
  

  

Abstract— Accurate staging of lymph nodes provides crucial 
diagnostic information for breast cancer patients, where 
segmentation is of great importance by localizing and visualizing 
the breast tumor of interest. Nevertheless, current segmentation 
methods perform average when facing large span of tumor sizes, 
degraded image quality, blurred tumor boundaries, and 
resulting noise during manual annotation. Therefore, we 
develop a Multi-scale RepVGG-based Segmentation Network 
(MPSegNet) to segment breast tumor from MR images. In 
particular, we construct a consistent learning framework for the 
MPSegNet to alleviate the impact of noisy labels upon 
segmentation results. The rationale is that different views 
covering the same breast tumors are supposed to generate 
identical segmentation predictions. Then, we predict SLN 
metastasis given segmented breast tumors, where we evaluate 
the relationships between the predictive performance and tumor 
segmentations under different consistencies. The results show 
the superiority of our method over other state-of-the-art 
methods. A high consistency among multiple views can boost the 
segmentation performance during consistent learning. However, 
the optimal segmentation does not produce the best SLN 
metastatic prediction results, implying that the dependence of 
classification upon segmentation needs to be elaborately 
investigated further.  
 

Clinical Relevance— This study facilitates more accurate 
segmentation of breast tumors with consistent learning, and 
provides an initial analysis between tumor segmentation and 
subsequent prediction of SLN metastasis, which has potential 
significance for the precise medical care of breast cancer patients. 

I. INTRODUCTION 

Breast cancer is the most common malignant tumor 
threatening women all over the world [1]. Accurate staging of 
lymph nodes provides important diagnostic and prognostic 
information in the management of patients with breast cancer 
[2]. Sentinel lymph node (SLN) represents the first affected 
drainage site in the event of tumor spread, which is clinically 
determined by biopsy. However, this invasive procedure not 
only has complications, such as pain, paresthesia and arm 
swelling, but also suffers from underestimation if not 
covering the tissue with metastatic tumor cells. Radiomics 
with noninvasive magnetic resonance imaging (MRI) 
facilitates the comprehensive analysis of breast tumors. In 
particular, various radiomic signatures have then been derived 
to predict breast cancer SLN metastasis in MRI [3-6], 
including T1-weighted imaging, T2-weighted imaging, 
diffusion-weighted imaging (DWI) and dynamic contrast-
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enhanced MRI. However, radiomics generally requires a 
complicated procedure consisting of tumor segmentation, 
feature extraction, feature selection and prediction model 
construction. Of note, segmentation can help localize and 
visualize the breast tumor of interest, which is essential for 
precise diagnosis and subsequent treatment. 

Over the past decade, state-of-the-art deep learning (DL) 
models such as fully convolutional network (FCN) [7], 
encoder-decoder structure [8], attention-based network [9] 
have been widely used in medical image segmentation. 
Nevertheless, accurate segmentation of breast tumors from 
MRI remains challenging due to large span of tumor sizes, 
degraded image quality (e.g. motion artifacts), blurred tumor 
boundaries, and resulting noise during manual annotation. To 
cope with these challenges, modified DL models such as 
cascaded multi-scale encoder-decoder [10] and atrous spatial 
pyramid pooling (ASPP) [11] were performed to improve the 
segmentation for different sizes of tumors. Also, active 
contour models were integrated into DL models to focus on 
tumor boundary segmentation [12].  

Despite showing promising performance, the above DL 
methods on one hand require complicated network 
architectures and thus consume many computational 
resources. Therefore, we propose a consistent learning-based 
model termed as Multi-scale RepVGG-based Segmentation 
Network (MPSegNet) to segment breast tumor from MR 
images. The conventional convolution in our MPSegNet is 
replaced by a lightweight RepVGG block [13], which 
prevents overfitting and improves the performance of the DL 
network. A convolutional block attention module (CBAM) 
[14] is inserted between two adjacent RepVGG blocks to 
highlight the salient features. On the other hand, it is difficult 
for DL models to eliminate the noise included in the human 
annotated labels. Shi et al. [15] have tried to distill 
supervision information from both pixel and image levels to 
solve low-quality labeling issue. Inspired by this study, we 
construct a consistent learning framework based on the 
developed MPSegNet to alleviate the impact of noisy labels 
upon segmentation results. The rationale is that different 
views covering the same breast tumors are supposed to 
generate identical segmentation predictions. Finally, we 
perform the prediction of SLN metastasis given the 
segmented breast tumors, where the relationships between the 
predictive performance and segmentations under different 
consistencies were well investigated.
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Figure 1. Overview of the proposed MPSegNet model consisting of an encoder, a decoder and a multi-scale fusion (MSF) module. 

 

II. METHODS 

A. Segmentation Model 
As shown in Fig. 1, the proposed MPSegNet consists of an 

encoder, a decoder and a multi-scale fusion (MSF) module. 
The encoder has 22 RepVGG blocks that are grouped into 1, 
2, 4, 14 and 1 corresponding 5 stages of feature abstraction. 
Each block encompasses two parallel convolutions with 3×3 
and 1×1 kernel sizes, respectively, and one identity mapping. 
Note that the first block in each stage omits the identity 
mapping. The CBAM is inserted between two adjacent 
RepVGG blocks to improve the feature representation. The 
decoder has four upsampling and fusion steps. Each step 
upsamples the feature maps and concatenates them with the 
skip-connected feature maps from the encoder, followed by 
two 3×3 convolutions and ReLU activation. In this way, four 
fused feature maps denoted as D1, D2, D3 and D4 are 
sequentially generated. The MSF module generates four side 
output probability maps given D1-D4 by applying a 3×3 
convolution and ReLU mapping. Then, we upsample these 
probability maps by different rates (8, 4, 2 and 1), and then 
concatenate them together. After performing 1×1 convolution 
and sigmoid activation, we finally obtain the output 
segmentation probability map with the same size as the input 
image. 

B. Consistent Learning 
We also perform consistent learning on our MPSegNet 

model to alleviate the inaccurate segmentation caused by noisy 
human annotations (labels). As shown in Fig, 2, the consistent 
learning framework includes two modules: a teacher network 
and a student network. Considering that breast tumors occupy 
only a small portion of an MR image, we first crop one central 
view and multiple adjacent views from the MR image 
containing entire tumor regions. When feeding the center view 
into the teacher network, the prediction should be identical 
with the predictions obtained from the student network by 
inputting adjacent views. Thus, the predictions of the student 
network can be used as an extra supervision to drive the 
teacher network to output consistent segmentation free of 
noise. 

Specifically, one center view 𝑋  and 8 adjacent views 𝑋ଵ, 𝑋ଶ … 𝑋଼ of size of 352×352 are generated from one MRI 
slice, where the latter are positioned top, bottom, left, right, 
upper left, lower left, upper right, lower right, and lower right, 
respectively, 10 pixels away from the center. In each batch, the 
teacher and student networks output the predictions 𝑃  and 𝑃ଵ, 𝑃ଶ … 𝑃  given views X and 𝑋ଵ, 𝑋ଶ … 𝑋଼, respectively. Then 
we take the average over 𝑃ଵ, 𝑃ଶ … 𝑃  to get the pseudo label 𝑃ത, 
whose entropy 𝛽  was used to evaluate the uncertainty and 
determine the probability of correct pixel.  
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Figure 2. Consistent learning framework for our model, where X is the center view of slice, and X1-X8 are the adjacent views around the center view. 
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Figure 3. Prediction model for SLN Metastasis of breast cancer patients, which takes the MPSegNet encoder as the backbone. 

 

 𝛽 = 𝑬[−𝑃ത ∙ log𝑃ത] (1)

where 𝛽 represents the uncertainty estimate of each pixel, and 
E[] the expectation operator. Note that consistent predictions 
among adjacent views output a low uncertainty, while 
inconsistent predictions are likely to have a high uncertainty.  

Finally, we optimize the teacher network by combining the 
BCE loss and mean squared error (MSE) loss: 

 ℒ௧௢௧௔௟ = 𝛼 ∙ ℒ஻஼ா + (1 − 𝛼) ∙ ℒெௌா (2)

where ℒ஻஼ா  is the BCE loss between the ground truth label and 
the prediction 𝑃  of the teacher network, while ℒெௌா  is the 
MSE between the prediction P and the pseudo label 𝑃ത of the 
student network. The consistency coefficient 𝛼 = 𝑒ିఉ controls 
the balance between two losses. High uncertainty has a small 𝛼 (tending to zero) that drives the model to focus on the MSE 
constraint between two predictions P and 𝑃ത. In contrary, low 
uncertainty has a large 𝛼 (tending to one), meaning that the 
model will focus on the BCE constraint from the original label.  

The teacher network parameterized by 𝜃 can be updated by ℒ௧௢௧௔௟ in Eq. (2). The student network parameterized by �̅� is 
optimized by the exponential moving average (EMA) of 𝜃 as �̅� = 𝛾�̅� + (1 − 𝛾)𝜃, where 𝛾 is a smoothing coefficient. 

C. Prediction of SLN Metastasis 
Given segmented breast tumors, we perform the binary 

classification between breast cancer patients with and without 
SLN metastasis. We aim to investigate the relationships 
between the predictive performance and segmentations under 
different consistencies. As shown in Fig. 3, this classification 
model shares the same backbone as the MPSegNet encoder. 
We also use the parameters in segmentation as the pre-training 
of the classification model, because there are similar features 
between two tasks more or less. The backbone is followed by 
max-pooling and a fully connected layer. We feed segmented 
breast tumors into the classification model to generate the 
metastatic prediction results. Of note, each segmentation is 
obtained by averaging the prediction over all 9 views (one 
center view and 8 adjacent views). Thus, the impact of 
segmentation under different thresholds or consistencies on 
the prediction of SLN metastasis can be fully investigated.  

D. Implementation 
All models are coded using pytorch 1.8.0 with python 3.7 

on a server with one GTX 3060 GPU. For tumor segmentation, 
all images are resized into 288×288. The batch size and 
maximum training epoch are set as 2 and 150, respectively. 
The initial smoothing coefficient γ is 0.99 and is updated by γ 
= min((1-1/(epoch+1)), γ) For SLN metastasis prediction, all 
tumor images are resized into 48×48. The batch size and 
maximum training epoch are set as 4 and 50, respectively. We 

use AdamW optimize in both tasks, with initial learning rates 
of 3×10-4 and 1×10-3 for tumor segmentation and SLN 
metastasis prediction, respectively. The cosine annealing 
strategy is employed to adjust the learning rate with the 
minimum learning rate and half cycle being 1×10-8 and 150/50 
(segmentation/prediction), respectively.  

III. EXPERIMENTAL RESULTS 

A.  Dataset 
We enrolled 205 breast cancer patients in this study, 

including 81 and 124 with and without SLN metastasis, 
respectively. All patients underwent MRI examination by a 3.0 
T system (Signa HDxt; GE Medical Systems) and the post-
contrast sequences were acquired after the injection of 0.2 
mmol/kg body weight of gadolinium-DTPA at a rate of 2.0 
mL/s followed by 20 mL saline solution. We manual annotated 
205 post-contrast MRIs of breast tumors (3426 slices) using 
the Medical Imaging Interaction Toolkit (v2015.5.0). Then, 
we divided the all the slices at a ratio of ~8:1:1 into a training 
set (n=157, 2722 slices), a validation set (n=25, 375 slices) and 
a testing set (n=23, 375 slices), which are used for the training, 
validation and testing of our developed model, respectively. 

B. Comparison with State-of-the-Arts 
We compared our model to state-of-the-art segmentation 

methods, including UNet [10], FCN8s [7], AUNet [11] and 
ResUNet [12]. As shown in Table 1, our MPSegNet achieved 
an average Dice coefficient of 0.8004, better than all the 
comparative methods. In particular, we improved the Dice 
coefficient by 0.0614, 0.0635, 0.0425 and 0.0240 compared to 
UNet, FCN8s, AUNet and ResUNet, respectively. In addition, 
our MPSegNet has the highest sensitivity of 93.91%, 
indicating the advantage of this model in addressing under-
segmentation.  

TABLE I.  PERFORMANCE COMPARISON BETWEEN OUR MODEL AND 
PREVIOUS MODELS IN INDEPENDENT TESTING SET 

Method Dice Sensitivity (%) Specificity (%)
UNet 0.7422 84.90 99.79 

FCN8s 0.7401 82.01 99.80 
AUNet 0.7611 87.93 99.79 

ResUNet 0.7796 85.88 99.83 
MPSegNet  0.8004 93.91 99.77 

C. Evaluation of Consistent Learning 
Table 2 gives the results of our model after performing 

consistent learning. At low thresholds (0.1-0.4), our model 
tends to over-segment breast tumors of interest as indicated by 
high sensitivities  (94.77-97.15%) and low specificities (99.75-
99.77%). In contrary, high thresholds (0.6-0.9) lead to under-
segmentation of our model, manifesting as decreased 
sensitivities (87.45-92.77%) and increased specificities 
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(99.78-99.80%). The intermediate threshold of 0.5 
corresponds to the result of MPSegNet in Table 1. Of note, the 
highest Dice coefficient of 0.8213 is obtained when the 
threshold equals 0.8, a relatively high consistency among 
different views. This suggests that the consistent and slight 
under-segmentation is beneficial to overall segmentation 
performance for breast tumors. 

TABLE II.  SEGMENTATION PERFORMANCE UNDER DIFFERENT 
CONSISTENT THRESHOLDS IN INDEPENDENT TESTING SET 

Threshold Dice Sensitivity (%) Specificity (%)
0.1 0.7517 97.15 99.75 
0.2 0.7717 96.30 99.76 
0.3 0.7845 95.62 99.76 
0.4 0.7927 94.77 99.77 
0.5 0.8004 93.91 99.77 
0.6 0.8089 92.77 99.79 
0.7 0.8173 91.53 99.78 
0.8 0.8213 90.23 99.79 
0.9 0.8206 87.45 99.80 

D. Prediction of SLN Metastasis 
The predictive results for SLN metastasis under different 

consistent thresholds are shown in Table 3. It is unexpected 
that the highest Dice coefficient of 0.8213 (at 0.8 threshold) 
generates only suboptimal predictive performance with the 
area under the curve (AUC) and accuracy of 0.6920 and 
73.91%, respectively. The optimal predictive performance is 
obtained when the threshold equals 0.3-0.4, achieving an AUC 
and accuracy of 0.7321-0.7634 and 73.21-78.26%, 
respectively. We notice that corresponding Dice coefficients 
are only 0.7845-0.7927, i.e. the interval of over-segmentation. 
Overall, the optimal segmentation may not be directly related 
to the accurate prediction of SLN metastasis, which is 
noteworthy in future breast cancer diagnosis. 

TABLE III.  PREDICTION PERFORMANCE FOR SLN METASTASIS UNDER 
DIFFERENT SEGMENTATIONS BY DIFFERENT CONSISTENT THRESHOLDS.  

Threshold Dice AUC Accuracy 
0.1 0.7517 0.6380 60.87 
0.2 0.7717 0.6294 65.22 
0.3 0.7845 0.7634 78.26 
0.4 0.7927 0.7321 73.21 
0.5 0.8004 0.6607 69.57 
0.6 0.8089 0.5893 65.22 
0.7 0.8173 0.6607 69.57 
0.8 0.8213 0.6920 73.91 
0.9 0.8206 0.5893 65.92 

IV. CONCLUSION 
We have developed a consistent learning-based breast 

tumor segmentation model named MPSegNet and evaluated 
its application in SLN metastasis prediction. First, we 
proposed a new architecture based on RepVGG and CBAM 
that can learn the multi-scale features of breast tumors. Then, 
we used a consistent learning framework to solve the 
interference of noise labels on the model to obtain robust 
segmentation results. Finally, we evaluated the MPSegNet for 
predicting SLN metastasis under different consistent 
thresholds. The results showed the superiority of our method 
over other state-of-the-art methods. A high consistency among 
multiple views can boost the segmentation performance of our 
MPSegNet model during consistent learning. However, the 
optimal segmentation does not produce the best SLN 

metastatic prediction results, which implies that the 
dependence of classification upon segmentation needs to be 
elaborately investigated further. Overall, this study facilitates 
more accurate segmentation of breast tumors and provides an 
initial analysis between tumor segmentation and prediction of 
SLN metastasis, which has potential significance for the 
precise medical care of breast cancer patients. 
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