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ABSTRACT

Cerenkov Luminescence Tomography (CLT) is a promising optical molecular imaging technology. It involves the three-dimensional
reconstruction of the distribution of radionuclide probes inside a single object to indicate a tumor’s localization and distribution. However,
reconstruction using CLT suffers from severe ill-posedness, resulting in numerous artifacts within the reconstructed images. These artifacts
influence the visual effect and may misguide the medical professional (diagnostician), resulting in a wrong diagnosis. Here, we proposed a
deep unsupervised clustering-based post-processing framework to eliminate artifacts and facilitate high-fidelity CLT. First, an initial recon-
structed image was obtained by a specific reconstruction method. Second, voxel data were generated based on the initial reconstructed
result. Third, these voxels were divided into three groups, and only the group with the highest mean intensity was chosen as the final recon-
structed result. A group of numerical simulation and in vivo mouse-based experiments were conducted to assess the presented framework’s
feasibility and potential. The results indicated that the proposed framework could reduce the number of artifacts effectively. The recon-
structed image’s shape and distribution were more similar to the actual light source than those obtained without the proposed framework.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0025877

I. INTRODUCTION

Cerenkov luminescence imaging (CLI) is a promising imaging
modality for optical molecular imaging. CLI has captured the atten-
tion of many researchers in recent years, and its advantages include
low cost, widely available clinical radionuclide probes, and a rela-
tively high throughput.1–3 Briefly, CLI is an optical imaging techni-
que that can identify the distribution of radionuclide probes
(in two dimensions) by collecting the Cerenkov Luminescence (CL)
emitted from these probes as the isotope decays. Since the first
application of CLI to detect the 2-18fluoro-D-glucose (18F-FDG)
inside one mouse by Robertson et al., CLI has been successfully
used in the early diagnosis of tumors, the treatment of various

diseases, and in clinical surgery.4–8 One method to improve CLI’s
capability is to obtain a three-dimensional (3D) distribution of
radionuclide probes. To this end, Li et al. proposed a tomographic
method named Cerenkov Luminescence Tomography (CLT) in
2010.9 Subsequently, many researchers have devoted themselves to
developing methods to improve the accuracy of CLT reconstruction.
These include the prior information- and shrinking permission-
based methods.10–16 It is worth noting that most of these recon-
struction methods are based on the finite element method (FEM).
Using FEM, the whole domain of the imaging object is discretized
into a set of nodes, and this reconstruction aims to determine the
intensity of these nodes. The resolution of these methods, however,
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depends heavily on the discretization density of finite element
meshes. Over-dense grids will make reconstruction impossible, and
sparse grids will result in low resolution of reconstructed images.

Conversely, similar to traditional optical tomography, CLT’s
system matrix is usually ill-conditioned, leading to a highly ill-
posed reconstruction problem.5,17–19 Many methods have been pro-
posed for CLT to reduce ill-posedness significantly, but these
methods have been unable to produce extremely accurate results. In
the reconstructed image, nodes surrounding the target object show
a relatively high reconstruction intensity. These nodes are consid-
ered artifacts and would mislead the users to make a wrong diag-
nostic decision. Elimination of these artifacts requires an efficient
post-processing method. Unfortunately, up until now, only a few
methods have been proposed. One commonly used method is the
artificial threshold (ArT) method, which filters these artifacts by
setting a fixed threshold. Another method is the adaptive threshold
setting method proposed by Yi et al.20 Here, they sorted the nodes
in the reconstructed image and calculated a threshold to filter
them. In this way, the adaptive threshold setting method can avoid
the human intervention required in the ArT method. However,
these methods have two major drawbacks. First, both of them are
single threshold-based methods. If nodes surrounding or far-from
the target object have a significant intensity, it is hard to determine
a suitable threshold to filter those nodes out. Second, these single
threshold-based methods may reduce the quality of the recon-
structed image. If some nodes having a relatively low intensity exist
in the reconstructed target volume, these methods will also filter
out these nodes and reduce the reconstructed image’s fidelity.

Here, inspired by a deep neural network successfully applied
in imaging processing,21,22 we proposed a deep unsupervised
clustering-based post-processing framework for CLT. This frame-
work can improve the resolution and reduce the artifacts of the
reconstructed image, facilitating high-fidelity CLT. First, the initial
reconstructed results were obtained using a CLT reconstruction
method. Second, the 3D space where the reconstructed image
resides was transformed into voxelized data. These high density
grid-based voxelized data support increasing the spatial resolution
of the reconstructed image. Third, the deep unsupervised clustering
algorithm called deep embedded clustering (DEC),23 which jointly
learns feature representation and cluster assignments, was trained
to cluster these voxels into three groups. Finally, the group with the
highest mean intensity was selected as the final reconstructed
result. Compared with the traditional post-processing methods
mentioned above, our proposed framework has two main advan-
tages. These advantages include (1) the spatial resolution of the
reconstructed result can be significantly increased after voxeliza-
tion, which will be beneficial for obtaining a relatively precise shape
and providing high fidelity of the unknown target; (2) the proposed
framework can achieve a robust result, preventing the interference
of the noise voxels with a relatively high intensity, which cannot be
filtered out by merely setting a threshold.

The rest of this paper is structured as follows. The ArT post-
processing method, DEC algorithm, and post-processing frame-
work based on DEC for CLT are presented in Sec. II. Several
numerical simulation experiments and in vivo mouse experiments
are described in Sec. III to demonstrate the proposed method’s
effectiveness. Finally, we provide a conclusion in Sec. IV.

II. METHODS

A. Artificial threshold (ArT) method

After obtaining the initial reconstructed results, a traditional
method to eliminate the artifacts is to set a threshold using an
empirical intensity to filter out these artifacts. This procedure can
be defined as

ri ¼ ri, ri . γ �max(r),
0, otherwise,

�
(1)

where r denotes all the intensities of the reconstructed nodes and ri
denotes the ith node’s intensity. γ is an empirical number with a
range of 0–1.

B. Deep embedded clustering (DEC) algorithm

Deep embedded clustering (DEC) is an unsupervised cluster-
ing method based on the deep learning framework and can achieve
excellent performance for clustering studies. Briefly, DEC can be
divided into three stages. First, the Stacked Denoising Autoencoder
(SDAE), a famous deep neural network with a powerful expressive
ability, is trained using original data. The trained SDAE can map
multi-dimensional data into low-dimensional embedded vector
space, which can be defined as

fθ :X ! E, (2)

where X denotes the original data space. E denotes an embedded
vector space learned by SDAE, in which the embedded vector is an
effective feature representation of the original input data sample. θ
denotes the set of all the parameters of SDAE. Using the middle
layer of SDAE as the output layer, we can pass the original data
through the trained SDAE to get embedded data points. Then,
k-means clustering is performed in the feature space E to obtain k
cluster center C.

Second, the Student’s t-distribution is used as a kernel to
measure the similarity between the embedded vector ei and cluster-
ing center cj as

qij ¼
(1þ kei � cjk2/υ)�

υþ1
2P

j0 (1þ kei � c j0 k2/υ)�
υþ1
2

, (3)

where υ represents the degree of freedom, which is used for cross-
validation. Here, υ is set to 1 because we cannot cross-validate υ on
a validation set in the unsupervised setting. ei corresponds to the
original data xi after embedding. cj denotes the center of the jth
cluster in the embedded space, and k � k2 denotes L2-norm. So, qij
can be interpreted as the probability of assigning data i to cluster j.

Finally, the loss function of DEC is defined based on
Kullback–Leibler (KL) divergence as

L ¼ KL(PkQ) ¼
X

i

X
j
pijlog

pij
qij
, (4)
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where P denotes the target distribution, and it is defined as

pij ¼
q2ij/
P

i qijP
j0 q

2
i j0 /
P

i qi j0
: (5)

We jointly optimize the cluster centers {cj} and deep neural
network (DNN) parameters θ using Stochastic Gradient Descent
(SGD) with momentum. The gradients of L with respect to feature-
space embedding of each data point ei and each cluster centroid cj
are computed as

@L
@ei

¼ υþ 1
υ

X
j

1þ kei � cjk2
υ

 !�1

� ( pij � qij)(ei � cj), (6)

@L
@cj

¼ � υþ 1
υ

X
i

1þ kei � cjk2
υ

 !�1

� ( pij � qij)(ei � cj): (7)

The gradients @L
@ei

are then passed down to the DNN and
used in standard backpropagation to compute the DNN’s param-
eter gradient @L

@θ. We stop our procedure for discovering cluster
assignments when less than tol% of points change cluster assign-
ment between two consecutive iterations, similar to a previous
study.23 Notably, in our work, we implemented the DEC network
using PyTorch (Python 3.6), with the hardware environment
(3.6 GHz Intel Core i9-9900K CPU, 128 GB RAM, and four GTX
2080Ti GPUs).

C. DEC-based post-processing framework for CLT

As mentioned in Sec. I, the original reconstructed image
includes artifacts. In this section, a post-processing framework for
CLT is proposed. The flow chart of the proposed framework is
shown in Fig. 1.

First, based on the collected CL signals, a whole region recon-
struction is carried out to obtain the reconstructed result. It is
worth noting that the reconstructed result is a set of nodes, and
each of them has a reconstructed intensity. The result can be
defined as

R ¼ {vijvi [ Tj, val(vi) � 0, i ¼ 1, 2 . . . , n, j ¼ 1, 2 . . . , m}, (8)

where vi denotes the ith node, Tj is jth tetrahedron which contains
four nodes, and val(vi) is the intensity of vi.

As the distribution of the nodes is not uniform, the number of
the nodes in the region of the target region may be small, which will
lower the reconstructed image’s resolution. Hence, we voxelized the
space where the reconstructed result resides to increase the number
of nodes significantly, which improved the spatial resolution.
Assuming the maximum and minimum intensity of each axis of R is
A ¼ {xmin, xmax; ymin, ymax; zmin, zmax}, a minimum cube of the
reconstructed domain can be constructed, with the size of
(xmax � xmin)� (ymax � ymin)� (zmax � zmin). Then, the cube is
divided into small cubes, and the reconstructed result is
transformed into a set of voxels. The intensity of each voxel is

calculated as

val(pi)¼ value(a)�αþvalue(b)�βþvalue(c)�γþvalue(d)�δ,

(9)

where pi denotes the ith voxel. It is worth noting that pi is inside
one tetrahedron, which has four vertices, and each vertex has a
reconstructed intensity. Here, a, b, c, and d denote the four vertices
and value(a), value(b), value(c), and value(d) denote their intensi-
ties. As to the definition of α, it is defined as

α ¼ D( pi, Fbcd)
D(a, Fbcd)

, (10)

where Fbcd denotes the plane formed by points b, c, and d.
D( pi, Fbcd) denotes the distance between the center of pi and Fbcd ,
and D(a, Fbcd) denotes the distance between a and Fbcd . Similarly, β,

FIG. 1. Flow chart of the proposed post-processing method.
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γ, and δ can be defined as

β ¼ D(P, Facd)
D(b, Facd)

, γ ¼ D(P, Fabd)
D(c, Fabd)

, δ ¼ D(P, Fabc)
D(d, Fabc)

: (11)

Then, the voxels with intensity larger than 0 are clustered into
three groups using DEC. We first construct a series of 3D patches.
Each patch’s size is 5� 5� 5, and the center voxel in each patch is
a voxel with its intensity larger than 0, and each patch is then con-
verted into a vector. In this work, the SDAE bottleneck is set to 10,
while the parameter k used in k-means is set to 3. Then, the
average intensity of each group is calculated,

Iavg ¼
Pm

j¼1 val( pj)

m
, (12)

where m denotes the number of the voxels in one group and
val( pj) denotes the intensity of one voxel in the group.

Finally, the group with the highest mean intensity is chosen as
the reconstructed target.

III. EXPERIMENTS AND RESULTS

A. Experimental setup

A series of numerical simulations and in vivo mouse-based
experiments were designed and conducted to evaluate the proposed
framework’s performance. To ensure the proposed framework’s
broad applicability, four different reconstruction algorithms were
developed in each experiment. These include the filtered maximum
likelihood expectation maximization (fMLEM),24 the conjugate gra-
dient least squares (CGLS),25 the gradient projection for sparse
reconstruction (GPSR),26 and the incomplete variables truncated
conjugate gradient (IVTCG).27 The original reconstructed results
were then transformed into a set of voxels using the method
described in Sec. II C. Notably, in this paper, the voxel’s side length
was set to 0.1 mm, which significantly increased the number of ele-
ments with an intensity greater than 0. The experimental results
were then quantitatively analyzed using the volume ratio (VR), the
distance between the center of mass (DCoM), the ratio between the
interacted volume and total volume (IVTVR), structural similarity
index (SSIM), and the contrast-to-noise ratio (CNR).

The VR is defined as the ratio of the volume of the recon-
structed area to the real CL source area,

VR ¼ min(VReal , VRec)
max(VReal , VRec)

, (13)

where VReal denotes the volume of the real CL source, while VRec

denotes the volume of the reconstructed area. It should be noted
that we select max(VReal , VRec) as the denominator and
min(VReal , VRec) as the numerator to constrain the intensity to the
range of [0, 1].

The DCoM is the distance between the center of mass (CoM)
of the reconstructed area and that of the real CL source area,

DCoM ¼ jCRec � CRealj, (14)

where CRec denotes the center coordinate of the reconstructed area,
while CReal denotes the center coordinate of the real CL source
area.

IVTVR is defined in Ref. 28 as

IVTVR ¼ ΩRec > ΩReal

ΩRec
, (15)

where ΩRec denotes the region containing reconstructed voxels,
while ΩReal denotes the region containing CL source.

SSIM is the index used to assess the structural similarity
between two objects. Here, the definition is shown as

SSIM(ΨReal , ΨRec) ¼ (2μ1μ2 þ c1)(2σ1,2 þ c2)
(μ21 þ μ22 þ c1)(σ2

1 þ σ2
1 þ c2)

, (16)

where Ψ denotes the region of ΩRec < ΩReal , μ1 denotes the mean
intensity of ΨReal , and μ2 denotes the mean intensity of ΨRec; σ2

1 is
the variance of ΨReal , while σ2

2 denotes the variance of ΨRec; σ1,2

is the square root of the covariance between ΨReal and ΨRec;
c1 ¼ (k1L)

2 and c2 ¼ (k2L)
2 are two variables to stabilize the divi-

sion with the weak denominator, where L is the dynamic range of
the voxel intensity (the intensity is 1 in this study), k1 ¼ 0:01 and
k2 ¼ 0:03. It should be noted that a large intensity of SSIM usually
corresponds to a high degree of similarity between the two objects.

CNR is defined as

CNR ¼ μROI � μBCK
(mROIσ2

ROI þmBCKσ2
BCK )

1/2 , (17)

where μROI and μBCK are the mean values in the ROI and back-
ground, respectively; σ2

ROI and σ2
BCK are the variances; and mROI

and mBCK are the number of nodes included in the ROI and back-
ground, respectively. It should be noted that the ROI is where the
light source is located, while the region of background selected here
is a region far away from the light source.

B. Numerical simulation-based experiments

A heterogeneous cylindrical model was designed to carry out
the numerical simulation-based experiments. The cylinder has a
radius of 10 mm and a height of 30 mm. It is composed of five
components representing five different tissues. According to
Refs. 29 and 30, the optical parameters of all components are pre-
sented in Table I. Two experiments were conducted to investigate
the performance of the proposed framework thoroughly. The first

TABLE I. Optical parameters used in the numerical simulation experiments.

Tissue μa/mm�1 μs/mm�1 g

T1 0.016 0.510 0.9
T2 0.021 2.864 0.9
T3 0.011 1.053 0.86
T4 0.036 2.246 0.9
T5 0.012 2.472 0.9
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used a single light source and the second a double light source. In
both experiments, the cylindrical model was divided into 6058
nodes and 31 591 internal tetrahedral finite element meshes using
COMSOL Multiphysics V5.2 (COMSOL Inc., USA) software. The
surface photon energy distribution was generated using the Monte
Carlo (MC) method implemented using the Molecular Optical
Simulation Environment (MOSE) software.31

In the first experiment, the light source is a sphere with a
radius of 0.5 mm. The center is set at (0.0, 6.0, 15.0) mm. The
power density is set as 1.0 nW/mm3. Figure 2(a) shows the physical
model of the single light source-based experiment, while Fig. 2(b)
is the cross-sectional view of the model. It should be noted that the
parameter γ in the ArT method is a fixed intensity between 0 and
1, which is relatively difficult to determine accurately. Figure 3

FIG. 2. Heterogeneous numerical phantom-based physical models. (a) is the single-source-based physical model, (c) is the double-source-based physical model. (b) and
(d) are the two-dimensional cross-sectional views of (a) and (c).
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shows the result reconstructed by IVTCG, where Fig. 3(a) is the
original result and Figs. 3(b)–3(d) show the results of the ArT
method with γ of 30%, 70%, and 90%, respectively. A small inten-
sity will result in many artifacts, while a large intensity will greatly
shrink the reconstructed area, resulting in poor fidelity. In the fol-
lowing experiments, we chose the γ intensity as 70%, which is also
an empirical intensity used in the previous work.32

The reconstructed and the post-processing results by different
post-processing methods are shown in Fig. 4. Figure 4(a1) presents
the original result reconstructed by the IVTCG method, and
Figs. 4(b1) and 4(c1) are the post-processing results obtained by
the ArT method and the DEC-based post-processing framework.
Figures 4(a2)–4(c2) show the originally reconstructed result by the
GPSR method, the post-processing results obtained by the ArT
method, and the DEC-based post-processing framework, respec-
tively. Figures 4(a3)–4(c3) are the corresponding results of the
fMLEM method, and Figs. 4(a4)–4(c4) detail the results of the
CGLS method. The red circles labeled the position of the actual
light source. From Fig. 4, we observe that the original results
contain many artifacts, which can be misleading to users. However,
the post-processing results obtained using the ArT method had
a large amount of lost information, resulting in low fidelity.
The DEC-based post-processing framework worked well in all the
observed cases, whose results fit well with the actual light source

distribution. Other indicators were calculated and demonstrated in
Fig. 5. We observed that our proposed framework effectively filtered
out the artifacts, and the shape of the reconstructed result is more
similar to the real light source. It is worth noting, from the IVTVR,
that the artificial threshold (ArT) method has a higher intensity
than that obtained by our framework. This is because the voxel
with the largest intensity is inside the real light source area, and a
relatively large threshold can filter out other voxels whose intensity
is smaller than 70% of the largest intensity.

Next, a double-source-based experiment was carried out to
demonstrate the proposed framework’s applicability to situations
with multiple light sources. Figures 2(c) and 2(d) depict the
double-source-based experiment’s physical model. Figure 6 shows
the reconstructed and post-processing results using different post-
processing methods for the double-source-based experiment.
Figure 6(a1) presents the original result reconstructed by the
IVTCG method, and Figs. 6(b1) and 6(c1) are the post-processing
results obtained by the ArT method and the DEC-based post-
processing framework. Figures 6(a2)–6(c2) show the originally
reconstructed result by the GPSR method, the post-processing
results obtained by the ArT method, and the DEC-based post-
processing framework, respectively. Figures 6(a3)–6(c3) are the cor-
responding results of the fMLEM method, and Figs. 6(a4)–6(c4)
detail the results of the CGLS method. Red circles indicated the

FIG. 3. Investigation of the effect of γ intensity on the final result. (a) The original result is reconstructed by the IVTCG method, while (b), (c), and (d) are the
post-processing results by the ArT method with γ intensities of 30%, 70%, and 90%, respectively.
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FIG. 4. Comparison results for the single-source-based experiment. (a1) presents the original result reconstructed by the IVTCG method, (b1) and (c1) are the post-
processing results obtained by the ArT method and the DEC-based post-processing framework. (a2), (b2), and (c2) show the originally reconstructed result by the GPSR
method, the post-processing results obtained by the ArT method, and the DEC-based post-processing framework, respectively. (a3), (b3), and (c3) are the corresponding
results of the fMLEM method, and (a4), (b4), and (c4) detail the results of the CGLS method. Red circles indicate the location of the actual light source.

FIG. 5. Quantitative analysis of the results for the single-source-based experiment. (a)–(e) illustrate the intensity of quantitative evaluators of VR, DCoM, IVTVR, SSIM,
and CNR, respectively.
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location of the actual light sources. Both multiple and single light
sources provide the same conclusion, and there are many artifacts
in the original reconstruction results. Although these artifacts were
removed by the ArT method, a large amount of information in the
light source region was also removed, resulting in a relatively low
fidelity. Our DEC-based post-processing framework avoids this
problem and fits the region of the light source very well. We
further calculated the evaluator indicators defined above to analyze
these results quantitatively (Fig. 7). We found that although the
ArT method reduced the volume and achieved the best IVTVR
intensity, the other indicators showed that the fidelity was not as
good as those in our proposed framework, which made the results
more similar to the light source.

C. Living mouse-based in vivo experiment

We further demonstrated our proposed framework’s applica-
bility and potential with an artificial-source-implanted living

animal-based in vivo experiment. The experimental data were col-
lected from the CLT/micro-CT dual-modal system on an adult
nude mouse, including the angle-dependent Cerenkov lumines-
cence images and micro-CT images. After reconstruction and seg-
mentation, the mouse’s torso section with a 34 mm height was
obtained [Fig. 8(a)]. The experimental mouse’s main organs
included the muscle, lung, heart, stomach, liver, and kidney, and
the optical parameters of these organs were consistent with the
literature.32 To mimic the lesion containing the radionuclide
probe, we injected 11.1 MBq of 18F-FDG into a thin rubber
tube, and the tube was implanted into the mouse at a specific
location (26, 7, 18.2 mm). Figure 8(b) is the two-dimensional
cross-sectional view of Fig. 8(a) at z = 18.2 mm. Figure 6 shows
the original reconstructed results by the IVTCG, GPSR, fMLEM,
CGLS methods, and their post-processing results with the ArT
and our DEC-based post-processing frameworks (Fig. 9). The
quantitative analysis of these results is presented in Fig. 10, which

FIG. 6. Comparison results for the double-source-based experiment. (a1) presents the original result reconstructed by the IVTCG method, and (b1) and (c1) are the post-
processing results obtained by the ArT method and the DEC-based post-processing framework. (a2), (b2), and (c2) show the originally reconstructed result by the GPSR
method, the post-processing results obtained by the ArT method, and the DEC-based post-processing framework, respectively. (a3), (b3), and (c3) are the corresponding
results of the fMLEM method, and (a4), (b4), and (c4) detail the results of the CGLS method. Red circles indicate the position of the light sources.
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shows that similar conclusions to the simulation experiments can
be drawn. We observed that the DEC-based post-processing
framework could remove the artifacts from the original recon-
structed results and maintain fidelity compared with the ArT

method. Collectively, our proposed DEC-based post-processing
framework has good performance in removing the artifacts
and maintaining the fidelity of the reconstructed result
simultaneously.

FIG. 7. Quantitative analysis of the results for the double-source-based experiment. (a)–(e) illustrate the mean intensity of quantitative evaluators of VR, DCoM, IVTVR,
SSIM, and CNR, respectively.

FIG. 8. Physical model used in the living mouse-based in vivo experiment. (a) The anatomical structure of the mouse. (b) Vertical view of the source at z = 18.2 mm.
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FIG. 9. Comparison results for the living mouse-based in vivo experiment. (a1) presents the original result reconstructed by the IVTCG method, and (b1) and (c1) are the
post-processing results obtained by the ArT method and the DEC-based post-processing framework. (a2), (b2), and (c2) show the originally reconstructed result by the
GPSR method, the post-processing results obtained by the ArT method, and the DEC-based post-processing framework. (a3), (b3), and (c3) are the corresponding results
of the fMLEM method, and (a4), (b4), and (c4) detail the results of the CGLS method. Red circles indicate the position of the light sources.

FIG. 10. Quantitative analysis of the results for living mouse-based in vivo experiment. (a)–(e) illustrate the intensity of quantitative evaluators of VR, DCoM, IVTVR, SSIM,
and CNR, respectively.
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IV. DISCUSSION AND CONCLUSION

CLT can provide a 3D distribution of radionuclide probes
inside an object, and this has been used in drug development and
small animal research. However, the inverse reconstruction of CLT
is highly ill-posed. Low spatial resolution and the presence of light
source artifacts are two direct consequences of this ill-posedness.
To address these problems, a deep unsupervised clustering-based
post-processing framework was reported for CLT. It can improve
the spatial resolution to a certain degree and effectively eliminate
these artifacts, facilitating CLT’s high-fidelity reconstruction. The
main advantages of our framework can be summarized as three
aspects: (1) the voxelization method is used to increase the spatial
resolution of the original CLT reconstructed result and to form
voxelized data in the 3D space; (2) a deep unsupervised clustering
algorithm is used to cluster these voxels into three groups, and the
group with the highest mean intensity is chosen as the final recon-
structed result; and (3) our framework is flexible, and some other
more effective and efficient clustering algorithms can be incorpo-
rated in the future. The feasibility and performance of the proposed
framework were demonstrated with numerical simulation and in
vivo mouse-based experiments. The broad applicability has been
validated further by post-processing of the initial reconstruction of
four different reconstruction algorithms. It is hoped that the pro-
posed framework can provide a useful tool for CLT and other
optical tomographic technologies. Future work will focus on the
improvement of the clustering algorithm and its application in
biomedicine.
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