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Abstract—X-ray luminescence computed tomography (XLCT) 
is an emerging molecular imaging technique for biological 
application. However, it is still a challenge to get a stable and 
accurate solution of the reconstruction of XLCT. This paper 
presents a regularization parameter selection strategy based on 
incomplete variables frame for XLCT. A residual information, 
which is derived from Karush-Kuhn-Tucker (KKT) equivalent 
condition, is employed to determine the regularization 
parameter. This residual contains the relevant information 
about the solution norm and gradient norm, which improved the 
recovered results. Simulation and phantom experiments are 
designed to test the performance of the algorithm. 
 

Clinical Relevance— The results have not yet been used in 
clinical relevance currently, we believed that this strategy will 
facilitate the development of the preclinical applications in FMT. 

I. INTRODUCTION 

X-ray luminescence computed tomography (XLCT) is a 
novel molecular imaging tool proposed in recent years [1-4]. 
It has the potential to trace specific molecular. In this imaging 
process, X-ray excites the phosphor nanoparticle (such as Lu, 
Eu, Ce, Pr, Nd, Sr) to produce visible or near infrared (NIR) 
luminescence light signals, which can be measured by charge 
coupled device (CCD) [5]. With a suitable mathematical 
model, one can reconstruct the spatial distribution of the 
phosphor nanoparticle from the measurement [3-5]. Compared 
to the regular optical molecular tomography, the main 
advantages of XLCT are the increased excitation depth in 
tissue and the elimination of tissue auto-fluorescence. 

The narrow beam X-ray excitation technology known as 
XLCT is proposed by Xing et. al. [6]. To reduce the data 
acquisition time, a limited angle X-ray luminescence 
tomography reconstruction is carried out from limited-angles 
in narrow beam XLCT [7]. Chen et. al. developed a cone beam 
X-ray luminescence computed tomography (CB-XLCT) 
imaging system, which decreased the data acquisition time 
greatly by using a cone beam X-ray illumination [4]. 
Furthermore, Liu et. al. reconstructed the phosphor 
nanoparticle with single-view data by CB-XLCT imaging 
system, which does not need to rotate the imaged object to 
obtain multiple-view data [8]. Similar to FMT and BLT, the 
reconstruction of XLCT is an ill-posed problem [9]. In our 
previous work, a three-term conjugate gradient (TTCG) 
algorithm is proposed to seek for the effective information in 
each direction based on the incomplete variable truncated 
conjugate gradient (IVTCG) algorithm [10]. It improves the 
convergence speed of the algorithm and can still achieve the 
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reconstruction accuracy of IVTCG algorithm. However, the 
regularization parameter is still based on experience settings. 
For Tikhonov regularization, the L-curve method is commonly 
used for automatic selection of the regularization parameter 
[11]. It has been applied to optical tomography [12, 13]. 
However, it would yield an overly-smoothed solution in 
diffusion optical tomography [13]. As an alternative to L-
curve, the U-curve method has been developed and studied in 
fluorescence molecular tomography (FMT) [14, 15]. 
Furthermore, M. Chen et al have made comparative studies on 
L-curve and U-curve methods for dynamic fluorescence 
molecular tomography (DFMT) [16].  

In this work, we developed an adaptive regularization 
strategy based on KKT equivalent condition residual (KECR) 
adjustment. A residual information, which contains the 
relevant information about the solution norm and gradient 
norm is used to select regularization parameter. We show the 
feasibility of the KECR method for simulation and phantom 
experiments in XLCT. 

II. METHOD 

In the X-ray luminescence computed tomography, X-rays 
emitted from the x-ray source traveled through the tissues to 
irradiate the nanophosphors, and the nanophosphors will emit 
visible or NIR light, as shown as follows [6]:  

�(�) = ��(�)�(�)                              (1) 

where �(�) is the intensity of the emitted light, X(�) is the X-
ray intensity photon yield, �(�)  is the density of 
nanomaterial at the position of �, and � is the photon yield. 
The energy distribution of X-ray in the tissues according to 
Beer-Lambert’s law is expressed as follows [17]: 
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where ��(�) is the X-ray attenuation coefficient at �point, and 
��is the X-ray concentration at the initial position. �� and � 
represent the initial and current position, respectively. The 
transmission of light in tissues with high scattering and low 
absorption can be modeled by the following diffusion equation 
(DE) [4, 18]: 

−�[�(�)��(�)] + ��(�)�(�) = �(�), � ∈ �       (3) 

where � is the imaging region, �(�)  is the diffusion 
coefficient, and ��(�) is the absorption coefficient. �  is the 
gradient operator, �(�) is the light source, �(�) is the light 
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intensity at position �. The finite element method (FEM) is 
employed to solve Eq. (3) and the reconstruction problem can 
be transformed into the following equation [4, 18]: 

�� = �                                           (4) 

where � is the system matrix of size � ∗ �, �is the photon 
flow rate, �  is the internal energy density. Based on the 
compressed sensing theory and ��  regularization, Eq. (4) is 
considered as: 

���
�
‖�� − �‖�

� + �‖�‖�                         (5) 

where � is the regularization parameter. 

Since the Eq. (5) is convex non-differentiable, we 
reformulate it as a convex quadratic function with non-
negative constraints by the gradient projection method used in 
sparse reconstruction, which is a kind of large-scale function 
for compressed sensing. First, we introduce vectors � and �, 
and replace � = � − � ,� ≥ 0 ,� ≥ 0 . Eq. (5) becomes the 
following equation: 

���
�
��� +

�

�
���� = �(�)                        (6) 

where � = [� �]� , � = ���� + [−� �]� , ��� =

[1,1,⋯ ,1]�,� = ���, and � = � �
�� −���

−��� ���
�。 

An adaptive regularization strategy based on KKT 
equivalent condition residual (KECR) adjustment is proposed. 
In the incomplete variable reconstruction framework [16], 
since the objective function is a convex function, the necessary 
and sufficient condition for the solution �∗  to satisfy the 
optimal solution of Eq. (5) must satisfy the Karush-Kuhn-
Tucker (KKT) condition, namely: 

∇�(�∗) ≥ 0, �∗ ≥ 0, �∇�(�∗)�
�
�∗ = 0, ∇�(�∗) + �∗ > 0  (7) 

Then:                         ���{�∗, ∇�(�∗)} = 0                         (8) 

Therefore, the necessary and sufficient condition for �∗ to 
be the optimal solution of the equation is � ≜
‖���{�∗, ∇�(�∗)}‖� = 0. The residual information obtained 
by the KKT condition is considered as the termination 
condition for the iteration. The residual information also 
contains the relevant information about the solution norm and 
gradient norm. Compared to the L-curve, it is easier to 
calculate the residual information obtained by the KKT 
equivalent condition since it only needs one output variable. 

In the L-curve method, the most important step is to obtain 
the data set about the solution norm and the residual norm. 
Based on the data, the L-curve can be fitted and the inflection 
point of the curve can be found. Unfortunately, it is difficult 
and time-consuming to realize this process in many 
applications. In the KECR, however, it does not need to obtain 
the final result under each regularization. And it only needs to 
adjust the size of the regularization parameter according to the 
residual information in the iterative process until the 
equilibrium condition is reached.  

As shown in Fig. 1 (a), ��  is the descending direction, 
������ is the normal vector normalized by ��, �(��) is the 
value of point �� , and △���  is the minimized error. If the 
starting point is along the descending direction to find the 

extreme value, the next iteration point can only be obtained on 
the edge or inside of the regularization due to the 
regularization constraints. 

( )kF x

min

kd
normal

 

Fig. 1 (a) The optimal value solution graph after adding the regularization term. 
(b) The Position of single nanophosphor on 3D digital mouse. 
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Fig. 2 The flowchart of the adaptive regularization parameter selection strategy 
based on the residual guidance. 

Incorrect regularization parameters could result in the 
solution being deviated from the optimal solution. In general, 
too large regularization parameters could generate a strong 
constraint of regularization term. In this case, the residual error 
starts off in a state of oscillation and slow declines, which 
further causes an inaccurate result. Too small regularization 
parameters could make the variation of the residual in each 
iteration being close to the one with unconstrained condition. 
Due to the poor regularization constraint, the result has a large 
error and a slow convergence. In the L-curve method, the 
appropriate regularization parameters are obtained when the 
balance between the solution norm and the residual norm is 
good. Based on this idea, it's natural for us to find the balance 
relationship under the KKT equivalent condition to select the 
appropriate regularization parameter. Then, the KKT-
equivalent conditional residual in the iterations shows 
oscillatory or slowly descending. At the balance of oscillation 
and slow decline, the regularization parameter is usually 
appropriate. Therefore, we use the residual under KKT-
equivalent to balance the current regularization parameters, 
which is described as follows: 

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on December 19,2023 at 04:24:34 UTC from IEEE Xplore.  Restrictions apply. 



  

� = ‖���{�∗, ∇�(�∗)}‖�                          (9) 

A small value of the regularization parameter is given at the 
beginning. If � has a decreasing convergence, it is generally 
considered that the constraint of the regularization term is not 
enough and the regularization parameter should be increased. 
If � has an oscillation convergence, it is considered that the 
value of the regularization parameter is too large. It has to 
reduce the regularization parameter and the corresponding 
regularization parameter is selected as a well-posed one. The 
flow chart of the method is presented in Fig. 2.  

The regularization parameters are selected by judging 
whether the equivalent conditional residuals oscillate in each 
iteration. And the plot demonstration of Eq. 9 is shown in Fig. 
3. The red curve shows the residuals formed by the equivalent 
conditions of KKT decrease slowly when the regularized 
parameters are too small. The green one shows that the 
regularized parameter is too large, the residual error 
containing the gradient norm information will oscillate down. 

 

Fig. 3 Variations of residual with different regularization parameters 

III. EXPERIMENTS 

In order to study the feasibility of KECR, the commonly 
used L-curve and U-curve are considered as the comparison 
methods. Location error (LE), normalized root-mean-square 
error (NRMSE), and Dice coefficient (Dice) are used as 
indicators to evaluate the reconstruction accuracy, which could 
be found the detailed descriptions in [4, 10]. In general, a high-
quality reconstructed image possesses LE, NRMSE being 
close to 0, and a high Dice value (0<Dice<1).  

A. Numerical Simulation Experiments 

    The trunk part of a digital mouse is considered in this 
section. The body consists of six parts, muscle, heart, stomach, 
liver, kidneys and lung. In the case of a single target, the 
nanophosphor was a cylinder with a radius of 1mm and a 
height of 2mm, which was placed in the right kidney of the 
digital mouse with a central position of (23.0, 15.0, 26.0) mm, 
as shown in Fig. 1 (b). The forward grid contains 15562 nodes 
and 80984 tetrahedrons.  

TABLE I. Regularization parameter provided by different selection 
strategies and their reconstruction results for single target 

Algorithm 
Regularization 

parameter 
error 

Location 

error(mm) 
NRMSE DICE 

TTCG 1e-5 

1.3e-5 

4.13e-5 

3.78e-5 

1e-5 1.07 0.106 0.28 

TTCG+KECR 1e-5 0.53 0.021 0.67 

TTCG+L-curve 1e-5 0.56 0.022 0.52 

TTCG+U-curve 1e-5 0.57 0.022 0.43 

The initial regularization parameter is set to be 1e-5, which 
serves as a comparative test. The KECR strategy provided the 
regularization parameter by searching upward from the initial 
value. L-curve and U-curve are the regularization parameter 
values obtained at the inflection point and the lowest point of 
the curve after fitting the curve. All iteration termination error 
values are set to 1e-5. Table I and Fig. 4 showed the recovered 
results. When nothing was done with the regularization 
parameter the result is poor. Due to the existence of a large 
number of sparse artifacts, the DICE coefficient of 
reconstruction results is only 0.28, which is the lowest one of 
all. It is worth noting that the recovered results by the other 
three parameter selection strategies are similar according to LE 
and NRMSE, but the DICE coefficient of reconstruction 
results of KECR strategy reaches 0.67, which is better than the 
other two strategies. The black circles in Fig. 4 (b), (d), (f) and 
(h) represent the real position of the nanophosphor. It can be 
seen that the reconstruction results without using the parameter 
selection strategy have poor accuracy, as shown in Fig. 4 (a) 
and (b). The results by KECR strategy can cover the real target 
well from Fig. 4 (c). The regularization parameters selected by 
L-curve and U-curve can also provide high-precision results, 
but the reconstruction results of the two methods cannot 
completely cover the real target, as shown in Fig. 4 (e) and (g). 

 

 

Fig. 4 Reconstruction results of different parameter selection strategies for 
single target. (a), (b) are TTCG reconstruction results. (c), (d) are 
TTCG+KECR reconstruction results. (e), (f) are TTCG+L-curve 
reconstruction results. (g), (h) are TTCG+U-curve reconstruction results. 

B. Phantom Experiments 

TABLE Ⅱ.  Regularization parameter provided by different selection 
strategies and their reconstruction results in phantom experiment 

Algorithms 
Regularization 

parameter 
error 

Location 

error(mm) 
NRMSE DICE 

TTCG 1e-10 1e-5 1.35 0.036 0.12 

TTCG+KECR 6.22e-4 1e-5 0.74 0.014 0.68 

TTCG+L-curve 1.04e-5 1e-5 1.89 0.016 0.14 

TTCG+U-curve 8.44e-7 1e-5 2.13 0.021 0.07 

A cylinder with a radius of 10mm and a height of 20mm is 
utilized to simulate the real tissue. The cylinder is synthesized 
from polyformaldehyde. A small cylindrical light source is 
placed in the cylinder. The light source is composed of 
europium oxide and its position is (0.0, 7.5, 13.0) mm. The 
absorption and scattering coefficients are 0.025 ���� and 
11.15 ���� . Fig. 5 (a) shows the phantom structure 
reconstructed by CT, which contains a europium oxide 
cylinder with a diameter of 2mm and a height of 2mm. 
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As shown in Table Ⅱ , we set the initial regularization 
parameter as 1e-10 in the phantom experiment. The KECR 
strategy searches from the initial value and finally provides 
the regularization parameter of the equilibrium point. The 
regularization parameters of L-curve and U-curve are taken at 
inflection point and the lowest point respectively.  

Fig. 5 shows the 3D view and 2D section view of the 
reconstruction results under different regularization 
parameter selection strategies. It can be seen that the 
algorithm using initial regularization parameters cannot 
obtain high-precision reconstruction results, with LE being 
greater than 1mm. The regularization parameters selected by 
KECR strategy can find the target with LE within 1mm, and 
the DICE coefficient is up to 0.68. The regularization 
parameters selected by L-curve and U-curve can provide the 
recovered results with LE being larger than 1.5mm. Therefore, 
the regularization parameters selected by KECR strategy can 
effectively make the reconstruction algorithm obtain high-
precision result. 

 
Fig.5 Reconstruction results of different parameter selection strategies in the 
phantom experiment. (a)-(d) are the parameter selection by TTCG, 
TTCG+KECR, TTCG+L-curve, TTCG+U-curve, respectively. (e)-(h) are 
the corresponding results at transverse views. 

IV. CONCLUSION 

 In this paper, we have studied the residual correlation 
properties of KKT equivalent condition under the framework 
of solving incomplete variables. Then we proposed a 
regularization parameter selection strategy based on KKT 
equivalent condition residual. The equilibrium conditions in 
the KECR strategy are determined by the oscillation of the 
KKT equivalent condition residual in the iterative process. 
The regularization parameter is determined when the 
oscillation is changed. L-curve and U-curve methods were 
also employed.  

In summary, the KECR strategy can provide an 
appropriate regularization parameter to obtain good results of 
TTCG algorithm. Without the frame of incomplete variables, 
the KECR strategy will become an invalid algorithm. So, it 
has a limited application compared with L-curve and U-curve 
methods. In the future, we will pay a great attention to the 
mixed residuals to find the optimal regularization parameters. 
It is necessary to explore a regularization parameter selection 
strategy with wide applicability. 
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