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A B S T R A C T

Fluorescence molecular tomography (FMT) is a cost-effective, high-resolution imaging technique that offers non- 
invasive 3D visualization of targets labeled with fluorescent probes. However, challenges arise due to light 
scattering and absorption and the complexity of inverse problems, which hinder accurate reconstruction of 
fluorescence distribution. To overcome these challenges and enhance the accuracy of fluorescence distribution 
reconstruction, we propose a sparse reconstruction method based on dictionary learning via regularized 
orthogonal matching pursuit and difference of convex programming (ROMP-DCP). ROMP-DCP implements the 
dictionary learning strategy using an alternating optimization scheme. During the sparse coding phase, the 
ROMP algorithm is adopted to ensure sparsity in line with internal light source distribution characteristics. In the 
dictionary update stage, the incorporation of the difference of convex (DC) programming and the DC algorithm 
ensures convergence and robustness. Through this ROMP-DCP approach, it effectively adapts to the intrinsic 
structure of the data and captures its sparse features, thereby achieving more accurate and sparser FMT 
reconstruction results. The results of numerical simulation experiments indicate that ROMP-DCP method obtains 
the most accurate reconstruction results. Furthermore, the effectiveness of our method was further demonstrated 
in the in vivo experiments. ROMP-DCP has the smallest localization error (LE), with a value of 0.369 mm. In 
comparison, the other three methods have higher values: IVTCG is at 0.544 mm, ROMP at 0.702 mm, and HTPA 
at 0.962 mm. In addition, ROMP-DCP method also has the highest Dice similarity coefficient (DICE), which is 
0.648. Overall, ROMP-DCP holds significant potential for improving the reconstruction accuracy and stability of 
FMT in biomedical applications.

1. Introduction

Fluorescence molecular imaging (FMI), a technique widely used in 
preclinical and clinical research, employs fluorescently labeled mole
cules to visualize the distribution and activity of specific targets within 
biological organisms [1–3]. For FMI, an external excitation light source 
is required to stimulate the fluorescent molecular probes, inducing them 
to emit fluorescence. These fluorescent signals are detected, allowing 
the acquisition of molecular information within the body [4]. FMI is 
characterized by its high sensitivity, high specificity, and non-invasive 
property, making it suitable for detecting fluorescence sources in 

biological tissues. However, FMI provides 2D imaging and is limited to 
capturing fluorescence distribution information on the surface of objects 
[5]. As an extension of FMI, fluorescence molecular tomography (FMT) 
utilizes reconstruction algorithms to enable 3D imaging of fluorescent 
probes distribution within biological tissues [6,7], providing informa
tion about the internal structure and function. Today, FMT is widely 
applied in biomedical research and preclinical diagnostics, providing a 
crucial non-invasive imaging tool for disease diagnosis, treatment 
monitoring, and drug development [8–10].

Although FMT holds significant advantages, it still faces significant 
challenges regarding imaging quality and measurement accuracy in 
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biological tissues [11–13]. Firstly, the strong scattering effect of photons 
creates a nonlinear relationship between surface measurements of 
fluorescence signals and the distribution of internal fluorescence sour
ces, and the simplified photon propagation model affects detection ac
curacy [14]. Secondly, during the FMT reconstruction process, 
background noise, such as the autofluorescence emitted by the biolog
ical body itself, can also significantly affect the accuracy of the imaging. 
Additionally, the limited information from surface measurements 
compared to unknown internal sources results in an ill-posed inverse 
reconstruction problem, where the number of equations is insufficient 
for the unknowns, potentially leading to non-unique solutions [15].

To address these issues effectively and ensure accurate and stable 
reconstruction results, various effective strategies have been proposed 
by researchers. An effective strategy is to improve the accuracy of the 
photon propagation model. In the reconstruction of FMT, incorporating 
detailed anatomical structure information provided by computed to
mography (CT) or magnetic resonance imaging (MRI) can significantly 
enhance its accuracy [16]. CT yields density data of bones and soft tis
sues, while MRI offers detailed soft tissue structure, facilitating the 
precise simulation of photon scattering and absorption across different 
tissues. Another category of methods addresses the ill-posedness of the 
inverse problem by utilizing a regularization framework, effectively 
narrowing down the space of feasible solutions. Tikhonov regularization 
is a widely applied optimization method that enhances the stability of 
solutions by adding an L2-norm [17], but it may lead to a loss of detail 
and over-smoothing [18]. Furthermore, L1-norm regularization is 
commonly introduced into the objective function to impose sparse 
constraints [19]. The L1-norm can be viewed as a convex relaxation of 
the L0-norm [20],which promotes sparsity during the image recon
struction [21]. However, the linear sparsity penalty of L1-norm may 
overly constrain weaker features, leading to the loss of important fea
tures in FMT reconstruction. In contrast, Lp-norm (0 < p < 1) can con
trol sparsity in a wider range and handle sparse signals more flexibly. 
When p < 1, Lp-norm is more effective than L1-norm in promoting 
sparsity, resulting in more accurate solutions during FMT reconstruction 
[22,23].Notably, most traditional regularization methods typically 
require the selection of an appropriate regularization parameter through 
extensive experience and experimentation.

In recent years, deep learning has shown broad application prospects 
in FMT [24,25], enhancing FMT reconstruction quality and data pro
cessing efficiency. Huang et al. proposed a deep convolutional neural 
network (DCNN) [26], which alleviates errors caused by grid registra
tion in traditional methods to some extent. Zhang et al. proposed a new 
3D fusion dual-sampling deep learning network model (UHR-DeepFMT) 
to achieve ultra-high spatial resolution reconstruction in FMT [27]. 
However, deep learning techniques have certain limitations in practical 
applications. In the training of network models, it is necessary to 
generate different training datasets for different imaging objects [15]. 
Additionally, due to the inability to obtain a large amount of in vivo data, 
researchers often rely on simulated data to drive their research.

In addition to deep learning methods, some researchers have com
bined compressed sensing (CS) theory with greedy algorithms for FMT 
reconstruction. The stagewise orthogonal matching pursuit (StOMP) is 
proposed to construct a sparse solution by selecting multiple eligible 
atoms at each iteration [19]. Compared to StOMP, the regularized 
orthogonal matching pursuit (ROMP) algorithm [28] more effectively 
approximates the original signal while ensuring sparsity, through a 
better atom-selection method. However, traditional greedy algorithms 
primarily focus on sparsity constraints and do not fully consider the 
structural characteristics of signals within subspaces [29]. Therefore, 
these methods suffer from serious issues such as inaccurate reconstruc
tion of light source positions, low morphological similarity, and insta
bility. To overcome these challenges, we incorporated a dictionary 
learning (DL) strategy [30,31] into our method. DL is essentially an 
optimization problem based on the iterative update between the 

dictionary and sparse coding [32]. Since sparsity is typically measured 
by the L0-norm, this leads to a non-convex optimization problem, 
increasing the difficulty of solving it. Research has shown that difference 
of convex programming (DCP) can decompose non-convex function into 
the difference of two convex functions [33], transforming the problem 
into a more manageable form. To further address the convex optimiza
tion problem and enhance the interrelationships between atoms, we 
developed the DC algorithm (DCA) [34]. This algorithm adjusts the di
rections of the atoms in the dictionary through an optimization process, 
allowing for better adaptation to the characteristics of the data. By using 
this method to train a dictionary for the given fluorescence distribution 
data, we can more effectively capture the unique features and intrinsic 
structure of the signals, thereby enhancing the recovery of sparse sig
nals. It considers both the sparsity of the signal and the relationship 
between atoms, making the recovery process more efficient and precise. 
Its adaptability and accuracy contribute to achieving higher-resolution 
FMT reconstruction from limited data.

A sparse reconstruction method based on dictionary learning via 
regularized orthogonal matching pursuit and difference of convex pro
gramming (ROMP-DCP) for robust FMT is proposed in this paper. The 
main contributions of this paper can be highlighted as follows: 

(1) We effectively combine the ROMP algorithm and the DCP method 
through the DL strategy. The DL algorithm in this paper employs 
an alternating iterative method to optimize the sparse coding and 
dictionary update phases.

(2) In the sparse coding phase, the ROMP algorithm combines greedy 
strategy and regularization mechanism to ensure sparse and ac
curate reconstruction, enhancing noise robustness by selecting 
inner products with similar magnitudes.

(3) In the dictionary update phase, we employ DCP to avoid direct 
handling of a non-convex function by only processing its convex 
components. The developed DCA optimizes the dictionary atoms, 
enabling a better representation of the data and leading to more 
accurate and sparse reconstruction results for the fluorescence 
distribution.

(4) We have analyzed and systematically summarized the computa
tional complexity of the ROMP-DCP algorithm to better elucidate 
its efficiency, highlighting the contributions of each stage in the 
process.

(5) To evaluate the comprehensive performance of our proposed 
ROMP-DCP method, we conducted a series of numerical simula
tion experiments and in vivo experiments. Experimental results 
show that ROMP-DCP outperforms other methods in terms of 
localization error (LE) and Dice similarity coefficient (DICE).

The structure of this paper is organized as follows: In Section 2, we 
introduce the FMT forward model, the FMT inverse problem, and the 
ROMP-DCP method. In Section 3, we describe the details and results of 
the numerical simulations and in vivo experiments. In Section 4, we 
discuss the work presented in this paper. In Section 5, we illustrate the 
challenges of this study and outline future research directions. In Section 
6, we provide the conclusion of the paper.

2. Methodology

2.1. Forward problem

The complex structure of biological tissues leads to various intricate 
phenomena during the propagation of near-infrared light, including 
reflection, absorption, scattering, and refraction. In FMT imaging, the 
radiative transfer equation (RTE) [35] is commonly used to describe the 
propagation of photons in biological tissues. The time-domain expres
sion of the light propagation model constructed through the RTE is 
presented in [15]. However, the RTE is typically a complex integra
l–differential equation that is challenging to solve directly. Typically, 
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computational resources are limited, and FMT is a rapid imaging tech
nique, which has certain requirements for imaging time [36]. Therefore, 
researchers have proposed some simplified and approximate forms of 
the RTE, including: the diffusion equation (DE) [37], the simplified 
spherical harmonics (SPN) [38], etc. The DE, as a low-order RTE 
approximation model, is simple to solve and suitable for tissues with 
high scattering and low absorption, and it is more commonly used in 
practical applications. The propagation process of photons described by 
DE is defined as follows: 
{

∇⋅[Dx(r)∇Φx(r) ] − μax(r)Φx(r) = − Θδ(r − rs)

∇⋅[Dm(r)∇Φm(r) ] − μam(r)Φm(r) = − Φx(r)ημaf (r)

(r ∈ Ω)

(r ∈ Ω)
(1) 

Here, ∇ denotes the gradient operator, and Ω represents the domain of 
the imaged object. The parameters μax, μsx represent the absorption and 
scattering coefficients at the excitation wavelength, while μam,μsm 
represent the absorption and scattering coefficients at the emission 
wavelength. Dx and Dm are the optical diffusion coefficients for the 
excitation and emission processes, respectively, defined as Dx,m =

1/3
(
μαx,am +(1 − G)μsx,sm

)
, where G is the anisotropy parameter [39]. 

Φx(r) and Φm(r) respectively represent the photon flux during the 
excitation and emission processes. Θδ(r − rs) denotes the excitation light 
source, where Θ is the light source intensity. ημaf (r) represents the 
fluorescence yield to be recovered.

By introducing Robin-type boundary conditions to solve the coupled 
DE, we have: 

2Dx,m(r)∇Φx,m(r)+ qΦx,m(r) = 0(r ∈ ∂Ω) (2) 

Here, ∂Ω denotes the boundary of the biological tissue, and q is a con
stant representing the refractive index difference between the biological 
tissue surface and the air. It can be approximated as q ≈ 1+R

1− R, and R =

− 1.4399n− 2 +0.7099n− 1 +0.6681+0.0636n. For a non-contact FMT 
imaging system, n is approximately equal to 1.4 [29].To solve the dif
ferential Eq. (1) with the Robin boundary condition (2), we use the finite 
element method (FEM). This approach establishes a linear relationship 
between the surface measurement data and the unknown fluorescence 
yield: 

AX = B (3) 

where A ∈ RM×N(M≪N) represents the system weight matrix, X =

(X1,X2,⋯XN)
T
∈ RN×1 denotes the distribution of the internal fluores

cence sources to be reconstructed, and B = (b1, b2,⋯bN)
T
∈ RM×1 rep

resents the measured fluorescence distribution on the surface. Some 
notations used in this paper are summarized in Table 1, and some ac
ronyms and abbreviations used in this paper are listed in Table 2.

2.2. DCP and DCA

DCP and DCA are used to solve non-convex optimization problems 
[40,41], forming the foundation of global optimization and non-convex 
programming, originally proposed by Tao in 1985. DCP decomposes 
complex non-convex optimization problems into a series of easily solv
able convex subproblems [42], while DCA progressively approaches the 
optimal solution of the original problem by alternately minimizing these 
convex subproblems. Within the framework of DCP, the original non- 
convex problem is decomposed into the difference of two convex func
tions, and the optimization form is as follows: 

minf(x) = f1(x) − f2(x)(x ∈ Rn) (4) 

where f(x) is a non-convex function in Rn, and f1(x) and f2(x) are lower 
semi-continuous strictly convex functions. The function f(x) is referred 
to as a DC function, and f1(x) ,f2(x) can be considered the DC compo
nents of the DC function. Through this decomposition, we can iteratively 
solve a series of convex subproblems to address non-convexity.

In each iteration k, the DCA approximates the concave part f2(x) at 
the current point xk using its affine minorization g(x), thereby solving 
the convex optimization problem [43]. Specifically, g(x) is defined as: 

g(x) = f2
(
x(k) )+

〈
x − x(k), h(k)

〉
(5) 

Where h(k) ∈ ∂f2(x(k)). The minorization process yields the following 
form of convex programming: 

x(k+1) ∈ argminf1(x) − g(x)

⇔ x(k+1) ∈ argmin f1(x) −
〈

x, h(k)
〉

(6) 

By pursuing the minimization of the above convex function in each 
iteration, we ultimately obtain the optimal solution for problem (1), 
which is x(k+1). The DCA is summarized as Algorithm 1.

Algorithm 1: DCA

Initialization: x(0) ∈ Rn, iteration k = 1
Iteration Process:

(continued on next page)

Table 1 
Notations used in this paper.

Notations Description

A ∈ RM×N(M≪N) System weight matrix
X ∈ RN×1 Sparse representation vector
B ∈ RM×1 Measured fluorescence photon distribution
M Row number of system weight matrix A and fluorescence 

photon distribution B
Ω The domain of the imaged object
N Column number of system weight matrix and row number of 

sparse representation vector
S Sparsity level
aj Column vectors of matrix A
Dx,m Diffusion coefficients for excitation and emission
μax ,μsx Absorption and scattering coefficients at excitation wavelength
μam , μsm Absorption and scattering coefficients at emission wavelength
r(k) Residual vector at the k iteration

AT , (A)− 1, tr(A) Transpose of a matrix A,the inverse of matrix A and trace of a 
matrix A

I(k) The column index set I of matrix A at the k iteration
P Correlation coefficients
f(x) Expression of a function
〈x, h〉 The inner product of two sequence x,h
⊙ The component-wise product
‖ . ‖0 , ‖.‖ 1,

‖.‖ 2

L0-norm, L1-norm, L2-norm

Table 2 
Acronyms and abbreviations.

Abbreviations Full name

FMT Fluorescence molecular tomography
FMI Fluorescence molecular imaging
CT Computed tomography
ROMP Regularized orthogonal matching pursuit
DC Difference of convex
DCP Difference of convex programming
DCA Difference of convex algorithm
DL Dictionary learning
ROMP-DCP Regularized orthogonal matching pursuit and difference of convex 

programming
IVTCG Incomplete variable truncated conjugate gradient
HTPA Half thresholding Pursuit algorithm
CS Compressed sensing
2D,3D Two-dimensional, three-dimensional
RTE Radiative Transfer Equation
DE Diffusion equation
LE localization error
DICE Dice similarity coefficient
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(continued )

Algorithm 1: DCA

While k < kmax do
1): Calculate h(k) ∈ ∂f2(x(k))

2): Calculate x(k+1) ∈ argmin f1(x) −
〈

x, h(k)
〉

3):k = k + 1
4): Until convergence of x(k) or meet the max iteration.
End while

It is worth mentioning that DCA is a descent algorithm that ensures 
global convergence without the need for line search, and it has the 
following key properties [44,45]: 

(1) If f1
(
x(k+1)) − f2

(
x(k+1)) = f1

(
x(k)) − f2(x(k)), then x(k) is a critical 

point of f1(x) − f2(x), and the algorithm terminates at the k th 
iteration.

(2) If the optimal value of problem (4) is finite and the sequence 
{
x(k)} is bounded, then every limit point 

{
x(k)} is a critical point 

of f1(x) − f2(x).
(3) DCA converges linearly for general DC programs.
(4) DCA has a finite convergence for polyhedral DC programs. If f2(x)

is polyhedral and differentiable at x*, then x* is a local optimizer 
of f1(x) − f2(x).

DCA guarantees that the value of the objective function decreases 
progressively at each iteration. If the objective function is bounded 
below, the iterative sequence will converge to a local optimum or a 
stationary point. This ensures the convergence and stability of the al
gorithm [46]. A more comprehensive and in-depth understanding of 
DCA can be found in [47,48]. From this, we can conclude that DCA is an 
effective algorithm for solving non-convex models.

2.3. Reconstruction based on ROMP-DCP method

The inverse problem in FMT is to determine the 3D distribution of the 
light source to be reconstructed based on a known forward problem 
model of light propagation. During the imaging process, light is absor
bed and scattered within biological tissues, making the obtained solu
tions often unstable and non-unique. This results in severe ill-posed of 
the inverse reconstruction problem. In our research, we represent the 
sparsity constraint in FMT reconstruction using L0 regularization, 
defined as follows: 

1
2

argmin‖AX − B‖2
2s.t.‖X‖0 ≤ S (7) 

where ‖X‖0 denotes the L0-norm, and S is an integer that can be used to 
adjust the sparsity level of the reconstruction result. In this paper, FMT 
reconstruction is formulated as a dictionary learning problem. The 
system matrix A can be regarded as an overcomplete dictionary, X 
represents the weight coefficients of the column vectors in the dictio
nary, and B is the result of the linear combination of the column vectors 
in matrix A. Eq. (7) for A and X is typically non-convex. Therefore, we 
adopt an iterative alternating strategy for DL, solving the problem 
through two stages: the sparse coding stage and the dictionary update 
stage. This process starts with an initialized dictionary and then 
repeatedly executes these two stages until convergence. The sparse 
coding stage employs the ROMP algorithm, which is known for its strong 
stability and high efficiency. In FMT construction, the internal light 
source distribution is typically small and sparse [49]. The ROMP algo
rithm ensures that only a few of the most representative atoms are 
selected to capture these sparse signals, thereby maintaining the sparsity 
of the fluorescent source distribution. In the dictionary update stage, the 
dictionary sparse optimization problem is effectively solved using 
methods based on DCP and DCA.DCP decomposes the non-convex 

objective function into the difference of two convex functions, and 
subsequently, DCA adjusts the direction of atoms in dictionary A by 
solving two convex optimization problems in each iteration, allowing 
them to better adapt to the features of matrix B.

2.3.1. The space coding stage
At this stage, by initializing and fixing the dictionary A, the sparse 

representation X of the measurement vector B is generated. The objec
tive optimization function can be expressed as: 

1
2

argmin
X∈RN×1

‖B − AX‖2
2 s.t. ‖X‖0 ≤ S. (8) 

Drawing on the use of typical greedy algorithms in compressive 
sensing for signal reconstruction, we employ the ROMP algorithm to 
achieve sparse representation in FMT. The ROMP algorithm combines 
the speed and ease of use advantages of greedy algorithms with the 
robustness of convex programming methods. Moreover, it introduces 
regularization constraints during the greedy iteration process, enabling 
the recovery of non-zero values from uncertain measurements with a 
maximum of S iterations. In each iteration, ROMP selects a group of 
atoms with similar magnitudes and updates the residual through an 
orthogonalization step [50], ensuring that the sparse solution accurately 
reflects the internal light source distribution.

When the sparsity level S is known, firstly, according to the principle 
of correlation, we select the S largest values from the correlation co
efficients P. If the number of non-zero values is less than S, then we select 
all non-zero values and store their corresponding indices in the set J. 
Here, the calculation of correlation coefficients P is as follows: 

P = argmax
j

‖AT
j r(k− 1)‖1 (9) 

where j represents the column vectors of matrix A (1 ≤ j ≤ N), and each 
column can be seen as an atom, denoted as aj. r(k− 1) represents the re
sidual vector at the (k − 1) iteration.

Next, according to the regularization principle, the atoms are 
grouped, and the atom with the maximum energy is added to the subset 
J0. Specifically, the correlation coefficients of the atoms corresponding 
to the indices in set J are grouped, and from these groups, the indices of 
the atoms corresponding to the group with the maximum energy are 
selected and stored in set J0. J0 satisfies: 

|P(i)| ≤ 2|P(j)|∀i, j ∈ J0 (10) 

Then, update the column index set I and the related column set A(k) of 
matrix A, as follows: 
{

I(k) = I(k− 1) ∪ J0
A(k) = A(k− 1) ∪ aj

∀i, j ∈ J0 (11) 

Finally, use the least squares method to obtain the approximate so
lution and update the residual vector. The calculation method is as 
follows: 
⎧
⎪⎨

⎪⎩

X(k) = argmin
x
|B − A(k)X(k)| =

(
A(k)TA(k)

)− 1
A(k)TB

r(k) = B − A(k)X(k) = B − A(k+1)
(

A(k)TA
)− 1

A(k)TB
(12) 

Through this iterative update process, ensuring that the recon
structed signal matches the characteristics of the fluorescent source 
distribution. It is worth mentioning that the number of column vectors in 
matrix A(k) is generally not S, because we impose a constraint ‖I(k)‖0 ≥

2S during the regularization and atom selection process. Therefore, the 
number of column vectors in A(k) usually does not exceed 3 S.

2.3.2. The dictionary update stage
In the dictionary update stage, the objective optimization function 

can be expressed as: 
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1
2

argmin
A

‖B − AX‖2
2s.t.‖X‖0 ≤ S. (13) 

By fixing the sparse vector X, the solution to problem (13) is obtained 
as: 

min
A∊C

1
2

tr
(
ATAXXT) − tr

(
ATBXT) (14) 

C =
{
A∊RM×N : ‖aj‖ = 1∀j = 1,2, ...,N

}

Here, we introduce a convex term f1(A) to solve (14) through DC 
decomposition. The expression for f1(A) is as follows: 

f1(A) =
1
2
∑n

j=1
ρj‖aj‖

2 (15) 

where ρ is an N × 1 dimensional column vector, with each element equal 
to 

⃒
⃒XXT

⃒
⃒, and aj is the column vector of matrix A.

Let P = XXT, Q = BXT , we obtain the DC decomposition as follows: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(A) =
1
2
∑n

j=1
ρj‖aj‖

2

f2(A) =
1
2
∑n

j=1
ρj‖aj‖

2
−

(
1
2

tr
(
ATAP

)
− tr

(
ATQ

)
) (16) 

By this decomposition, DCP solves convex optimization problems in 
each iteration, gradually converging to a sparse solution. Adopting the 
DCA from Algorithm 1, Calculate H(k− 1) ∈ ∂f2(A(k− 1)), we obtain the 
following solution: 

H(k− 1) = ∇f2
(
A(k− 1) )

H(k− 1) = D ⊙ A(k− 1) − (A(k− 1)P − Q)
(17) 

where D∊RM×N is defined such that each row equals ρ. ⊙ represents an 
element-wise multiplication operation, where the elements at corre
sponding positions in two matrices are multiplied to form a new matrix.

Then, we calculate A(k) by optimizing the following function: 

A(k)∊argmin
A

{
f1(A) − 〈A,H(k− 1)〉

}
(18) 

Each column of the matrix H is represented by hj(j = 1,2, ...,N). The 
calculation is as follows: 

A(k) = argmin
A

{
f1(A) − tr

(
H(k− 1)TA(k− 1)

)}

A(k) = argmin
A

∑n

j=1

(
1
2

ρj‖aj‖
2
− 〈aj, hj

(k− 1)
〉

) (19) 

In the dictionary update stage, the formula for updating the column 
vectors of matrix A is as follows: 

aj
(k) =

hj
(k− 1)

max =
{

ρj, ‖hj
(k− 1)

‖
} (20) 

The optimization process gradually adjusts the atoms in the dictio
nary, allowing them to better adapt to the features of the input data B. 
This dictionary update strategy captures the intrinsic structure and 
sparsity of the signal, thereby improving the accuracy of sparse signal 
recovery. We combine ROMP and DCP through the DL strategy, enabling 
more effective capture of the sparse characteristics of internal light 
sources in the FMT reconstruction process, while maintaining sensitivity 
to signal details. To summarize, the flowchart of the ROMP-DCP method 
is presented in Algorithm 2.

Algorithm 2: ROMP-DCP for FMT reconstruction

Input: Measured fluorescence photon distribution B ∈ RM×1, system matrix A ∈ RM×N, 
sparsity level S.

(continued on next column)

(continued )

Algorithm 2: ROMP-DCP for FMT reconstruction

Initialization: X(0) = 0, tol = 1e − 5, residual vector r(0) = B, index set I(0) = ∅, index 
column matrix A(0) = ∅, iteration k = 1, the maximum number of iterations kmax =

100.
While ‖Xk − Xk− 1‖2 > tol or k < kmax do
Step 1: Sparse coding stage
1): Identify: Calculate observation vector and store the corresponding index J through 

the Eq. (9).
2): Regularize: Choose the set J0 with the maximal energy through the Eq. (10).
3): Update: Update index sets and atoms, obtain the approximate solution and 

complete the update of residual through the Eq. (11), Eq. (12).
4): Stop criterion: until k > S or ‖I(k)‖0 ≥ 2S or r(k) = 0, then stop the iteration.
Step 2: Dictionary update stage

1: Compute P = X(k)X(k)T, Q = BX(k)T .
2: Compute H(k− 1) ∈ ∂f2(A(k− 1)) through the Eq. (17).
3: for j = 1 to N do
1): Update the column of matrix through the Eq. (20).

2): Normalizing aj
(k) =

aj
(k)

‖aj (k)‖

End for
Step 3:k = k + 1
End while
Output:X = X(k)

2.4. Complexity analysis of the ROMP-DCP algorithm

Since each iteration of ROMP-DCP is performed in two stages, the 
computational complexity of the algorithm is analyzed separately for the 
sparse coding stage and the dictionary update stage. The computational 
complexity of Algorithm 2 depends on the following parameters: the 
sparsity level S (where S is a positive integer), the number of dictionary 
rows M, and the number of dictionary columns N, with M≪N. In the 
sparse coding stage, the ROMP algorithm selects the dictionary atoms 
that best match the fluorescence distribution data to construct a sparse 
representation. This process requires calculating an M × N matrix and 
solving a least squares problem, resulting in the computational 
complexity of O(NS2 +MN). In the dictionary update stage, the 
computational complexity is primarily determined by terms such as XXT, 
BXT, and AXXT, which involve matrix multiplications essential for 
refining the dictionary atoms. Thereby, the complexity is O(N2 + MN +

MN2). Nonetheless, the algorithm benefits from the convergence prop
erties of DCP technology, enabling it to achieve stable solutions within a 
manageable number of iterations.

3. Experiment and results

In this section, to evaluate the performance of the proposed ROMP- 
DCP method in FMT reconstruction, we designed several sets of nu
merical simulation experiments and in vivo experiments. We compared 
the ROMP-DCP method with the incomplete variable truncated conju
gate gradient method (IVTCG) based on L1-norm [51], the ROMP al
gorithm based on L0-norm [28], and the half thresholding Pursuit 
algorithm (HTPA) based on L1/2-norm [52]. Comparisons were made 
with IVTCG, ROMP, and HTPA algorithms in terms of localization ac
curacy, morphological recovery, robustness, and practicality. All pro
cesses were implemented in MATLAB (2021b) on a laptop equipped with 
an Intel(R) Core(TM) i7-8550U CPU (1.80 GHz) and 8 GB RAM.

3.1. Evaluation metrics

To assess the performance of different reconstruction algorithms in 
source localization and shape recovery, this study employs two 
commonly used quantitative metrics: localization error (LE) and Dice 
similarity coefficient (DICE).

LE is the Euclidean distance between the reconstructed source center 
(xr, yr, zr) and the actual source center 

(
xt , yt , zt

)
. The calculation for
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mula is as follows: 

LE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xr − xt)
2
+ (yr − yt)

2
+ (yr − yt)

2
√

(21) 

where the LE value is always positive, and a smaller LE value indicates 
that the reconstruction result is closer to the actual position, thus 
reflecting higher reconstruction localization accuracy.

The DICE is a metric that measures the shape similarity between the 
reconstructed source and the true source. The calculation formula is as 
follows: 

DICE =
2|Xr ∩ Yt |

|Xr| + |Xt |
(22) 

where Xr represents the actual source region and Yt represents the 
reconstructed source region. It evaluates the similarity between the two 
source regions by calculating the degree of overlap. A value closer to 1 
indicates a higher shape similarity, while a value closer to 0 indicates a 
lower shape similarity.

3.2. Experimental setup

3.2.1. Numerical simulation experiments
A series of numerical simulation experiments were conducted based 

on a cylindrical heterogeneous model with a radius of 10 mm and a 
height of 30 mm to validate the performance of the algorithm. The 
model consisted of five biological organs: muscle, heart, bone, lung, and 
liver, as shown in Fig. 1(A). Each region is represented by different 
colors, corresponding to these different organs. According to the rele
vant work by Hou et al. [53], the optical parameters of each organ at 
650 nm in the model are presented in Table 3.

In the cylindrical heterogeneous model, the single-source experiment 
simulates an actual fluorescent source by setting a homogeneous sphere 
with a radius of 1 mm at (− 2, − 5, 5) mm. The dual-source experiment 
simulates actual fluorescent sources by setting two homogeneous 
spheres, each with a radius of 1 mm, at the positions (− 5, − 5, 7) mm and 
(− 5, − 5, 17) mm, respectively. In the noise resistance experiment, 
Gaussian noise levels of 5 %, 10 %, 15 %, 20 %, and 25 % were 
sequentially added to the single-source experiment to observe changes 
in reconstruction performance, evaluating the accuracy and robustness 
of ROMP-DCP.

During the FMT reconstruction process, we typically use a tetrahe
dral mesh structure of the physical model to highlight the discretization 
process in the forward simulation. The establishment of the mesh pro
vides a foundation for subsequent light propagation calculations. 
Therefore, we used Comsol Multiphysics software to segment the model 
into a tetrahedral mesh [54]. This mesh consisted of 4626 nodes and 
25,840 tetrahedral elements, as shown in Fig. 1(B). When performing 

optical simulations of biological tissues, the molecular optical simula
tion environment (MOSE) based on the Monte Carlo method [55] is 
often used. It can simulate the actual optical properties and morpho
logical characteristics of biological tissues. Fig. 1(C) shows the forward 
simulation results for the single-source, used to obtain the surface 
fluorescence distribution, facilitating the subsequent reconstruction of 
the internal fluorescence distribution through the algorithm. The 
simulation results display the distribution of light intensity emitted from 
the source, with different color regions indicating varying light 
intensities.

3.2.2. In vivo experiment
To further evaluate the feasibility and practicality of ROMP-DCP for 

in vivo imaging, we conducted in vivo experiments according to the 
protocol approved by the Animal Ethics Committee of Northwest Uni
versity of China. The experiment involved a female BALB/c nude mouse, 
using an FMT/CT dual-modality imaging system with a transmission 
optical path. This system provides both anatomical and optical infor
mation. By integrating multi-angle fluorescence images with CT data, 
we estimated the location of in vivo fluorescence target and optimized 
the feasible region settings. The imaging system structure is illustrated 
in Fig. 2. The experimental process is as follows:

The initial step involved injecting a 1 mm-radius spherical fluores
cent bead into a Cy5.5 fluorescent dye solution, which was then 
implanted into the abdominal cavity of the mouse to serve as a fluo
rescent target. The mouse was anesthetized with an appropriate anes
thetic and placed on a rotating stage to ensure stability during the 
experiment. A 650 nm continuous wave semiconductor laser was 
employed to excite the fluorescent target. Subsequently, fluorescence 
data were collected from the surface of the organism using a highly 
sensitive EMCCD camera (IxonUltra888). These data were essential for 
generating clear fluorescence images, which is a critical step for visu
alizing the fluorescent distribution and ensuring the accuracy of subse
quent analysis.

After the fluorescence imaging, the mouse underwent imaging with a 
Micro-CT system to acquire detailed anatomical and tissue structure 
information. CT imaging provided an important anatomical reference 
for fluorescence imaging and facilitated the precise localization of the 
fluorescent target, enhancing the comprehensive analysis value of the 
imaging results.

Next, we segmented the anatomical structures of major organs, 
including muscles, heart, lungs, stomach, liver, and kidneys, and inte
grated them into the mouse model. Finally, the 2D fluorescence images 
were mapped onto the 3D mouse model surface through registration 
points. We discretized the mouse model into 3057 nodes and 16,627 
tetrahedral elements for FMT reconstruction. The 3D view of the mouse 
model is shown in Fig. 3(A). Its tetrahedral mesh is shown in Fig. 3(B). 
The actual implanted source center position was (9.5, 14, 18) mm. To 

Fig. 1. (A) The 3D view of the cylindrical heterogeneous model. (B) The tetrahedral mesh of the physical model. (C) The forward simulation result of the sin
gle-source.
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evaluate the practicality of ROMP-DCP in vivo experiment, we compared 
it with the other three algorithms.

3.3. Experimental setup

3.3.1. Single-source simulation results
In the single-source spherical simulation experiment, the IVTCG, 

ROMP, and HTPA algorithms were compared with our ROMP-DCP al
gorithm. The 3D views of the reconstructed results and the reconstructed 
slice views at the Z = 5 mm plane are shown in Fig. 4.

In the 3D views, the reconstructed fluorescence sources are displayed 
as cyan-colored regions. In the slice views, the white circles represent 
the actual positions and areas of the light sources, while the cyan areas 
depict the reconstructed sources. Table 4 summarizes the quantitative 

Table 3 
Optical parameters of organs in a nonhomogeneous cylinder at 650 nm.

Tissue μax(r)
[
mm− 1] μsx(r)

[
mm− 1] μam(r)

[
mm− 1] μsm(r)

[
mm− 1] g

Muscle 0.0052 10.80 0.0068 10.30 0.90
Heart 0.0083 6.733 0.0104 6.60 0.85
Bone 0.0060 60.09 0.0030 30.74 0.90
Lungs 0.0133 19.70 0.0203 19.50 0.90
Liver 0.0329 7.00 0.0176 6.60 0.90

Fig. 2. The principal diagram of the FMT/CT imaging system.

Fig. 3. (A) The 3D view of the mouse model. (B) The 3D view of the tetrahedral mesh.
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analysis results of the four algorithms. From the experimental results, it 
can be observed that our proposed ROMP-DCP algorithm outperforms 
the IVTCG, ROMP, and HTPA methods. Specifically, ROMP-DCP has the 
LE of 0.337 mm, which is significantly lower than the LE values of the 
other methods: 0.553 mm for IVTCG, 0.763 mm for ROMP, and 0.792 
mm for HTPA. This lower LE indicates that the reconstructed light 
source positions are closer to the actual positions, showcasing the ac
curacy of our algorithm. Additionally, ROMP-DCP achieves the highest 
DICE of 0.872, reflecting its superior ability to recover the shape of the 
source region. In contrast, IVTCG has a DICE of 0.452, ROMP has a DICE 
of 0.556, and HTPA has the lowest DICE of 0.365. These results suggest 
that while the other methods provide reasonable localization, they 
struggle with accurately reconstructing the source shape. In summary, 
the ROMP-DCP algorithm demonstrates both robust localization and 
effective shape recovery.

3.3.2. Dual-source simulation results
To further evaluate the performance of ROMP-DCP under more 

complex scenarios, we conducted dual-source experiments using 
different algorithms. Fig. 5 shows the 3D reconstruction results and 
longitudinal slice display results of the dual-source experiment, while 
Table 5 presents the quantitative analysis results of the aforementioned 
methods.

The experimental results demonstrate that the ROMP-DCP method 
achieves the smallest total LE, with a value of 0.814 mm. Like the HTPA 
algorithm, the total LE is 2.115 mm, indicating that the localization 
accuracy is poor. The reconstruction results of the IVTCG and ROMP 
algorithms show that the signal sources are overly sparse, whereas the 
reconstruction results of the ROMP-DCP algorithm are closest to the 
actual signal sources. Additionally, the DICE value is also the highest 
compared to the other algorithms. This value indicates a robust overlap 

between the reconstructed regions and the actual fluorescence source 
regions, with the ROMP-DCP method achieving substantial accuracy in 
shape recovery. In contrast, the DICE values for the two light sources 
reconstructed by the ROMP algorithm were 0.480 and 0.393, respec
tively, revealing a significant drop in their ability to recover the shape of 
the source regions. From the data and figures, our experimental results 
indicate superior FMT reconstruction outcomes. In the case of multiple 
light sources, this method can accurately identify the actual positions of 
multiple sources and exhibits excellent performance in shape recovery, 
effectively reconstructing the spatial structure of the light sources. 
Overall, compared to the other three methods, the ROMP-DCP method 
exhibits the best reconstruction performance in terms of localization 
accuracy and shape recovery.

3.3.3. Anti-noise experiment
To validate the robustness of ROMP-DCP, the following anti-noise 

experiment was designed. Based on the single-source experiment, 
where the center coordinate of the light source is (− 2, − 5, 5) mm, 
Gaussian noise was successively added at levels of 5 %, 10 %, 15 %, 20 
%, and 25 %. Fig. 6 shows the variation of LE and DICE value under 
different levels of Gaussian noise. Observing the data, we can see that 
despite the addition of noise, the fluctuations in LE are minimal, stabi
lizing between 0.3 and 0.4 mm, while the DICE value remains between 
0.8 and 0.9. Overall, both the changes in the LE results and the DICE 
values remain relatively stable. Therefore, the noise resistance experi
ment results indicate that the ROMP-DCP method exhibits good noise 
resistance and strong robustness in FMT reconstruction.

3.3.4. In vivo experiment results
To further demonstrate the advantages of the ROMP-DCP method, 

we designed in vivo imaging experiments to verify its feasibility in living 
subjects. The 3D and slice views are shown in Fig. 7. Quantitative 
analysis of the reconstruction results from the four methods is presented 
in Table 6. The experimental results indicate that ROMP-DCP achieved 
the smallest LE at 0.369 mm, while the other three methods showed 
higher values: IVTCG at 0.544 mm, ROMP at 0.702 mm, and HTPA at 
0.962 mm. In terms of shape recovery, the ROMP-DCP algorithm also 
achieved the highest DICE score, at 0.648, which is approximately 3.57 
times greater than that of the HTPA algorithm. This result highlights the 
effectiveness of ROMP-DCP algorithm in accurately reconstructing 
source shapes. Compared to other methods, the ROMP-DCP algorithm 

Fig. 4. The reconstruction results of single-source using four different methods.

Table 4 
Quantitative results in single-source simulation reconstruction experiment.

Method Actual source 
center (mm)

Reconstructed source 
center (mm)

LE 
(mm)

DICE

IVTCG (− 2, − 5, 5) (− 2.216, − 4.492, 5.016) 0.553 0.452
ROMP (− 2.292, − 4.389, 5.350) 0.763 0.556
HTPA (− 2.402, − 4.341, 5.206) 0.792 0.365
ROMP- 

DCP
(− 2.051, − 4.714, 5.170) 0.337 0.872
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demonstrates superior localization accuracy and shape recovery, suc
cessfully locating and reconstructing clear shapes of the spatial light 
sources.

4. Discussion

FMT is a 3D imaging technology that reconstructs molecular distri
bution images within biological tissues by detecting fluorescently 
labeled probes. With its high sensitivity and non-invasive property, FMT 
plays a significant role in tumor research, drug development, and gene 
expression monitoring. However, due to the severe ill-posedness and 

instability in the reconstruction process of FMT, the imaging quality is 
often poor. To address this issue, a sparse reconstruction method for 
FMT based on the ROMP-DCP approach is proposed in this paper. This 
method incorporates prior knowledge, such as sparsity priors, to miti
gate the ill-posedness of the FMT inverse problem. The ROMP-DCP al
gorithm integrates the advantages of CS theory and DL techniques, 
demonstrating exceptional capabilities in sparse representation. It ad
dresses the sparsity of signals and enhances the reconstruction quality by 
learning the intrinsic structures of data.

The implementation of the ROMP-DCP algorithm is primarily 
divided into two main phases: a sparse coding phase and a dictionary 
learning phase. During the sparse coding phase, the ROMP algorithm is 
utilized, an efficient greedy algorithm employed for selecting atoms 
most relevant to the fluorescence distribution within an overcomplete 
dictionary. This method constructs a sparse representation of the fluo
rescence signals, where each atom corresponds to a significant feature of 
the distribution. To enhance the accuracy of reconstruction further, 
regularization constraints are introduced, which control noise and ar
tifacts during the reconstruction process, ensuring the sparsity and 
robustness of the results. In the dictionary update phase, During the 
dictionary update phase, DCP and DCA techniques are applied to 
address the sparse optimization problem of the dictionary. These tech
niques allow for iterative updates of the dictionary under fixed sparse 
representation conditions, capturing and learning the intrinsic features 
of the data more effectively. This process not only optimizes the atoms of 
the dictionary but also enhances the performance of algorithm by 
adapting to the specific characteristics of the data. These two phases are 
iteratively updated alternately to obtain more accurate and sparse 
reconstruction results of fluorescence distribution.

To verify the effectiveness of the proposed ROMP-DCP method, we 
designed a series of numerical simulation experiments and in vivo 

Fig. 5. The reconstruction results of dual-source using four different methods.

Table 5 
Quantitative results in dual-source simulation reconstruction experiment.

Method Actual source 
center(mm)

Reconstructed 
source 
center (mm)

LE 
(mm)

Total LE 
(mm)

DICE

IVTCG (− 5, − 5, 7) 
(− 5, − 5, 17)

(− 5.120, − 4.856, 
7.987) 
(− 4.794, − 4.616, 
17.226)

1.004 
0.491

1.495 0.512 
0.449

ROMP (− 5, − 5, 7) 
(− 5, − 5, 17)

(− 5.801, − 4.766, 
7.108) 
(− 4.712, − 4.614, 
17.335)

0.842 
0.587

1.329 0.480 
0.393

HTPA (− 5, − 5, 7) 
(− 5, − 5, 17)

(− 5.943, − 4.861, 
6.863) 
(− 4.221, − 4.154, 
17.081)

0.963 
1.152

2.115 0.497 
0.470

ROMP- 
DCP

(− 5, − 5, 7) 
(− 5, − 5, 17)

(− 5.143, − 4.444, 
7.105) 
(− 5.042, − 4.799, 
16.892)

0.583 
0.231

0.814 0.600 
0.674
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experiments. We quantitatively compared and analyzed IVTCG, ROMP, 
HTPA, and ROMP-DCP methods. In the single-source experiment, our 
proposed ROMP-DCP method achieved the lowest LE of 0.337 mm and 
the highest DICE value of 0.872. Compared to other methods, ROMP- 
DCP demonstrated the best reconstruction performance in single- 
source reconstruction. The dual-source experiment results indicated 
that ROMP-DCP achieved better reconstruction localization accuracy 
and shape recovery. In the anti-noise experiments, the results obtained 
by the ROMP-DCP method showed smaller fluctuations, indicating that 
this algorithm has strong robustness and stability. To further verify the 
feasibility and practicality of our proposed ROMP-DCP method, we 

designed in vivo experiments. All experimental results showed that 
ROMP-DCP has good localization accuracy and shape recovery perfor
mance, enabling more accurate reconstruction results.

5. Challenges and future directions

Despite the significant effects achieved by the ROMP-DCP method in 
FMT, there are still some limitations. Firstly, the sparsity level S de
termines the number of non-zero elements in the sparse representation, 
which affects the results of FMT reconstruction. However, the selection 
of the sparsity level S is currently done manually. While S is a positive 
integer, simplifying the parameter selection process, we recognize that 
our method may lack an adaptive mechanism to automatically adjust S 
based on data. We believe this is an important research direction and 
plan to explore how to develop such a mechanism in the future to ensure 
sparse representation while preserving important information. Sec
ondly, based on DCP technique, we developed the DCA. As an iterative 
algorithm, DCA can result in a long learning process. Therefore, future 
work will focus on developing more efficient reconstruction algorithms 
to improve reconstruction speed and computational efficiency, thereby 
enhancing the feasibility of the algorithm in practical applications.

Furthermore, while the paper primarily focuses on the application of 

Fig. 6. Results of the anti-noise experiment for FMT single-source reconstruction.

Fig. 7. Reconstruction results of the in vivo experiment using four different methods.

Table 6 
Quantitative results of the in vivo experiment.

Method Actual source 
center (mm)

Reconstructed source 
center (mm)

LE 
(mm)

DICE

IVTCG (9.5, 14, 18) (9.432, 14.508, 17.816) 0.544 0.300
ROMP (9.981, 14.199, 18.471) 0.702 0.574
HTPA (10.167, 14.014, 18.693) 0.962 0.182
ROMP- 

DCP
(9.715, 14.294, 17.939) 0.369 0.648
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ROMP-DCP in FMT, we believe that this method has potential applica
tions in other imaging modalities as well. Specifically, FMT shares 
similarities with X-ray luminescence computed tomography [14], 
bioluminescence tomography [56], and Cherenkov luminescence to
mography [57] in terms of optical properties and sparse representation. 
The DL strategy in the ROMP-DCP method can effectively capture the 
sparse features of light sources, which may hold significant value for 
improving reconstruction algorithms in these other imaging techniques. 
Therefore, it is necessary to further verify the feasibility and effective
ness of the ROMP-DCP method in other optical tomography imaging 
techniques. Finally, in this study, we implanted a spherical target in the 
in vivo experiments, because early tumors typically present as spherical. 
The ROMP-DCP algorithm assumes that tumor is sparse, which theo
retically allows for application in early tumor detection. However, we 
recognize that actual tumor targets may be more complex, including 
heterogeneous tumors and irregular shapes. Therefore, further research 
is needed to address these more complex scenarios and improve the 
proposed method. Future studies will focus on exploring the potential 
application of this algorithm in preclinical and clinical settings.

6. Conclusion

In conclusion, we proposed a dictionary learning method based on 
ROMP-DCP to address the FMT inverse problem, achieving significant 
improvements in FMT reconstruction accuracy. By alternately opti
mizing the sparse coding and dictionary update stages, the ROMP-DCP 
method not only ensures sparsity but also demonstrates robustness to 
noise and optimizes dictionary atoms to obtain stable solutions. We 
evaluated the performance of our algorithm through a series of nu
merical simulations and in vivo experiments. Compared to IVTCG, 
ROMP, and HTPA methods, our approach exhibited superior perfor
mance in localization accuracy, morphological recovery, and noise 
robustness. In future work, we aim to refine the ROMP-DCP recon
struction method further by optimizing its computational efficiency and 
adaptability to more complex tissue structures. Additionally, we will 
explore its feasibility for clinical applications.
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