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Fluorescence molecular tomography (FMT) is a cost-effective, high-resolution imaging technique that offers non-
invasive 3D visualization of targets labeled with fluorescent probes. However, challenges arise due to light
scattering and absorption and the complexity of inverse problems, which hinder accurate reconstruction of
fluorescence distribution. To overcome these challenges and enhance the accuracy of fluorescence distribution
reconstruction, we propose a sparse reconstruction method based on dictionary learning via regularized
orthogonal matching pursuit and difference of convex programming (ROMP-DCP). ROMP-DCP implements the
dictionary learning strategy using an alternating optimization scheme. During the sparse coding phase, the
ROMP algorithm is adopted to ensure sparsity in line with internal light source distribution characteristics. In the
dictionary update stage, the incorporation of the difference of convex (DC) programming and the DC algorithm
ensures convergence and robustness. Through this ROMP-DCP approach, it effectively adapts to the intrinsic
structure of the data and captures its sparse features, thereby achieving more accurate and sparser FMT
reconstruction results. The results of numerical simulation experiments indicate that ROMP-DCP method obtains
the most accurate reconstruction results. Furthermore, the effectiveness of our method was further demonstrated
in the in vivo experiments. ROMP-DCP has the smallest localization error (LE), with a value of 0.369 mm. In
comparison, the other three methods have higher values: IVTCG is at 0.544 mm, ROMP at 0.702 mm, and HTPA
at 0.962 mm. In addition, ROMP-DCP method also has the highest Dice similarity coefficient (DICE), which is
0.648. Overall, ROMP-DCP holds significant potential for improving the reconstruction accuracy and stability of
FMT in biomedical applications.

1. Introduction biological tissues. However, FMI provides 2D imaging and is limited to

capturing fluorescence distribution information on the surface of objects

Fluorescence molecular imaging (FMI), a technique widely used in
preclinical and clinical research, employs fluorescently labeled mole-
cules to visualize the distribution and activity of specific targets within
biological organisms [1-3]. For FMI, an external excitation light source
is required to stimulate the fluorescent molecular probes, inducing them
to emit fluorescence. These fluorescent signals are detected, allowing
the acquisition of molecular information within the body [4]. FMI is
characterized by its high sensitivity, high specificity, and non-invasive
property, making it suitable for detecting fluorescence sources in
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[5]. As an extension of FMI, fluorescence molecular tomography (FMT)
utilizes reconstruction algorithms to enable 3D imaging of fluorescent
probes distribution within biological tissues [6,7], providing informa-
tion about the internal structure and function. Today, FMT is widely
applied in biomedical research and preclinical diagnostics, providing a
crucial non-invasive imaging tool for disease diagnosis, treatment
monitoring, and drug development [8-10].

Although FMT holds significant advantages, it still faces significant
challenges regarding imaging quality and measurement accuracy in
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biological tissues [11-13]. Firstly, the strong scattering effect of photons
creates a nonlinear relationship between surface measurements of
fluorescence signals and the distribution of internal fluorescence sour-
ces, and the simplified photon propagation model affects detection ac-
curacy [14]. Secondly, during the FMT reconstruction process,
background noise, such as the autofluorescence emitted by the biolog-
ical body itself, can also significantly affect the accuracy of the imaging.
Additionally, the limited information from surface measurements
compared to unknown internal sources results in an ill-posed inverse
reconstruction problem, where the number of equations is insufficient
for the unknowns, potentially leading to non-unique solutions [15].

To address these issues effectively and ensure accurate and stable
reconstruction results, various effective strategies have been proposed
by researchers. An effective strategy is to improve the accuracy of the
photon propagation model. In the reconstruction of FMT, incorporating
detailed anatomical structure information provided by computed to-
mography (CT) or magnetic resonance imaging (MRI) can significantly
enhance its accuracy [16]. CT yields density data of bones and soft tis-
sues, while MRI offers detailed soft tissue structure, facilitating the
precise simulation of photon scattering and absorption across different
tissues. Another category of methods addresses the ill-posedness of the
inverse problem by utilizing a regularization framework, effectively
narrowing down the space of feasible solutions. Tikhonov regularization
is a widely applied optimization method that enhances the stability of
solutions by adding an Ly-norm [17], but it may lead to a loss of detail
and over-smoothing [18]. Furthermore, Li-norm regularization is
commonly introduced into the objective function to impose sparse
constraints [19]. The L;-norm can be viewed as a convex relaxation of
the Lo-norm [20],which promotes sparsity during the image recon-
struction [21]. However, the linear sparsity penalty of L;-norm may
overly constrain weaker features, leading to the loss of important fea-
tures in FMT reconstruction. In contrast, L,-norm (0 <p < 1) can con-
trol sparsity in a wider range and handle sparse signals more flexibly.
When p <1, L,-norm is more effective than L;-norm in promoting
sparsity, resulting in more accurate solutions during FMT reconstruction
[22,23].Notably, most traditional regularization methods typically
require the selection of an appropriate regularization parameter through
extensive experience and experimentation.

In recent years, deep learning has shown broad application prospects
in FMT [24,25], enhancing FMT reconstruction quality and data pro-
cessing efficiency. Huang et al. proposed a deep convolutional neural
network (DCNN) [26], which alleviates errors caused by grid registra-
tion in traditional methods to some extent. Zhang et al. proposed a new
3D fusion dual-sampling deep learning network model (UHR-DeepFMT)
to achieve ultra-high spatial resolution reconstruction in FMT [27].
However, deep learning techniques have certain limitations in practical
applications. In the training of network models, it is necessary to
generate different training datasets for different imaging objects [15].
Additionally, due to the inability to obtain a large amount of in vivo data,
researchers often rely on simulated data to drive their research.

In addition to deep learning methods, some researchers have com-
bined compressed sensing (CS) theory with greedy algorithms for FMT
reconstruction. The stagewise orthogonal matching pursuit (StOMP) is
proposed to construct a sparse solution by selecting multiple eligible
atoms at each iteration [19]. Compared to StOMP, the regularized
orthogonal matching pursuit (ROMP) algorithm [28] more effectively
approximates the original signal while ensuring sparsity, through a
better atom-selection method. However, traditional greedy algorithms
primarily focus on sparsity constraints and do not fully consider the
structural characteristics of signals within subspaces [29]. Therefore,
these methods suffer from serious issues such as inaccurate reconstruc-
tion of light source positions, low morphological similarity, and insta-
bility. To overcome these challenges, we incorporated a dictionary
learning (DL) strategy [30,31] into our method. DL is essentially an
optimization problem based on the iterative update between the
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dictionary and sparse coding [32]. Since sparsity is typically measured
by the Lo-norm, this leads to a non-convex optimization problem,
increasing the difficulty of solving it. Research has shown that difference
of convex programming (DCP) can decompose non-convex function into
the difference of two convex functions [33], transforming the problem
into a more manageable form. To further address the convex optimiza-
tion problem and enhance the interrelationships between atoms, we
developed the DC algorithm (DCA) [34]. This algorithm adjusts the di-
rections of the atoms in the dictionary through an optimization process,
allowing for better adaptation to the characteristics of the data. By using
this method to train a dictionary for the given fluorescence distribution
data, we can more effectively capture the unique features and intrinsic
structure of the signals, thereby enhancing the recovery of sparse sig-
nals. It considers both the sparsity of the signal and the relationship
between atoms, making the recovery process more efficient and precise.
Its adaptability and accuracy contribute to achieving higher-resolution
FMT reconstruction from limited data.

A sparse reconstruction method based on dictionary learning via
regularized orthogonal matching pursuit and difference of convex pro-
gramming (ROMP-DCP) for robust FMT is proposed in this paper. The
main contributions of this paper can be highlighted as follows:

(1) We effectively combine the ROMP algorithm and the DCP method
through the DL strategy. The DL algorithm in this paper employs
an alternating iterative method to optimize the sparse coding and
dictionary update phases.

(2) In the sparse coding phase, the ROMP algorithm combines greedy
strategy and regularization mechanism to ensure sparse and ac-
curate reconstruction, enhancing noise robustness by selecting
inner products with similar magnitudes.

(3) In the dictionary update phase, we employ DCP to avoid direct
handling of a non-convex function by only processing its convex
components. The developed DCA optimizes the dictionary atoms,
enabling a better representation of the data and leading to more
accurate and sparse reconstruction results for the fluorescence
distribution.

(4) We have analyzed and systematically summarized the computa-
tional complexity of the ROMP-DCP algorithm to better elucidate
its efficiency, highlighting the contributions of each stage in the
process.

(5) To evaluate the comprehensive performance of our proposed
ROMP-DCP method, we conducted a series of numerical simula-
tion experiments and in vivo experiments. Experimental results
show that ROMP-DCP outperforms other methods in terms of
localization error (LE) and Dice similarity coefficient (DICE).

The structure of this paper is organized as follows: In Section 2, we
introduce the FMT forward model, the FMT inverse problem, and the
ROMP-DCP method. In Section 3, we describe the details and results of
the numerical simulations and in vivo experiments. In Section 4, we
discuss the work presented in this paper. In Section 5, we illustrate the
challenges of this study and outline future research directions. In Section
6, we provide the conclusion of the paper.

2. Methodology
2.1. Forward problem

The complex structure of biological tissues leads to various intricate
phenomena during the propagation of near-infrared light, including
reflection, absorption, scattering, and refraction. In FMT imaging, the
radiative transfer equation (RTE) [35] is commonly used to describe the
propagation of photons in biological tissues. The time-domain expres-
sion of the light propagation model constructed through the RTE is
presented in [15]. However, the RTE is typically a complex integra-
l-differential equation that is challenging to solve directly. Typically,
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computational resources are limited, and FMT is a rapid imaging tech-
nique, which has certain requirements for imaging time [36]. Therefore,
researchers have proposed some simplified and approximate forms of
the RTE, including: the diffusion equation (DE) [37], the simplified
spherical harmonics (SPy) [38], etc. The DE, as a low-order RTE
approximation model, is simple to solve and suitable for tissues with
high scattering and low absorption, and it is more commonly used in
practical applications. The propagation process of photons described by
DE is defined as follows:

V- De(r)VOx(1) | = Hon ()P (r) = —O5(r —15)
{ V- [Don(r) V(1) | = piom (1) P (1) = —Du (1)1 (r)

(reQ)
(reQ)

@

Here, V denotes the gradient operator, and Q represents the domain of
the imaged object. The parameters i, j,, represent the absorption and
scattering coefficients at the excitation wavelength, while pug.,.kn,
represent the absorption and scattering coefficients at the emission
wavelength. D, and Dy, are the optical diffusion coefficients for the
excitation and emission processes, respectively, defined as Dy, =
1/3(paxam +(1 = G)igyom ), where G is the anisotropy parameter [39].
®,(r) and ®n,(r) respectively represent the photon flux during the
excitation and emission processes. ©5(r —r;) denotes the excitation light
source, where © is the light source intensity. nu(r) represents the
fluorescence yield to be recovered.

By introducing Robin-type boundary conditions to solve the coupled
DE, we have:

2D, (N V@ (1) + q@ 1 (r) = O(r € 0Q) 2

Here, 0Q denotes the boundary of the biological tissue, and q is a con-
stant representing the refractive index difference between the biological

tissue surface and the air. It can be approximated as q ~ 2%, and R =

—1.4399n2 4+0.7099n! +0.6681 4+-0.0636n. For a non-contact FMT
imaging system, n is approximately equal to 1.4 [29].To solve the dif-
ferential Eq. (1) with the Robin boundary condition (2), we use the finite
element method (FEM). This approach establishes a linear relationship
between the surface measurement data and the unknown fluorescence
yield:

AX=B (€))

where A € RM*N(M«N) represents the system weight matrix, X =
(X1,Xz, --Xy)" € RV denotes the distribution of the internal fluores-
cence sources to be reconstructed, and B = (by, b, ~--bN)T € RM*1 rep-
resents the measured fluorescence distribution on the surface. Some
notations used in this paper are summarized in Table 1, and some ac-
ronyms and abbreviations used in this paper are listed in Table 2.

2.2. DCP and DCA

DCP and DCA are used to solve non-convex optimization problems
[40,41], forming the foundation of global optimization and non-convex
programming, originally proposed by Tao in 1985. DCP decomposes
complex non-convex optimization problems into a series of easily solv-
able convex subproblems [42], while DCA progressively approaches the
optimal solution of the original problem by alternately minimizing these
convex subproblems. Within the framework of DCP, the original non-
convex problem is decomposed into the difference of two convex func-
tions, and the optimization form is as follows:

minf (x) = f1(x) —f2(x)(x € R") (C)]

where f(x) is a non-convex function in R", and fi (x) and f»(x) are lower
semi-continuous strictly convex functions. The function f(x) is referred
to as a DC function, and fi (x) ,f2(x) can be considered the DC compo-
nents of the DC function. Through this decomposition, we can iteratively
solve a series of convex subproblems to address non-convexity.
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Table 1
Notations used in this paper.

Notations Description

A € RMN(M«N) System weight matrix

X € RN<1 Sparse representation vector

B € RM¥1 Measured fluorescence photon distribution

M Row number of system weight matrix A and fluorescence
photon distribution B

Q The domain of the imaged object

N Column number of system weight matrix and row number of
sparse representation vector

S Sparsity level

aj Column vectors of matrix A

Dym Diffusion coefficients for excitation and emission

Hax > Hsx Absorption and scattering coefficients at excitation wavelength

Ham » Hsm Absorption and scattering coefficients at emission wavelength

k) Residual vector at the k iteration

AT, (A) 1, tr(A) Transpose of a matrix A,the inverse of matrix A and trace of a

matrix A
10 The column index set I of matrix A at the k iteration
P Correlation coefficients
f(x) Expression of a function
(x,h) The inner product of two sequence x,h
0] The component-wise product
Itlos 1Ny Lo-norm, L;-norm, Ly-norm
[l 2
Table 2
Acronyms and abbreviations.
Abbreviations  Full name
FMT Fluorescence molecular tomography
FMI Fluorescence molecular imaging
CT Computed tomography
ROMP Regularized orthogonal matching pursuit
DC Difference of convex
DCP Difference of convex programming
DCA Difference of convex algorithm
DL Dictionary learning
ROMP-DCP Regularized orthogonal matching pursuit and difference of convex
programming
IVTCG Incomplete variable truncated conjugate gradient
HTPA Half thresholding Pursuit algorithm
Cs Compressed sensing
2D,3D Two-dimensional, three-dimensional
RTE Radiative Transfer Equation
DE Diffusion equation
LE localization error
DICE Dice similarity coefficient

In each iteration k, the DCA approximates the concave part f2(x) at
the current point x* using its affine minorization g(x), thereby solving
the convex optimization problem [43]. Specifically, g(x) is defined as:

g(x) =fo (x®) + <x —x®, p® > 5)

Where h®) ¢ df,(x®)). The minorization process yields the following
form of convex programming:

k+1

x*V ¢ argminf, (x) — g(x)

< x*Y ¢ argmin f(x) — <x, h® > 6)

By pursuing the minimization of the above convex function in each
iteration, we ultimately obtain the optimal solution for problem (1),
which is x*+1), The DCA is summarized as Algorithm 1.

Algorithm 1: DCA

Initialization: x(*) € R", iteration k = 1
Iteration Process:

(continued on next page)
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(continued)

Algorithm 1: DCA

While k < kg do

1): Calculate h®) € 9f, (x®))

2): Calculate x*+1) ¢ argmin f; (x) —<x, ht®) >

Nk =k+1

4): Until convergence of x*) or meet the max iteration.
End while

It is worth mentioning that DCA is a descent algorithm that ensures
global convergence without the need for line search, and it has the
following key properties [44,45]:

@) If fy (x®D) —f (x kD) = £ (x®)) —f(x®)), then x®) is a critical
point of fi(x) —f2(x), and the algorithm terminates at the k th
iteration.

(2) If the optimal value of problem (4) is finite and the sequence
{x®} is bounded, then every limit point {x®} is a critical point
of f1(x) —f2(x).

(3) DCA converges linearly for general DC programs.

(4) DCA has a finite convergence for polyhedral DC programs. If f5(x)
is polyhedral and differentiable at x*, then x" is a local optimizer

of f1(x) —f2(x).

DCA guarantees that the value of the objective function decreases
progressively at each iteration. If the objective function is bounded
below, the iterative sequence will converge to a local optimum or a
stationary point. This ensures the convergence and stability of the al-
gorithm [46]. A more comprehensive and in-depth understanding of
DCA can be found in [47,48]. From this, we can conclude that DCA is an
effective algorithm for solving non-convex models.

2.3. Reconstruction based on ROMP-DCP method

The inverse problem in FMT is to determine the 3D distribution of the
light source to be reconstructed based on a known forward problem
model of light propagation. During the imaging process, light is absor-
bed and scattered within biological tissues, making the obtained solu-
tions often unstable and non-unique. This results in severe ill-posed of
the inverse reconstruction problem. In our research, we represent the
sparsity constraint in FMT reconstruction using L, regularization,
defined as follows:

1 .
EargmlnHAXfBHgs.t.HXHO <S8 7

where || X||, denotes the Ly-norm, and S is an integer that can be used to
adjust the sparsity level of the reconstruction result. In this paper, FMT
reconstruction is formulated as a dictionary learning problem. The
system matrix A can be regarded as an overcomplete dictionary, X
represents the weight coefficients of the column vectors in the dictio-
nary, and B is the result of the linear combination of the column vectors
in matrix A. Eq. (7) for A and X is typically non-convex. Therefore, we
adopt an iterative alternating strategy for DL, solving the problem
through two stages: the sparse coding stage and the dictionary update
stage. This process starts with an initialized dictionary and then
repeatedly executes these two stages until convergence. The sparse
coding stage employs the ROMP algorithm, which is known for its strong
stability and high efficiency. In FMT construction, the internal light
source distribution is typically small and sparse [49]. The ROMP algo-
rithm ensures that only a few of the most representative atoms are
selected to capture these sparse signals, thereby maintaining the sparsity
of the fluorescent source distribution. In the dictionary update stage, the
dictionary sparse optimization problem is effectively solved using
methods based on DCP and DCA.DCP decomposes the non-convex
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objective function into the difference of two convex functions, and
subsequently, DCA adjusts the direction of atoms in dictionary A by
solving two convex optimization problems in each iteration, allowing
them to better adapt to the features of matrix B.

2.3.1. The space coding stage

At this stage, by initializing and fixing the dictionary A, the sparse
representation X of the measurement vector B is generated. The objec-
tive optimization function can be expressed as:

1 )
5 argmin|B —AX|? st ||IX], <S. (8)

XeRNx1

Drawing on the use of typical greedy algorithms in compressive
sensing for signal reconstruction, we employ the ROMP algorithm to
achieve sparse representation in FMT. The ROMP algorithm combines
the speed and ease of use advantages of greedy algorithms with the
robustness of convex programming methods. Moreover, it introduces
regularization constraints during the greedy iteration process, enabling
the recovery of non-zero values from uncertain measurements with a
maximum of S iterations. In each iteration, ROMP selects a group of
atoms with similar magnitudes and updates the residual through an
orthogonalization step [50], ensuring that the sparse solution accurately
reflects the internal light source distribution.

When the sparsity level S is known, firstly, according to the principle
of correlation, we select the S largest values from the correlation co-
efficients P. If the number of non-zero values is less than S, then we select
all non-zero values and store their corresponding indices in the set J.
Here, the calculation of correlation coefficients P is as follows:

P = argmax|AT* V||, 9
j

where j represents the column vectors of matrix A (1 <j < N), and each

(k=1) represents the re-

column can be seen as an atom, denoted as g;. r"
sidual vector at the (k —1) iteration.

Next, according to the regularization principle, the atoms are
grouped, and the atom with the maximum energy is added to the subset
Jo. Specifically, the correlation coefficients of the atoms corresponding
to the indices in set J are grouped, and from these groups, the indices of
the atoms corresponding to the group with the maximum energy are
selected and stored in set Jy. Jy satisfies:

[P@)] < 2[P()IVi,j € Jo 10

Then, update the column index set I and the related column set A®) of
matrix A, as follows:

=1 yj, . .
{A(k) —AlD Zj Vi,j € Jo 11)
Finally, use the least squares method to obtain the approximate so-
lution and update the residual vector. The calculation method is as
follows:

X% = argmin|B — AW X®)| = (AU‘) TA<’<>) CabTp
X

) ®) ) ®1) (40T 4\ AT (12)

r —B_Alx® _B_A (A A) A®'B

Through this iterative update process, ensuring that the recon-
structed signal matches the characteristics of the fluorescent source
distribution. It is worth mentioning that the number of column vectors in
matrix A® is generally not S, because we impose a constraint ||[I®]], >
2S during the regularization and atom selection process. Therefore, the
number of column vectors in A% usually does not exceed 3 S.

2.3.2. The dictionary update stage
In the dictionary update stage, the objective optimization function
can be expressed as:
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%argminHB — AX|s.t|X]l, < S. as)
A

By fixing the sparse vector X, the solution to problem (13) is obtained
as:

min tr (ATAXX") — tr{ATBX") 14)

¢ = {AeR"" : |lgj|| =1Vj =1,2,..,N}

Here, we introduce a convex term f;(A) to solve (14) through DC
decomposition. The expression for f;(A) is as follows:

I—n
fi(A) = Eijlpj\la;HZ (15)

where p isan N x 1 dimensional column vector, with each element equal
to |XXT|, and g; is the column vector of matrix A.
Let P = XXT, Q = BX", we obtain the DC decomposition as follows:

1
filA) = Eijlf)j”asz

1 1 (16
£:0) =337 ol - (GraTap) - r(a%e) )

By this decomposition, DCP solves convex optimization problems in
each iteration, gradually converging to a sparse solution. Adopting the
DCA from Algorithm 1, Calculate H*-V € df,(A®~1), we obtain the
following solution:

k-1) _ (k-1)

HED jI(D @A(kZ{ZEA(A(kJ)P —Q 17

where DeRM*V is defined such that each row equals p. ® represents an

element-wise multiplication operation, where the elements at corre-

sponding positions in two matrices are multiplied to form a new matrix.
Then, we calculate A®) by optimizing the following function:

AWeargmin{fi(A) — (A, H* V) } 18)
A

Each column of the matrix H is represented by h;(j = 1,2,...,N). The
calculation is as follows:

AR — argmin{fl (A) — lT(HU"”TA(k’” ) }
A
1 (19)
. n .
A —argnin? (3plal? - .n"))

In the dictionary update stage, the formula for updating the column
vectors of matrix A is as follows:
PR
(k) — J
aj = - (20)
max = {p,, 1" |1}

The optimization process gradually adjusts the atoms in the dictio-
nary, allowing them to better adapt to the features of the input data B.
This dictionary update strategy captures the intrinsic structure and
sparsity of the signal, thereby improving the accuracy of sparse signal
recovery. We combine ROMP and DCP through the DL strategy, enabling
more effective capture of the sparse characteristics of internal light
sources in the FMT reconstruction process, while maintaining sensitivity
to signal details. To summarize, the flowchart of the ROMP-DCP method
is presented in Algorithm 2.

Algorithm 2: ROMP-DCP for FMT reconstruction

Input: Measured fluorescence photon distribution B € R¥*!, system matrix A € RM*N,
sparsity level S.

(continued on next column)
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(continued)

Algorithm 2: ROMP-DCP for FMT reconstruction

Initialization: X(©) =0, tol = 1e —5, residual vector r®) = B, index set I'”) = &, index
column matrix A®) = @, iteration k = 1, the maximum number of iterations kg, =
100.

While || X% — X*~1||, > tol or k < kmax do

Step 1: Sparse coding stage

1): Identify: Calculate observation vector and store the corresponding index J through
the Eq. (9).

2): Regularize: Choose the set J, with the maximal energy through the Eq. (10).

3): Update: Update index sets and atoms, obtain the approximate solution and
complete the update of residual through the Eq. (11), Eq. (12).

4): Stop criterion: until k > S or |[I® ||, > 2S or ¥ = 0, then stop the iteration.

Step 2: Dictionary update stage

1: Compute P = x0Wx®" @ = Bx®".

2: Compute H*~V) € df,(A*~1)) through the Eq. (17).

3:forj =1toN do

1): Update the column of matrix through the Eq. (20).

2): Normalizing a6 — %~

: Normalizing ¢;® = —L
! lg®]

End for

Step 3tk =k + 1

End while

Output:X = x*

2.4. Complexity analysis of the ROMP-DCP algorithm

Since each iteration of ROMP-DCP is performed in two stages, the
computational complexity of the algorithm is analyzed separately for the
sparse coding stage and the dictionary update stage. The computational
complexity of Algorithm 2 depends on the following parameters: the
sparsity level S (where S is a positive integer), the number of dictionary
rows M, and the number of dictionary columns N, with M<N. In the
sparse coding stage, the ROMP algorithm selects the dictionary atoms
that best match the fluorescence distribution data to construct a sparse
representation. This process requires calculating an M x N matrix and
solving a least squares problem, resulting in the computational
complexity of O(NS2+MN). In the dictionary update stage, the
computational complexity is primarily determined by terms such as XX7,
BX", and AXX”, which involve matrix multiplications essential for
refining the dictionary atoms. Thereby, the complexity is O(N*> + MN +
MN?). Nonetheless, the algorithm benefits from the convergence prop-
erties of DCP technology, enabling it to achieve stable solutions within a
manageable number of iterations.

3. Experiment and results

In this section, to evaluate the performance of the proposed ROMP-
DCP method in FMT reconstruction, we designed several sets of nu-
merical simulation experiments and in vivo experiments. We compared
the ROMP-DCP method with the incomplete variable truncated conju-
gate gradient method (IVTCG) based on L;-norm [51], the ROMP al-
gorithm based on Lo-norm [28], and the half thresholding Pursuit
algorithm (HTPA) based on L;/;-norm [52]. Comparisons were made
with IVTCG, ROMP, and HTPA algorithms in terms of localization ac-
curacy, morphological recovery, robustness, and practicality. All pro-
cesses were implemented in MATLAB (2021b) on a laptop equipped with
an Intel(R) Core(TM) i7-8550U CPU (1.80 GHz) and 8 GB RAM.

3.1. Evaluation metrics

To assess the performance of different reconstruction algorithms in
source localization and shape recovery, this study employs two
commonly used quantitative metrics: localization error (LE) and Dice
similarity coefficient (DICE).

LE is the Euclidean distance between the reconstructed source center
(xr,¥r,2r) and the actual source center (xt, yuzt). The calculation for-
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mula is as follows:

LE = /(% —x)* + 0 =y + 0 — o) @1

where the LE value is always positive, and a smaller LE value indicates
that the reconstruction result is closer to the actual position, thus
reflecting higher reconstruction localization accuracy.

The DICE is a metric that measures the shape similarity between the
reconstructed source and the true source. The calculation formula is as
follows:

21X, MY

DICE =
1X:| -+ |1 X ]

(22)

where X, represents the actual source region and Y; represents the
reconstructed source region. It evaluates the similarity between the two
source regions by calculating the degree of overlap. A value closer to 1
indicates a higher shape similarity, while a value closer to 0 indicates a
lower shape similarity.

3.2. Experimental setup

3.2.1. Numerical simulation experiments

A series of numerical simulation experiments were conducted based
on a cylindrical heterogeneous model with a radius of 10 mm and a
height of 30 mm to validate the performance of the algorithm. The
model consisted of five biological organs: muscle, heart, bone, lung, and
liver, as shown in Fig. 1(A). Each region is represented by different
colors, corresponding to these different organs. According to the rele-
vant work by Hou et al. [53], the optical parameters of each organ at
650 nm in the model are presented in Table 3.

In the cylindrical heterogeneous model, the single-source experiment
simulates an actual fluorescent source by setting a homogeneous sphere
with a radius of 1 mm at (—2, —5, 5) mm. The dual-source experiment
simulates actual fluorescent sources by setting two homogeneous
spheres, each with a radius of 1 mm, at the positions (—5, —5, 7) mm and
(=5, —5, 17) mm, respectively. In the noise resistance experiment,
Gaussian noise levels of 5 %, 10 %, 15 %, 20 %, and 25 % were
sequentially added to the single-source experiment to observe changes
in reconstruction performance, evaluating the accuracy and robustness
of ROMP-DCP.

During the FMT reconstruction process, we typically use a tetrahe-
dral mesh structure of the physical model to highlight the discretization
process in the forward simulation. The establishment of the mesh pro-
vides a foundation for subsequent light propagation calculations.
Therefore, we used Comsol Multiphysics software to segment the model
into a tetrahedral mesh [54]. This mesh consisted of 4626 nodes and
25,840 tetrahedral elements, as shown in Fig. 1(B). When performing
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optical simulations of biological tissues, the molecular optical simula-
tion environment (MOSE) based on the Monte Carlo method [55] is
often used. It can simulate the actual optical properties and morpho-
logical characteristics of biological tissues. Fig. 1(C) shows the forward
simulation results for the single-source, used to obtain the surface
fluorescence distribution, facilitating the subsequent reconstruction of
the internal fluorescence distribution through the algorithm. The
simulation results display the distribution of light intensity emitted from
the source, with different color regions indicating varying light
intensities.

3.2.2. In vivo experiment

To further evaluate the feasibility and practicality of ROMP-DCP for
in vivo imaging, we conducted in vivo experiments according to the
protocol approved by the Animal Ethics Committee of Northwest Uni-
versity of China. The experiment involved a female BALB/c nude mouse,
using an FMT/CT dual-modality imaging system with a transmission
optical path. This system provides both anatomical and optical infor-
mation. By integrating multi-angle fluorescence images with CT data,
we estimated the location of in vivo fluorescence target and optimized
the feasible region settings. The imaging system structure is illustrated
in Fig. 2. The experimental process is as follows:

The initial step involved injecting a 1 mm-radius spherical fluores-
cent bead into a Cy5.5 fluorescent dye solution, which was then
implanted into the abdominal cavity of the mouse to serve as a fluo-
rescent target. The mouse was anesthetized with an appropriate anes-
thetic and placed on a rotating stage to ensure stability during the
experiment. A 650 nm continuous wave semiconductor laser was
employed to excite the fluorescent target. Subsequently, fluorescence
data were collected from the surface of the organism using a highly
sensitive EMCCD camera (IxonUltra888). These data were essential for
generating clear fluorescence images, which is a critical step for visu-
alizing the fluorescent distribution and ensuring the accuracy of subse-
quent analysis.

After the fluorescence imaging, the mouse underwent imaging with a
Micro-CT system to acquire detailed anatomical and tissue structure
information. CT imaging provided an important anatomical reference
for fluorescence imaging and facilitated the precise localization of the
fluorescent target, enhancing the comprehensive analysis value of the
imaging results.

Next, we segmented the anatomical structures of major organs,
including muscles, heart, lungs, stomach, liver, and kidneys, and inte-
grated them into the mouse model. Finally, the 2D fluorescence images
were mapped onto the 3D mouse model surface through registration
points. We discretized the mouse model into 3057 nodes and 16,627
tetrahedral elements for FMT reconstruction. The 3D view of the mouse
model is shown in Fig. 3(A). Its tetrahedral mesh is shown in Fig. 3(B).
The actual implanted source center position was (9.5, 14, 18) mm. To

C

Fig. 1. (A) The 3D view of the cylindrical heterogeneous model. (B) The tetrahedral mesh of the physical model. (C) The forward simulation result of the sin-

gle-source.
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Table 3

Optical parameters of organs in a nonhomogeneous cylinder at 650 nm.
Tissue M (r) [mm ] Hee(r) [mm™1] Ham (r) [mm~1] Ho (r) [mm 1] g
Muscle 0.0052 10.80 0.0068 10.30 0.90
Heart 0.0083 6.733 0.0104 6.60 0.85
Bone 0.0060 60.09 0.0030 30.74 0.90
Lungs 0.0133 19.70 0.0203 19.50 0.90
Liver 0.0329 7.00 0.0176 6.60 0.90

/ X-ray generator

EMCCD

)

Laser source

Rotating platform

1
1
1
1
1
==

X-ray detector

Fig. 2. The principal diagram of the FMT/CT imaging system.
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Fig. 3. (A) The 3D view of the mouse model. (B) The 3D view of the tetrahedral mesh.

evaluate the practicality of ROMP-DCP in vivo experiment, we compared ROMP, and HTPA algorithms were compared with our ROMP-DCP al-
it with the other three algorithms. gorithm. The 3D views of the reconstructed results and the reconstructed

3.3. Experimental setup

3.3.1. Single-source simulation results

slice views at the Z = 5 mm plane are shown in Fig. 4.

In the 3D views, the reconstructed fluorescence sources are displayed
as cyan-colored regions. In the slice views, the white circles represent
the actual positions and areas of the light sources, while the cyan areas
depict the reconstructed sources. Table 4 summarizes the quantitative

In the single-source spherical simulation experiment, the IVTCG,
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Fig. 4. The reconstruction results of single-source using four different methods.
Table 4 between the reconstructed regions and the actual fluorescence source
a e. i L . . X i regions, with the ROMP-DCP method achieving substantial accuracy in
Quantitative results in single-source simulation reconstruction experiment. .
shape recovery. In contrast, the DICE values for the two light sources
Method Actual source Reconstructed source LE DICE reconstructed by the ROMP algorithm were 0.480 and 0.393, respec-
center (mm) center (mm) (mm) . . s . . P
tively, revealing a significant drop in their ability to recover the shape of
IVTCG (-2, -5,5) (—2.216, —4.492, 5.016) 0.553 0.452 the source regions. From the data and figures, our experimental results
ROMP (2292, ~4.389, 5.350) 0.763 0.556 indicate superior FMT reconstruction outcomes. In the case of multiple
HTPA (~2.402, —4.341, 5.206) 0.792 0.365 . . . . ..
ROMP- (~2.051, —4.714, 5.170) 0.337 0.872 light sources, this method can accurately identify the actual positions of
DCP

analysis results of the four algorithms. From the experimental results, it
can be observed that our proposed ROMP-DCP algorithm outperforms
the IVTCG, ROMP, and HTPA methods. Specifically, ROMP-DCP has the
LE of 0.337 mm, which is significantly lower than the LE values of the
other methods: 0.553 mm for IVTCG, 0.763 mm for ROMP, and 0.792
mm for HTPA. This lower LE indicates that the reconstructed light
source positions are closer to the actual positions, showcasing the ac-
curacy of our algorithm. Additionally, ROMP-DCP achieves the highest
DICE of 0.872, reflecting its superior ability to recover the shape of the
source region. In contrast, IVTCG has a DICE of 0.452, ROMP has a DICE
of 0.556, and HTPA has the lowest DICE of 0.365. These results suggest
that while the other methods provide reasonable localization, they
struggle with accurately reconstructing the source shape. In summary,
the ROMP-DCP algorithm demonstrates both robust localization and
effective shape recovery.

3.3.2. Dual-source simulation results

To further evaluate the performance of ROMP-DCP under more
complex scenarios, we conducted dual-source experiments using
different algorithms. Fig. 5 shows the 3D reconstruction results and
longitudinal slice display results of the dual-source experiment, while
Table 5 presents the quantitative analysis results of the aforementioned
methods.

The experimental results demonstrate that the ROMP-DCP method
achieves the smallest total LE, with a value of 0.814 mm. Like the HTPA
algorithm, the total LE is 2.115 mm, indicating that the localization
accuracy is poor. The reconstruction results of the IVTCG and ROMP
algorithms show that the signal sources are overly sparse, whereas the
reconstruction results of the ROMP-DCP algorithm are closest to the
actual signal sources. Additionally, the DICE value is also the highest
compared to the other algorithms. This value indicates a robust overlap

multiple sources and exhibits excellent performance in shape recovery,
effectively reconstructing the spatial structure of the light sources.
Overall, compared to the other three methods, the ROMP-DCP method
exhibits the best reconstruction performance in terms of localization
accuracy and shape recovery.

3.3.3. Anti-noise experiment

To validate the robustness of ROMP-DCP, the following anti-noise
experiment was designed. Based on the single-source experiment,
where the center coordinate of the light source is (-2, —5, 5) mm,
Gaussian noise was successively added at levels of 5 %, 10 %, 15 %, 20
%, and 25 %. Fig. 6 shows the variation of LE and DICE value under
different levels of Gaussian noise. Observing the data, we can see that
despite the addition of noise, the fluctuations in LE are minimal, stabi-
lizing between 0.3 and 0.4 mm, while the DICE value remains between
0.8 and 0.9. Overall, both the changes in the LE results and the DICE
values remain relatively stable. Therefore, the noise resistance experi-
ment results indicate that the ROMP-DCP method exhibits good noise
resistance and strong robustness in FMT reconstruction.

3.3.4. In vivo experiment results

To further demonstrate the advantages of the ROMP-DCP method,
we designed in vivo imaging experiments to verify its feasibility in living
subjects. The 3D and slice views are shown in Fig. 7. Quantitative
analysis of the reconstruction results from the four methods is presented
in Table 6. The experimental results indicate that ROMP-DCP achieved
the smallest LE at 0.369 mm, while the other three methods showed
higher values: IVTCG at 0.544 mm, ROMP at 0.702 mm, and HTPA at
0.962 mm. In terms of shape recovery, the ROMP-DCP algorithm also
achieved the highest DICE score, at 0.648, which is approximately 3.57
times greater than that of the HTPA algorithm. This result highlights the
effectiveness of ROMP-DCP algorithm in accurately reconstructing
source shapes. Compared to other methods, the ROMP-DCP algorithm
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Fig. 5. The reconstruction results of dual-source using four different methods.

Table 5
Quantitative results in dual-source simulation reconstruction experiment.
Method Actual source Reconstructed LE Total LE DICE
center(mm) source (mm) (mm)
center (mm)
IVTCG (-5, -5,7) (—5.120, —4.856, 1.004 1.495 0.512
(-5, =5,17) 7.987) 0.491 0.449
(—4.794, —4.616,
17.226)
ROMP (-5, -5,7) (—5.801, —4.766, 0.842 1.329 0.480
(-5, -5,17) 7.108) 0.587 0.393
(—4.712, —4.614,
17.335)
HTPA (-5,-5,7) (—5.943, —4.861, 0.963 2.115 0.497
(-5, -5,17) 6.863) 1.152 0.470
(~4.221, —4.154,
17.081)
ROMP- (-5,-5,7) (—5.143, —4.444, 0.583 0.814 0.600
DCP (-5, =5,17) 7.105) 0.231 0.674
(—5.042, —4.799,
16.892)

demonstrates superior localization accuracy and shape recovery, suc-
cessfully locating and reconstructing clear shapes of the spatial light
sources.

4. Discussion

FMT is a 3D imaging technology that reconstructs molecular distri-
bution images within biological tissues by detecting fluorescently
labeled probes. With its high sensitivity and non-invasive property, FMT
plays a significant role in tumor research, drug development, and gene
expression monitoring. However, due to the severe ill-posedness and

instability in the reconstruction process of FMT, the imaging quality is
often poor. To address this issue, a sparse reconstruction method for
FMT based on the ROMP-DCP approach is proposed in this paper. This
method incorporates prior knowledge, such as sparsity priors, to miti-
gate the ill-posedness of the FMT inverse problem. The ROMP-DCP al-
gorithm integrates the advantages of CS theory and DL techniques,
demonstrating exceptional capabilities in sparse representation. It ad-
dresses the sparsity of signals and enhances the reconstruction quality by
learning the intrinsic structures of data.

The implementation of the ROMP-DCP algorithm is primarily
divided into two main phases: a sparse coding phase and a dictionary
learning phase. During the sparse coding phase, the ROMP algorithm is
utilized, an efficient greedy algorithm employed for selecting atoms
most relevant to the fluorescence distribution within an overcomplete
dictionary. This method constructs a sparse representation of the fluo-
rescence signals, where each atom corresponds to a significant feature of
the distribution. To enhance the accuracy of reconstruction further,
regularization constraints are introduced, which control noise and ar-
tifacts during the reconstruction process, ensuring the sparsity and
robustness of the results. In the dictionary update phase, During the
dictionary update phase, DCP and DCA techniques are applied to
address the sparse optimization problem of the dictionary. These tech-
niques allow for iterative updates of the dictionary under fixed sparse
representation conditions, capturing and learning the intrinsic features
of the data more effectively. This process not only optimizes the atoms of
the dictionary but also enhances the performance of algorithm by
adapting to the specific characteristics of the data. These two phases are
iteratively updated alternately to obtain more accurate and sparse
reconstruction results of fluorescence distribution.

To verify the effectiveness of the proposed ROMP-DCP method, we
designed a series of numerical simulation experiments and in vivo
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Fig. 7. Reconstruction results of the in vivo experiment using four different methods.
designed in vivo experiments. All experimental results showed that
Table ,6 . o . ROMP-DCP has good localization accuracy and shape recovery perfor-
Quantitative results of the in vivo experiment. . .
mance, enabling more accurate reconstruction results.
Method Actual source Reconstructed source LE DICE
center (mm) center (mm) (mm) 5. Challenges and future directions
IVTCG (9.5, 14, 18) (9.432, 14.508, 17.816) 0.544 0.300
ROMP (9.981, 14.199, 18.471) 0.702 0.574 Despite the significant effects achieved by the ROMP-DCP method in
HTPA (10.167, 14.014, 18.693) 0.962 0.182 FMT. th till limitati Firstly. th itv 1 1S d
ROMP- (9715, 14.294, 17.939) 0.360 0.648 ; ere are still some limitations. 1rs. y, the sparsity leve ' e-
DCP termines the number of non-zero elements in the sparse representation,

experiments. We quantitatively compared and analyzed IVTCG, ROMP,
HTPA, and ROMP-DCP methods. In the single-source experiment, our
proposed ROMP-DCP method achieved the lowest LE of 0.337 mm and
the highest DICE value of 0.872. Compared to other methods, ROMP-
DCP demonstrated the best reconstruction performance in single-
source reconstruction. The dual-source experiment results indicated
that ROMP-DCP achieved better reconstruction localization accuracy
and shape recovery. In the anti-noise experiments, the results obtained
by the ROMP-DCP method showed smaller fluctuations, indicating that
this algorithm has strong robustness and stability. To further verify the
feasibility and practicality of our proposed ROMP-DCP method, we

10

which affects the results of FMT reconstruction. However, the selection
of the sparsity level S is currently done manually. While S is a positive
integer, simplifying the parameter selection process, we recognize that
our method may lack an adaptive mechanism to automatically adjust S
based on data. We believe this is an important research direction and
plan to explore how to develop such a mechanism in the future to ensure
sparse representation while preserving important information. Sec-
ondly, based on DCP technique, we developed the DCA. As an iterative
algorithm, DCA can result in a long learning process. Therefore, future
work will focus on developing more efficient reconstruction algorithms
to improve reconstruction speed and computational efficiency, thereby
enhancing the feasibility of the algorithm in practical applications.
Furthermore, while the paper primarily focuses on the application of
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ROMP-DCP in FMT, we believe that this method has potential applica-
tions in other imaging modalities as well. Specifically, FMT shares
similarities with X-ray luminescence computed tomography [14],
bioluminescence tomography [56], and Cherenkov luminescence to-
mography [57] in terms of optical properties and sparse representation.
The DL strategy in the ROMP-DCP method can effectively capture the
sparse features of light sources, which may hold significant value for
improving reconstruction algorithms in these other imaging techniques.
Therefore, it is necessary to further verify the feasibility and effective-
ness of the ROMP-DCP method in other optical tomography imaging
techniques. Finally, in this study, we implanted a spherical target in the
in vivo experiments, because early tumors typically present as spherical.
The ROMP-DCP algorithm assumes that tumor is sparse, which theo-
retically allows for application in early tumor detection. However, we
recognize that actual tumor targets may be more complex, including
heterogeneous tumors and irregular shapes. Therefore, further research
is needed to address these more complex scenarios and improve the
proposed method. Future studies will focus on exploring the potential
application of this algorithm in preclinical and clinical settings.

6. Conclusion

In conclusion, we proposed a dictionary learning method based on
ROMP-DCP to address the FMT inverse problem, achieving significant
improvements in FMT reconstruction accuracy. By alternately opti-
mizing the sparse coding and dictionary update stages, the ROMP-DCP
method not only ensures sparsity but also demonstrates robustness to
noise and optimizes dictionary atoms to obtain stable solutions. We
evaluated the performance of our algorithm through a series of nu-
merical simulations and in vivo experiments. Compared to IVTCG,
ROMP, and HTPA methods, our approach exhibited superior perfor-
mance in localization accuracy, morphological recovery, and noise
robustness. In future work, we aim to refine the ROMP-DCP recon-
struction method further by optimizing its computational efficiency and
adaptability to more complex tissue structures. Additionally, we will
explore its feasibility for clinical applications.
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