
  

  

Abstract—Cerenkov luminescence tomography (CLT) has 

received significant attention as a promising imaging modality 

that can display the three-dimensional (3D) distribution of 

radioactive probes. However, the reconstruction of CLT suffers 

from severe ill-posed problem. It is difficult for traditional 

model-based method to obtain satisfactory result. Recently, deep 

learning-based method have shown great potential for accurate 

and efficient CLT reconstruction. In this study, a KNN-based 

convolution capsule network, named K-CapsNet, is proposed for 

cerenkov luminescence tomography. In K-CapsNet, the surface 

photon intensity is encoded in capsule form. The KNN-based 

convolution and K-means clustering are proposed for efficient 

encoding. Numerical simulation experiments have been carried 

out to verify the performance of K-CapsNet, and the results 

show that it performs superior in source localization and 

morphological restoration compared with existing methods. 

 
Clinical Relevance—As proved by experiments, the proposed 

K-CapsNet can achieve superior reconstruction accuracy, which 

is helpful for tumor detection, cancer drug therapy monitoring, 

and other applications.  

I. INTRODUCTION 

Cerenkov luminescence imaging (CLI) is a promising 
optical molecular imaging modality, which is highly sensitive 
and low-cost. It has been widely used for tumor imaging, 
therapy monitoring, and other preclinical studies [1-3]. As an 
extension of CLI, cerenkov luminescence tomography (CLT) 
can retrieve the 3D distribution information of radioactive 
probes in biological tissue from the surface optical signal, 
which is conducive for further clinical application [4]. 

However, CLT is still facing some challenging issues. Due 
to the severe light scattering effect, CLT reconstruction is a 
highly ill-posed problem, and it is difficult to obtain 
satisfactory results. To address the issues with CLT 
reconstruction, some regularization methods have been 
introduced, including L1-norm regularization (Lasso method), 
L2-norm regularization (Tikhonov method), and ��-norm (0 < 
p < 1) regularization [5-7]. Besides, some prior information 
was introduced to improve the reconstruction performance, 
such as the structural information from computed tomography 
(CT) and magnetic resonance imaging (MRI) [8, 9]. Despite 
the improvements obtained through these methods, the 
approximation error between the linear photon propagation 
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model and the true nonlinear photon propagation process 
remains a significant challenge. 

Recently, the neural network has been widely used in 
optical molecular imaging. Compared with the traditional 
method, the neural network directly learns the mapping 
relation between the surface photon intensity and the internal 
radioactive source. The neural network effectively avoids the 
deviation between the simplified photon propagation model 
and the realistic process of light propagation. In 2019, a 
multilayer fully connected neural network (MFCNN) was first 
applied to reconstruct the distribution of the radioactive source 
[10]. Also, a CLT reconstruction framework based on a 
stacked denoising auto-encoder was proposed, which indeed 
achieved a good performance in CLT reconstruction [11]. For 
the reconstruction in fluorescence molecular tomography and 
bioluminescence tomography, Meng et al. proposed a K-
Nearest Neighbor-based locally connected network, which 
cascaded two sub-network for preliminary results and fine-
tuning, respectively [12]. Yu et al. proposed a one-
dimensional convolutional neural network, which had fewer 
parameters and higher learning efficiency [13].  

In this paper, to enhance reconstruction quality, a KNN-
based convolution capsule network is proposed for CLT 
reconstruction, named K-CapsNet. In K-CapsNet, KNN-based 
convolution is introduced to extract the feature of surface 
photon intensity. K-means clustering is employed to reduce 
the number of parameters. Based on the capsule network 
structure, the surface photon intensity information is encoded 
in capsule form, and the capsules will be fed into multi fully 
connected layers for further reconstruction. Experiments 
revealed that K-CapsNet achieved higher reconstruction 
accuracy compared with other methods. 

The rest of this paper is structured as follows: In section II, 
the details of K-CapsNet are introduced. In section III, the 
numerical simulation experiments are illustrated to prove the 
effectiveness of our network. In section IV, the conclusion is 
illustrated. 

II. METHOD 

A. Model-based CLT reconstruction 

For model-based CLT reconstruction, considering 
scattering effects are dominant over absorption effects in the 
detectable CLT spectrum, the diffusion approximation to the 
radiative transfer equation is widely used to describe the light 
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Fig.1. Network Architecture 

propagation process [4]. Based on finite element analysis, a 
linear relation between the surface photon intensity and the 
distribution of the radioactive source is established, which can 
be defined as follows: 

 Φ = �� (1) 
where Φ is the photon intensity of the surface. � is the system 
matrix determined by the characteristics of biological organs. 
� is the distribution of the radioactive source. 

B. Deep learning-based CLT reconstruction 

Deep learning-based CLT reconstruction uses neural 
network to establish the mapping relation between the photon 
intensity of surface and the radioactive source directly, which 
can be described as follows: 

 ��	‖���Φ|�� − �‖�
� (2) 

where ���  denotes the reconstruction neural network. � 
denotes network weight which is iteratively updated. Φ 
denotes the surface photon intensity as an input to the network. 
� denotes the actual distribution of the radioactive source. 

C. The architecture of K-CapsNet 

K-CapsNet is based on capsule network structure, which is 
illustrated in Fig. 1. Firstly, three KNNConvBlocks are used 
to extract the feature of surface photon intensity. Each 
KNNConvBlock comprises two KNNConv layers, each 
followed by a batch normalization and a Leaky-Relu layer. 
KNNConv layer is designed to make use of structural 
information to extract features. As shown in Fig. 2 (a), the 
convolution domain of KNNConv is a set of adjacent nodes in 
three-dimensional space, allowing it to effectively extract 
features from neighboring nodes for each node. During 
implementation, the feature of each node is concatenated with 
the feature of its adjacent nodes, followed by a convolution, as 
shown in Fig. 2 (c). The adjacent relationship is established by 
conducting a K-nearest neighbor search to identify the nearest 
neighbor in 3D coordinate space, with � being set to 9. 

After three KNNConvBlocks, K-means clustering is used as 
a pooling operation, assigning each node in the permissible 
region to a neighborhood. The � is set to 512. The cluster’s 
feature is calculated as the average of the node’s feature in the 
cluster. In K-CapsNet, the feature of each cluster serves as a 
primary capsule. A squash function is applied as an activation 
function after the clustering, which is defined as follows: 

 � =
‖�‖�

1 + ‖�‖�
⋅

�

‖�‖
 (3) 

where � represents the input and � represents the vector output 
of the capsule. The primary capsules are clustered into latent 
capsules through the dynamic routing algorithm. Dynamic 

routing is an iterative algorithm, which ensures the outputs of 
primary capsules are sent to the proper latent capsules. The 
detail of the dynamic routing algorithm can be found in [14]. 

Then, the latent capsules are transposed and concatenated 
without masking before sent into three FullyConnectedBlocks. 
Each FullyConnectedBlock includes a fully-connected layer, a 
batch normalization, and a Leaky-Relu layer. The output of the 
FullyConnectedBlocks is the reconstructed radioactive source. 
The network configuration is shown in Table Ⅰ. �  is the 
number of nodes in the permissible region. 

 
Fig. 2. The detail of KNNConv (a) the convolution domain of KNNConv in 

three-dimensional space (b) the convolution domain of KNNConv on input 
vector (c) implementation explanation of KNNConv. 

TABLE I.  THE NETWORK CONFIGURATION 

 Input KNNConv KNNConv 

Feature 

map 
� × 1 � × 8 � × 32 

 KNNConv 
Primary 

Capsule 
Latent Capsule 

Feature 

map 
� × 128 512 × 128 

32 × 64/2048 ×
1 (concatenated) 

 
Fully Connected 

layer 

Fully Connected 

layer 

Fully Connected 

layer 

Feature 

map 
2048 × 1 � × 1 � × 1 

D. Implementation detail and evaluation metrics 

The training and test of K-CapsNet were implemented 
using Pytorch and Python 3.7. All operation was performed on 
a personal computer with an AMD Ryzen 7 1700 Eight-Core 
Processor 3.00 GHz CPU and a NVIDIA GeForce GTX 1080 
Ti GPU. The optimizer of K-CapsNet was Adam with a 
learning rate of 0.001. Mean Square Error (MSE) Loss was 
adopted as a loss function. 

To quantify the performance of K-CapsNet, location error 
(LE), Dice coefficient, and signal-to-noise ratio (SNR) were 
used. 

Location error is defined as the position error between the 
reconstructed radioactive source and the actual radioactive 
source. It can be defined as: 
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 �# =  ‖�% − �&‖� (4) 
where �% represents the center of the reconstructed radioactive 
source and �& represents the center of the actual radioactive 
source. 

Dice coefficient evaluates the similarity between the 
reconstructed source region and the actual source region: 

 '�() =  
2|*%+,⋂*.,|

|*%+,| + |*.,|
 (5) 

where *%+, represents the reconstructed source region and *.,  
represents the actual source region. 

The signal-to-noise ratio (SNR) is used to measure the 
visual quality, which can be defined as: 

 *�/ =
∑ 12

��
234

∑ 12 − 12
5���

234

 (6) 

where 12
5  represents the energy of the �67  node in the 

reconstruction result, 12  represents the energy of the �67 node 
in the original numerical model. 	 is the total number of nodes 
in the numerical model. 

III. EXPERIMENTS AND RESULTS 

To evaluate the performance of K-CapsNet, both single-
source and dual-source numerical simulation experiments 
were conducted. The MFCNN method and Incomplete 
variable truncated conjugate gradient (IVTCG) method were 
taken for comparison.  

In the numerical simulations, a heterogeneous cylindrical 
phantom was used to simulate the mouse body. The phantom 
consists of five kinds of organs: heart, lungs, bone, liver, and 
muscle, which are exhibited in Fig. 3. All the experiments are 
based on a single spectrum (650nm). Optical parameters of all 
organs are presented in Table Ⅱ, which are obtained from [15]. 
 

 
Fig. 3. The numerical phantom. (a) shows a single-source phantom, and (b) 

shows the standard mesh. 

TABLE II.  OPTICAL PARAMETERS OF DIFFERENT ORGANS. 

Component 
Absorption coefficient  

89 ::;<� 

Scattering coefficient  

8= ::;<� 

Muscle 0.016 0.510 
Heart 0.011 1.053 
Lungs 0.036 2.246 
Liver 0.012 2.472 
Bone 0.021 2.864 

 
The numerical phantom was discretized into a standard 

mesh with 4626 nodes. A small spherical radioactive source 
with 1mm diameter was set in the model to present the tumor. 
As a data-driven method, plenty of simulation data was 
collected using the Monte Carlo method. All the simulation 
was conducted in Molecular Optical Simulation Environment 
(MOSE 2.3) [16]. In this work, 221 single-source samples and 
have been simulated. and the corresponding data from two 
randomly selected single-source samples were combined to 

create 3000 dual-source samples. Of these samples, 80% were 
randomly chosen for training purposes, while the remainder 
were reserved for testing. 

A.  Single source simulation result 

For the single-source experiment, the relative result was 

shown in Table Ⅲ and Fig. 4. The source was set at (-1, -1, 

15) mm. From Table Ⅲ, K-CapsNet exhibited the minimum 

LE (0.23mm), maximum Dice (0.77) and SNR (1.56) among 

three methods, which indicated that our method performs 

better in localization and shape recovery compared with 

MFCNN and IVTCG. Fig. 4 shows the visualization result of 

K-CapsNet, MFCNN, and IVTCG respectively. 

TABLE III.  QUANTITATIVE RESULTS OF SINGLE-SOURCE SIMULATION. 

Method LE ::� Dice SNR 

K-CapsNet 0.23 0.77 1.56 
MFCNN 0.58 0.67 1.39 
IVTCG 1.10 0.19 0.80 

 

 
Fig. 4. Comparison results for the single-source experiments. (a) presents the 
result reconstructed by K-CapsNet, (b) and (c) are the results obtained by the 

MFCNN method and IVTCG method respectively. The actual position and 

size of source is indicated by red circle. 

B. Dual-source simulation result 

For the dual-source experiment, the relative result was 
shown in Table Ⅳ and Fig. 5. The centers of the dual source 
were set at (-5, -4, 4) mm, and (-6, 1, 8) mm respectively. The 
quantitative results are exhibited in Table Ⅳ, which illustrates 
that our network still obtained the minimum LE (0.66mm), the 
maximum Dice (0.63), and SNR (1.27). It can be inferred from 
Table Ⅳ that the reconstruction result of K-CapsNet is closer 
to the real source, and the performance of K-CapsNet is better 
than the other two methods. Fig. 5 exhibits the visualization of 
the dual-source reconstruction results and suggests that both 
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reconstructed radioactive sources are easy to distinguish with 
clear shapes. 

TABLE IV.  QUANTITATIVE COMPARISON OF DUAL-SOURCE 

SIMULATION.  

Method LE ::� Dice SNR 

K-CapsNet 0.66 0.63 1.27 
MFCNN 0.89 0.53 1.10 
IVTCG 1.04 0.24 1.09 

 

 
Fig. 5. Comparison results for the dual-source experiments. (a) presents the 

result reconstructed by K-CapsNet, (b) and (c) are the results obtained by the 
MFCNN method and IVTCG method respectively. The actual position and 

size of the source is indicated by red circle. 

IV. CONCLUSION 

In this study, a KNN-based convolution capsule network, 
named K-CapsNet, is proposed to enhance the performance of 
CLT reconstruction. K-CapsNet is a capsule network model, 
mainly consisting of KNNConvBlock and FullyConnected-
Block. By using KNN-based convolution, K-CapsNet makes 
good use of structural information to extract features. By 
applying K-means clustering, K-CapsNet reduces input 
spaces. 

To verify the performance of our network, single-source 
numerical experiment and dual-source numerical experiment 
have been done. Compared with MFCNN method and IVTCG 
method, K-CapsNet performs better on localization and shape 
recovery.  

However, some issues remain unresolved in this work. For 
example, the KNN-based convolution is memory-consumed. 
The division between the standard mesh and the actual 
structure introduces extra error in CLT reconstruction. 

Besides, no in vivo experiments have been conducted to 
validate the feasibility of K-CapsNet. We will continue to 
address these issues in future studies. 
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