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ABSTRACT Cerenkov luminescence tomography (CLT) is a promising imaging modality in the field
of optical molecular imaging (OMI), which successfully bridges the OMI and tradition nuclear medical
imaging and provides the location and quantitative analysis of the distribution of radionuclide probes inside
the biological objects. As the CLT is an inherent highly ill-posed inverse problem, it is still a challenge
to obtain an accurate reconstruction result. Here, we proposed a novel reconstruction framework based
on stacking denoising autoencoders (SDAE), which serve as one famous structure of the artificial neural
network (ANN). In our framework, the initial permission region is the whole domain and then a traditional
reconstruction algorithm is used to reconstruct each node’s energy. Then these nodes are clustered into two
regions: permission region and non-permission region, and the permission region is used to start a new
reconstruction loop where a new result can be obtained. The procedures above are repeated before the result
meets the stop conditions. The numerical simulation experiments, physical phantom experiments and in vivo
experiments are all carried out to validate the feasibility and potential of our framework. Results demonstrate
that the proposed framework can indeed achieve a good performance in CLT reconstruction.

INDEX TERMS Cerenkov luminescence tomography, optical molecular imaging, reconstruction algorithm,
stacking denoising autoencoders.

I. INTRODUCTION
Cerenkov Luminescence Imaging (CLI) is a new modality in
the field of optical molecular imaging (OMI). Beyond the
advantages of traditional OMI technologies, the attraction
for many researchers is its wide availability in radionuclide
which can be used for clinical studies approved by the Food
and Drug Administration (FDA). Therefore, CLI can serve
as the bridge between OMI and nuclear medical imaging
[1]–[5]. The principle of CLI is that when charged particles
(such as positrons) travel faster than light in the medium,

The associate editor coordinating the review of this manuscript and
approving it for publication was Qiangqiang Yuan.

spectrally continuous radiation (also named as Cerenkov
Luminescence, CL) will be produced, known as Cerenkov
Effect [6]. In 2009, Roberson et al. first applied CL to
the field of OMI using 2-18fluoro-D-glucose (18F-FDG),
and named this new imaging concept as CLI [4]. Up to
now, CLI has been successfully applied in the field of
diagnostic imaging, drug development, intraoperative guid-
ance, endoscopic imaging, and so on [7]–[20]. However,
as CLI can only provide the two-dimension distribution of
radionuclide probes, the lack of depth information restricts
its further development, and the optical molecular tomog-
raphy (OMT) [21] may provide a solution to conquer such
limitation.
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In 2010, Li et al. proposed a tomography method for CLI
and named as Cerenkov Luminescence Tomography (CLT),
which can reconstruct the three-dimension distribution of
radionuclide probes inside biological object based several
CLI images [22]. The emergence of CLT has enlarged the
applicable area of CLI and soon become one of its research
hot topics. Then, many researchers have proposed a variety
of methods to improve the accuracy of CLT, as well as
other OMT methods. For example, some of them use the
location of CL source as the permission region to effec-
tively improve the reconstruction accuracy [23]–[27]. The
incorporation of the prior information has also been adopted
in other OMT technologies, such as fluorescence molecular
tomography and photoacoustic imaging [28], [29]. However,
as a matter of fact, such a prior location of CL source
cannot be obtained, while others use the whole domain for
reconstruction directly [30]–[36]. As the permission region
can improve the reconstruction result effectively, in 2016,
Yu et al. proposed a method base on the Iteratively Shrinking
Permission Region (ISPR) strategy for reconstruction, and
in the method several loops of reconstruction are conducted.
In each loop the permission region is the reconstruction result
in its last loop. It demonstrates that the correct extraction of
permission region is indeed a key point for achieving a good
reconstruction result [37]. Different from the traditional RTE
based methods mentioned above, the recent artificial neural
network (ANN) may provide another solution to the OMT.
Benefit from the rapid development of computer hardware
technologies and the appearance of Big Data, the integration
of ANN and medical imaging has become a hot topic and
developed rapidly [38]–[41]. Gao et. al first applied the ANN
to the field of OMT, proposing a novel machine-learning
bioluminescence tomography (BLT) reconstruction strategy,
which utilizes ANN to construct the inverse of the photon
propagation directly by learning the nonlinear mapping rela-
tionship between the surface photon density and the biolu-
minescent source density [42]. Their result revealed that the
proposed method can obtain a more accurate reconstruction
result than those traditional reconstruction methods. How-
ever, the method limits its own availability due to its weak
ability of generalization, i.e. a trained ANN can be only
applied to a certain specified imaging object.

In this paper, we introduce ANN into CLT to propose a
novel method for extraction of permission region and finally
form a reconstruction framework for CLT [43]–[47]. It is
worth noting that our framework is a loop structure, and that
in each loop, the reconstruction region is clustered into the
permission region and non-permission region. Here fuzzy
C-means (FCM) [48]clustering algorithm is used. As it only
includes the energy value, the original feature of one node
in the reconstruction result will not serve as a sufficient
input of FCM. By integrating one node’s energy and its
four neighborhood nodes’ energies, we proposed a nearest
four element fields (NFEF) strategy to extend the original
feature of one node. We further obtain the latent features
of the node, which may facilitate the clustering by using

stacking denoising autoencoders (SDAE). Finally, we input
the latent features of each node in FCM to obtain a correct
permission region. The procedure above will be described in
detail in Section 2.3. It should be noted that our framework
can not only provide a relatively correct permission region but
also significantly improve the quality of the recovered result
which is commonly processed by settingmanual thresholding
to filter out the nodes with low energy values [49].

The rest of this paper is structured as follows. In Section II,
the inverse problem of CLT, SDAE, NFEF theory and our
reconstruction framework based on SDAE are represented.
In Section III, we conduct the numerical simulation experi-
ments and physical phantom experiments to demonstrate the
effectiveness of our framework. Finally, we discuss the results
and draw a conclusion in Section IV.

II. METHOD
A. RECONSTRUCTION PROBLEM
Usually, the Radiative Transfer Equation (RTE) is the best
choice to describe the propagation of CL in biological tis-
sues. However, its computational complexity is rather high
[50]. According to the characteristics of low absorptivity and
high scattering rate of photons in the process of biological
tissue transmission, the simplified form of RTE, i.e. Diffusion
Approximation (DA) model, has been developed to describe
such a transmission procedure. The DAmodel combined with
Robin’s boundary conditions is described in Eq. (1) [37]:{
−∇D (r)∇8 (r)+µa (r)8 (r) = S (r) ,r ∈ �
8 (ξ)+ 2FnD (ξ) = 0, ξ ∈ ∂�

(1)

where 8 (r) denotes the photon flow rate at the point r in
the region�,D (r)= 1/

[
3
(
µa + µ

′

s

)]
denotes the diffusion

coefficient of the tissue, and µa and µ
′

s are the absorption
coefficient and reduce scattering coefficient of tissue, respec-
tively. The absorption coefficient and the reduced scattering
coefficient are determined by the biological tissue itself. ξ
denotes the point on the surface of the biological tissue, F
is determined by the combination of the biological tissue
and the refractive index of the air, and n is the unit normal
vector whose direction is from the inside of the biological
tissue to the outside of ∂�. An adaptive hp-finite element
method (hp-FEM) for bioluminescence source reconstruction
proposed by our research group [51] is employed in this
paper to recover the CL source distribution. Based on this
algorithm, a linear relationship between the photon energy
flow rate of the biological tissue surface and the unknown
source distribution inside the tissue can be established:

AX = B (2)

where A is the weight matrix, B is the photon flow rate
measured at the boundary of the biological tissue, and X
denotes the distribution of the unknown source within the
desired biological tissue.
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To solve the Eq. (2), here, we add L1 regularization term to
convert it into a minimization problem as Eq. (3):

X = argmin
X≥0,X∈Permission region

1
2
‖AX − B‖22 + τ ‖X‖1 (3)

where τ is the regularization parameter, which can be used to
balance ‖AX − B‖22 and the regular penalty term ‖X‖1.

B. AUTOENCODER, DAE AND SDAE
The autoencoder is a model capable of obtaining the fea-
ture representation of the given data [52]. Given a normal-
ized input vector x = (x1, x2, , . . . , xN )T , the network first
encodes it and generates a vector y = (y1, y2, . . . , yM )T ,
which is then used to be mapped back as a new vector x

′
=

(x
′

1, x
′

2, . . . , x
′

N )
T
, as shown in Eq. (4):{
y = σ (W ∗ x+ b)
x′ = σ (W ′ ∗ y+ b′)

(4)

where σ is the sigmoid function usually defined as σ (t) =
1/(1 + e−t ), W and W ′ are the weight matrices, and b and
b′ are the bias vectors. θ denotes the parameter set, i.e. θ =
{W,WT , b,b′}. A loss function L is then established between
x and x

′
.Several forms can be used to establish L [52], and in

this paper, the form of mean square error is employed, shown
as Eq. (5):

L
(
x′, x

)
=

∥∥∥x′−x∥∥∥2 (5)

By minimizing L, θ can be determined, and here the mini-
mization problem is solved by the stochastic gradient descent
algorithm, which can avoid the local minima of the training
error [53]. In this way, y can be regarded as the latent feature
of x, and Fig. 1(a) shows a basic autoencoder intuitively.

FIGURE 1. Illustrations of the basic AE (a) and DAE (b), while (c) depicts
the structure of SDAE used in this paper.

To enhance the performance of AE, Vincent et al. used
corrupted training data for input and achieve better learning
accuracy, and called as denoising Autoencoder (DAE) [54].
In DAE, the input x is firstly corrupted as x̃ by means of a
stochastic mapping x̃ ∼ qD(x̃|x). As x

′
is the reconstruction

of the corrupted data x̃, the loss in the DAEmodel is measured
by the reconstruction error L, which has the same form as
Eq. (5), as shown in Fig. 1(b). In general, we can stack
a number of DAEs to allow hierarchical feature extraction
from input data, and this form is known as stacked denoising
autoencoder (SDAE), as shown in Fig. 1(c). Different from
AE or DAE, the shallow layer in the SDAE can represent
the simpler patterns and the deep layer can learn a more
complicated or abstract pattern inherent in the input data.
In this paper, SDAE is used and the objective function is
defined as:

JSDAE =
1
m

∑m

t=1
L(xt , x′t )+ λ ·

∑
‖ω‖F (6)

where m is the number of samples, t denotes the t-th AE
in the SDAE, λ is a constant that balance the relative con-
tributions of the reconstruction and the regularization terms,
and ω is the set of weights in the network. For training
the SDAE, a greedy layer-wise unsupervised learning algo-
rithm is used, which has been proposed in [55]. After the
training step, the deepest layer of the SDAE can produce
the latent representation of the input, which will be used
in our framework. It should be noted that the optimized
method used in SDAE is also the stochastic gradient descent
algorithm here.

C. SDAE BASED RECONSTRUCTION
FRAMEWORK FOR CLT
The framework of the proposed SDAE based Cerenkov lumi-
nescence tomography is depicted in Fig. 2. It is easy to
find out that our framework is an iterative process. Our
framework contains two steps. First, we use the whole
domain as the permission region to obtain the reconstruc-
tion result, and it is worth noting that the reconstruction
algorithm is the incomplete variables truncated conjugate
gradient, which has been proposed by our team in 2010
[56]. Then, SDAE is used to obtain the latent features of
each reconstructed node’s energy, and they are then used
as the input of FCM to cluster the reconstructed nodes into
two groups. The group with larger mean energy is cho-
sen as the permission region in the iterative loop of two
processes.

It should be noted that vector X denoted in Eq. (2) repre-
sents the energy of each node, which is the original feature
of each node. Here, inspired by the applications of autoen-
coder in image-processing related studies [57], [58], we use
each node’s energy and tis four close nodes’ energies as the
extended original features, and we call this method as nearest
Four Element Fields (NFEF). In NFEF strategy, the energy
value of each node and the energy of its four nearest neighbors
are combined, transforming the original result vector X in
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FIGURE 2. Framework of the proposed Cerenkov luminescence
tomography method.

Eq. (2) to the following form:

Mg×5 =


x1 xN1,1 xN1,2 xN1,3 xN1,4
x2 xN2,1 xN2,2 xN2,3 xN2,4
. . . . . . . . . . . . . . .

xg xNg,1 xNg,2 xNg,3 xNg,4

 (7)

where the first column of theM matrix is the original X vec-
tor, xNi,j represents the j nearest neighbors of the ith element
in the original X . Then, the matrix is regarded as the training
data set to train SDAE. In addition, the number of the units of
the input layer of SDAE in our framework is set as 5. Other
parameters are set as: unit number of the layers are depicted in
Fig. 1(c), and one dropout factor (probability= 40%) is used
for the second hidden layer when training the network, aiming
to reduce the overfitting problem of the network. The details
of our proposed framework are summarized as follows:

III. EXPERIMENT AND RESULTS
In order to verify and systematically assess the performance
and characteristics of the SDAE based CLT reconstruction
framework proposed in this paper, four sets of numerical
simulation experiments, two sets of physical experiments
and one real implanted experiment are conducted. In all the
experiments, the IVTCG algorithm and ISPR algorithm are
used to compare the reconstruction results with our frame-
work. In addition, to assess the stability, four levels of Gaus-
sian noise experiments are also conducted in this section.
The energy position error (EL), reconstruction centroid error
(ECoM ), reconstructed energy error (RE) and tetrahedral vol-
ume ratio (RTV ) are introduced as quantitative evaluation
indicators.

Algorithm 1 SDAE Based Reconstruction Framework
for CLT

Initialize. The global PR as the initial feasible region, set
the iteration index z = 1, the maximum iteration number
zmax = 20, and the iteration stop condition β = 1e− 5.
Step 1: Solve Eq. (3) by employing IVTCG reconstruction
algorithm on the current permissible region and get a solu-
tion Sz, where z indicated that the current iteration index.
Step 2: Using NFEF to form a matrixM z from Sz.
Step 3: For each row inM z, if the value of first column is 0,
then delete it. If the rows of processed M z is less than 5,
then finish the loop and the Sz is final solution.
Step 4:UsingM z to train SDAE, then inputM z to encoder
part of SDAE to generate a new matrixM ′z containing the
features of each row inM z.
Step 5: For the set consists of the rows inM ′z, using FCM
algorithm to divide it into 2 subsets, the error threshold ξ of
FCM is set to 1e-5, and the maximum number of iterations
is set to 200.
Step 6: Calculating the mean energy value of the nodes
corresponding to each subset, and the energy value of the
nodes with smaller mean energy are set to 0, then a new
solution, S

′

z is obtained.

Step 7: Let z = z + 1. If
∥∥∥Sz − S ′z∥∥∥2 > β, and z < zmax ,

let Sz = S
′

z and repeat steps 3) to 7). Otherwise, Sz′ is the
final solutions.

The energy position error EL is defined as the Euclidean
distance between the reconstruction point energy maximum
point coordinates (x, y, z) and the real CL source coordinates
(x0, y0, z0):

EL =
√
(x − x0)2 + (y− y0)2 + (z− z0)2 (8)

The reconstruction centroid error ECoM is defined as
the Euclidean distance between the centroid coordinates
(xg, yg, zg) of the reconstruction result and the centroid coor-
dinates (xg0, yg0, zg0) of the real CL source:

ECoM =
√
(xg − xg0)2 + (yg − yg0)2 + (zg − zg0)2 (9)

The RE is defined as the relative error between the maxi-
mum reconstructed density and the actual one.

The tetrahedral volume ratio RTV is defined as the ratio
of the tetrahedral volume Vture of the real CL source to the
tetrahedral volume Vrec of the reconstruction result:

RTV = Vture/Vrec (10)

The reconstruction accuracy is also quantified using
the signal-to-noise ratio (SNR) and contrast-to-noise
ratio (CNR), which can measure the visual quality, and how
well features of interest are rendered by the reconstruction
[59], [60]. The SNR is defined by

SNR =

∑n
i=1 x

2
i∑n

i=1 (xi − x̃i)
2 (11)
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FIGURE 3. (a) Model of single source numerical mouse; (b) Model of
double sources numerical mouse; (c) The forward simulation result of
single source; (d) The forward simulation result of double source.

where x̃i denotes the energy of the i-th node in the recon-
structed result, n denotes the total numer of the nodes in the
numerical model, while xi denotes the energy of the i-th node
in the original numerical model. It should be noted that in the
original numerical mode, the nodes’ energies in the region of
light source are all equal to 0.05.

We also defined the contrast-to-noise ratio (CNR) as:

CNR =
µROI − µBCK(

mROIσ 2
ROI + mBCKσ

2
BCK

)1/2 (12)

where µROI and µBCK are the mean values in the ROI and
background, respectively, σ 2

ROI and σ
2
BCK are the variances,

and mROI and mBCK are the number of nodes included in
the region of ROI and background, respectively. It should
be noted that the region of ROI is where the light source is
located, while that the region of background selected here is
a region far away from the light source.

A. NUMERICAL MOUSE SIMULATION EXPERIMENT
The numerical mouse simulation experiment object is shown
in Fig. 3, and the upper and lower portions thereof are inverted
in all results. The numerical mouse contains five organs of
heart, lung, liver, stomach, and kidney, and the rest is muscle
tissue. The optical parameters of each organ and tissue are
given in correlation researches [24], [61], as shown in Table 1.
The forward model photon energy is generated by using
Monte Carlo (MC) method, which is implemented by the
Chinese Academy of Sciences Molecular Optical Simulation
Environment (MOSE) software [62]. In a single light source
experiment, a spherical light source with a radius of 0.8 mm
and 0.05 nW/mm3 power density is placed at coordinates
(26 mm, 7 mm, 19 mm) as shown in Fig. 3(a). In the dual

TABLE 1. Optical parameters of different tissue and organs of the
numerical mouse.

light source experiment, two spherical light sources with
a radius of 0.8 mm and the same power density of 0.05
nW/mm3 are posited at (26 mm, 7 mm, 19 mm) and (9 mm,
7 mm, 19 mm), as shown in Fig. 3(b). In both sets of experi-
ments, the numerical mouse avatar is divided into 8858 nodes,
2206 surface elements, and 47407 internal tetrahedral finite
element meshes. The numerical mouse forward simulation
results are obtained through the MOSE software, shown in
Figs. 3(c) and (d), followed by surface data reconstruction.

1) SINGLE SOURCE NUMERICAL MOUSE SIMULATION
EXPERIMENT
Fig. 4 shows the reconstruction results of the three methods of
IVTCG, ISPR, and our proposed framework in the case of sin-
gle light source. It should be noted that for all these methods,
the τ , which is important parameter of IVTCG, is a constant
with the value of 0.04. The dark brown sphere represents the
actual position of the Cherenkov fluorescence source, and the
dark green region represents the reconstruction location of
the light source. Figs. 4 (d), (e) and (f) are two-dimensional
cross-sectional views of (a), (b) and (c) corresponding results

FIGURE 4. Reconstruction results of the single source numerical
simulation experiment, (a)-(c) are stereograms of reconstruction results
with IVTCG, ISPR and Our framework; (d)-(f) are cross-section views of the
three methods at Z = 19mm, black circles show the real Cerenkov light
sources.
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FIGURE 5. Reconstruction results of the double source numerical
simulation experiment, (a)-(c) are stereograms of reconstruction results
with IVTCG, ISPR and our framework; (d)-(f) are cross-section views of the
three methods at Z = 19mm, and black circles show the real CL sources.

at Z = 19 mm, with black circles indicating the location
of the real light source. The quantitative results are shown
in Table 2. According to the experimental results, the ISPR
reconstruction strategy can improve the reconstruction effect
to a certain extent, but the feasible domain is still not accurate.
Our framework can better construct a feasible domain based
on energy distribution and spatial geometry information,
resulting in a better reconstruction.

2) DOUBLE SOURCES NUMERICAL MOUSE
SIMULATION EXPERIMENT
In order to demonstrate whether our framework has the ability
to reconstruct multiple light sources, a double source sim-
ulation experiment is carried out in this part. Fig. 5 shows
the reconstruction results of the three methods of IVTCG,
ISPR and our framework in the case of double sources. The
dark brown sphere represents the actual position of the CL
source, and the dark green region represents the reconstruc-
tion location of the light source. Figs. 5 (d), (e) and (f) are
two-dimensional cross-sectional views of (a), (b) and (c) cor-
responding results at Z= 19mm,with black circles indicating
the location of the real light source. The quantitative results
are shown in Table 3, and it demonstrates that our framework
can achieve a better reconstruction result than the other two
methods.

In order to further investigate the reconstruction resolu-
tion of our framework. Eight dual-source numerical mice
with different edge-to-edge source distances are designed.
During the experiment, light sources are in different organs
to make sure the result is robust. The reconstructed results
are shown in Fig. 6, from which we can conclude that the
minimum edge-to-edge, which can be distinguished from
the reconstructed result by our framework, is in the range
of (2mm, 3mm).

It can be seen from the two sets of experimental results
of single and double light sources that compared with
the IVTCG algorithm and ISPR algorithm, our reconstruc-
tion framework can significantly improve the reconstruction

FIGURE 6. Axial slices (Z = 19mm) of the dual-source reconstructions
with different edge-to-edge source distances, and the distance is labeled
on the top of each images.

position accuracy under the same experiment settings. It can
effectively reconstruct the result with the volume close to
that of the real light source, instead of just reconstructing the
correct coordinates and thus ignoring the geometric informa-
tion of the light source. According to the definition of R_TV,
the final reconstruction volumes of the IVTCG and ISPR
algorithms are much larger than that of the real light source.
It is worth noting that some methods which employ these two
algorithms in the relevant literature often involves artificial
threshold filtering to obtain a good visual effect, and that it is
not needed in our framework.

3) NUMERICAL MOUSE NOISE EXPERIMENT
In order to verify the stability and reconstruction quality of
our reconstruction framework under noise conditions, this
paper designs a set of Gaussian noise experiments with four
levels of 5%-20%. The quantitative results are displayed
in Tables 4 and 5. At the four levels of 5%-20%, the EL
of single source and double source are 0.69-0.72 mm and
0.65-0.69 mm, respectively. The ECoM are 0.53-0.69 mm
and 0.65-0.86 mm, respectively. The RTV are 1.25-1.30 and
1.16-1.22 respectively. Compared with the experiment with
no additional noise, the reconstruction result is quite stable.
Experiment results show that the Gaussian noise does not
have a significant effect on our reconstruction framework,
demonstrating the good stability and noise immunity of the
proposed method.

B. PHYSICAL PHANTOM EXPERIMENT
1) MATERIALS AND INSTRUMENTS
In the phantom experiment, 18F-deoxyglucose (18F-FDG) is
used as the radioactive material, and it was made by the
GE’s Minitrace cyclotron. The radiochemical purity is 97%,
and the radioactive concentration was 5GBq/mL, pH = 8.0,
purity greater than 99.9%. Optical information was collected
using an IVIS imaging systemmanufactured by Calipers Life
Sciences, USA.
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TABLE 2. Results of the three CLT reconstruction methods in single source numerical simulation.

TABLE 3. Results of the three CLT reconstruction methods in double source numerical simulation levels.

TABLE 4. Results of single source numerical simulation experiment under different noise levels.

TABLE 5. Results of double source numerical simulation experiment under different noise levels.

In this section, two sets of homogenous phantom experi-
ments are designed. The phantom is made of polyformalde-
hyde and made into a cube whose side is 25 mm and a
cylinder whose height and diameter are both 25 mm as
well. A cylindrical hole is drilled from the top side of both
phantoms, with the hole diameter of 3 mm and the depth
of 12.5 mm. During the experiment, the 18F-FDG with a
volume of about 10 µL is injected into the hole, forming a

radionuclide cylinder with a height of about 2 mm.Moreover,
the center coordinate is (6.25 mm, 0 mm, 1 mm), and a
light-proof tape is used to seal the hole. The geometry of the
phantoms with radionuclide cylinder is shown in Fig. 7. After
the injection of radionuclide, the phantoms are placed into the
IVIS system to acquire the CL signal transmitted from the
surface of each phantom, and the obtained images are shown
in Fig. 7(c) and (d).
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TABLE 6. Results of the three CLT reconstruction methods in the cubic physical phantom experiment.

TABLE 7. Results of the three CLT reconstruction methods in the cylindrical physical phantom experiment.

TABLE 8. Results of the three CLT reconstruction methods in the real implanted experiments.

FIGURE 7. (a) and (b) are geometric structure of the cubic and cylindrical
phantom with radionuclide injected; (c) and (d) are single-view collected
of the two phantoms by IVIS system.

2) CUBIC PHANTOM EXPERIMENT
Figs. 8(a), (b) and (c) show the reconstruction results of the
physical phantoms of the cube by the three methods: IVTCG,
ISPR and our framework. The light pink cylinder indicates
the actual position of the 18F-FDG solution, and the dark
green region indicates the reconstructed light source position.
Figs. 8(d), (e) and (f) are two-dimensional cross-sectional
views of (a), (b) and (c) corresponding results at Z = 1 mm,
and black circles indicate the position of the real light source.
The quantitative analysis of the results is shown in Table 6.
It is obvious that the result of our framework is the best.

FIGURE 8. Reconstruction results of the cubic physical phantom
experiment, (a)-(c) are stereograms of reconstruction results with IVTCG,
ISPR and our framework; (d)-(f) are cross-section views of the three
methods at Z = 1mm, and black circles show the real CL sources.

3) CYLINDER PHANTOM EXPERIMENT
Fig. 9(a), (b) and (c) show the reconstruction results of the
cylinder phantom experiment. The light pink cylinder indi-
cates the actual position of the 18F-FDG solution, and the
dark green region indicates the reconstruction light source
position. Figs. 9(d), (e) and (f) are two-dimensional cross-
sectional views of (a), (b) and (c) corresponding results
at Z = 1mm, with black circles indicating the location of
the real light source. The quantitative results are shown
in Table 7. It can be concluded that our framework can
achieve well reconstruction results in different geometrical
morphologies.
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FIGURE 9. Reconstruction results of the cylindrical physical phantom
experiment, (a)-(c) are stereograms of reconstruction results with IVTCG,
ISPR and our framework; (d)-(f) are cross-section views of the three
methods at Z = 1mm, and black circles show the real CL sources.

FIGURE 10. Reconstruction results of the real implanted animal
experiment. (a)-(c) are stereograms of reconstruction results with IVTCG,
ISPR and our framework; (d)-(f) are cross-section views of the three
methods at Y = 27.8mm, black rectangle shows the real CL source.

C. REAL IMPLANTED ANIMAL EXPERIMENT
We further assess the performance of our proposed frame-
work with implanted small animal experimental data. The
experimental data were collected from the CLT/micro-CT
dual-modal system on adult nude mice, and the mice were
scanned with micro-CT. The torso section of the mice with
a height of 41 mm is shown in Fig. 10(a). The main organs
of the experimental mice include muscle, lung, heart stom-
ach, liver, and kidney. The optical parameters of the organs
are consistent with the literature [63]. We use an implanted
7.4 MBq of 18F-FDG radioactive source to mimic the lesion
contains radionuclide probe, and the location of the implanted
source is (20.2 mm, 27.8 mm, 7.4 mm). Reconstruction

results are shown in Figs. 10(c)-(e) and Table 8, which can
demonstrate the ability of our proposed framework to recover
the radionuclide distribution for in vivo experiments.

IV. DISCUSSION AND CONCLUSIONS
The combination of ANN and CLT (as well as the OMT) is a
new research direction which may provide a more accurate
reconstruction result than traditional OMT methods. How-
ever, how to implement such concept is a tough question.
To our knowledge, only one attempt has been made by Gao
et. al by applying multilayer perceptron to the field of OMT
in 2018, which is of great significance in the development of
OMT. However, their trained ANN can be only used to solve
the inverse problem based on a specific object, resulting its
relatively weak generalization ability, so this is the reason
why we still use traditional mathematical method to solve
CLT/OMT. In the field of classification, the ANN has found
its successful application, while in the field of OMT, the per-
mission region strategy can improve the reconstruction accu-
racy. Therefore, the incorporation of ANN to the extraction
of permission region can serve as a feasible way to improve
the reconstruction efficiency.

In this paper, we proposed a novel reconstruction frame-
work for CLT. To test the performance of the reconstruction
framework based on SDAE, simulation experiments, physical
phantom experiments and in vivo animal experiments are
conducted in this work. The IVTCG, ISPR are employed as
compared reconstruction methods. The results demonstrate
that our proposed method performs better than the two com-
pared methods in both reconstruction accuracy and recovery
visual effect. The main contributions of our work are: (1)
using NFEF strategy to link neighborhood nodes together
serving as the input of SDAE to extract latent features of
each node; (2) using FCM to cluster the reconstructed nodes
into two groups automatically and choosing the group with
the large mean energy values as the permission region; (3)
establishing a flexible framework, where many other recon-
struction methods that may be more effective and efficient
can also be integrated in the future.

As a summary, the framework proposed in this paper can
improve the reconstruction accuracy effectively, and free
from artificial intervention. We hope the proposed method
can provide a useful tool for CLT, as well as other optical
molecular tomography technologies.
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