the performance of the proposed method. The base-10 logarithms of the average cell 

numbers in different realizations are presented in Figure 7. 

 

 

Figure 7. Base-10 logarithms of average cell numbers in different realizations 

 

In Figure 7, one can see that the necessary cells of DA and DA-based realizations increased 

rapidly. When the length of the filter order is greater than 10, the proposed method requires the 

least cells among these hardware realizations and it increases linearly with the length of filter 

order. Therefore, the proposed method can reduce the hardware consumption in the realization of 

complex filters, and the reduction performance increases with filter length. This indicates that the 

proposed method can successfully overcome the problem of exponentially increasing hardware 

resource consumption with an increasing length of filter order. 

V. Conclusion 

We proposed a parallel arithmetic operation for the hardware realization of digital filters. In the 

proposed method, filter coefficients are factorized to find basic operations, meaning the inherent 

bit-serial nature of DA methods can be circumvented. Using these basic operations, the 

inner-product can be computed in parallel to improve throughput. The number of necessary 

additions increases linearly with the length of filter order, which allows us to avoid the problem of 

exponentially increasing hardware resource consumption. In order to verify the performance of the 

proposed method, the hardware realizations of different methods were evaluated through two 

experiments. The experimental results demonstrated that the proposed method can accomplish 

digital filtering in a single cycle on average and that its hardware resource consumption increases 

linearly, which is more efficient than existing DA-based methods. Therefore, the proposed method 

can overcome the drawbacks of existing DA and DA-based methods and is suitable for the 

hardware realization of digital filters. 
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