
AIP Advances 9, 065105 (2019); https://doi.org/10.1063/1.5088234 9, 065105

© 2019 Author(s).

A fuzzy artificial neural network-based
method for Cerenkov luminescence
tomography
Cite as: AIP Advances 9, 065105 (2019); https://doi.org/10.1063/1.5088234
Submitted: 09 January 2019 . Accepted: 27 May 2019 . Published Online: 06 June 2019

Xiao Wei , Di Lu, Xin Cao , Linzhi Su, Lin Wang, Hongbo Guo, Yuqing Hou, and Xiaowei He 

ARTICLES YOU MAY BE INTERESTED IN

First-principles study on the magnetic properties of β-Ti68.75Nb25X6.25 (X=Mo, Sn, Ta, Zr,

Fe) alloys
AIP Advances 9, 065102 (2019); https://doi.org/10.1063/1.5099083

Experimental and numerical study on the drainage performance and fluid flow of Venturi
tubes
AIP Advances 9, 065003 (2019); https://doi.org/10.1063/1.5099420

Nanofocusing on gold planar nanotip arrays
AIP Advances 9, 065103 (2019); https://doi.org/10.1063/1.5093469

https://images.scitation.org/redirect.spark?MID=176720&plid=1021324&setID=389593&channelID=0&CID=324397&banID=519753383&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a33a837d457b61ce4e64928aca859b7097b3ad45&location=
https://doi.org/10.1063/1.5088234
https://doi.org/10.1063/1.5088234
https://aip.scitation.org/author/Wei%2C+Xiao
http://orcid.org/0000-0001-9224-6726
https://aip.scitation.org/author/Lu%2C+Di
https://aip.scitation.org/author/Cao%2C+Xin
http://orcid.org/0000-0003-3560-6523
https://aip.scitation.org/author/Su%2C+Linzhi
https://aip.scitation.org/author/Wang%2C+Lin
https://aip.scitation.org/author/Guo%2C+Hongbo
https://aip.scitation.org/author/Hou%2C+Yuqing
https://aip.scitation.org/author/He%2C+Xiaowei
http://orcid.org/0000-0003-2126-178X
https://doi.org/10.1063/1.5088234
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5088234
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5088234&domain=aip.scitation.org&date_stamp=2019-06-06
https://aip.scitation.org/doi/10.1063/1.5099083
https://aip.scitation.org/doi/10.1063/1.5099083
https://doi.org/10.1063/1.5099083
https://aip.scitation.org/doi/10.1063/1.5099420
https://aip.scitation.org/doi/10.1063/1.5099420
https://doi.org/10.1063/1.5099420
https://aip.scitation.org/doi/10.1063/1.5093469
https://doi.org/10.1063/1.5093469


AIP Advances ARTICLE scitation.org/journal/adv

A fuzzy artificial neural network-based method
for Cerenkov luminescence tomography

Cite as: AIP Advances 9, 065105 (2019); doi: 10.1063/1.5088234
Submitted: 9 January 2019 • Accepted: 27 May 2019 •
Published Online: 6 June 2019

Xiao Wei,1,2 Di Lu,1,2 Xin Cao,1,2,a) Linzhi Su,1 Lin Wang,1,2 Hongbo Guo,1,2 Yuqing Hou,1,2

and Xiaowei He1,2,a)

AFFILIATIONS
1School of Information and Technology, Northwest University, Xi’an, Shaanxi 710127, China
2Xi’an Key Laboratory of Radiomics and Intelligent Perception, No. 1 Xuefu Avenue, 710127 Xi’an, Shaanxi, China

a)Corresponding author: xin_cao@163.com, hexw@nwu.edu.cn

ABSTRACT
Cerenkov Luminescence Tomography (CLT) is a non-invasive three-dimensional in vivo detection technology. However, due to the ill-
posedness of CLT, the reconstructed result has many artifacts, which will mislead the researchers to make a wrong diagnostic decision.
Enlightened by the development of artificial neural networks, we proposed a Fuzzy Autoencoder Clustering method to eliminate these arti-
facts and improve the reconstruction quality. To assess the performance of our method, several numerical simulation experiments and real
physical phantom experiments are conducted. Compared with the raw reconstruction results and the commonly used manual threshold pro-
cessed ones, it is demonstrated that our method is capable of filtering the artifact areas effectively, making reconstruction results clearer.
It is anticipated that the method presented in this paper will help advance the CLT technology and promote the clinic translation of CLT
technology.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5088234

I. INTRODUCTION

Cerenkov luminescence imaging (CLI) is a promising optical
molecular imaging (OMI) tool due to its advantages of relatively
short acquisition time and wide clinical radionuclide probes avail-
able.1–4 The basic principle of CLI is that when charged particles
(such as β+ positrons produced by radionuclides) travel faster than
light in the medium, spectrally continuous radiation (also named as
Cerenkov Luminescence, CL) will be emitted, which is known as the
Cerenkov effect.5 Since its first application to the detection of the
distribution of radionuclide in the small animal by Roberson et al. in
2009, CLI has attracted an increasing number of researchers’ atten-
tion and become a hot research topic in the field of OMI.6 Compared
to other imaging modalities in OMI filed, the biggest advantage of
CLI is its clinical-used radionuclide probes approved by the Food
and Drug Administration (FDA).7,8

However, CLI can only obtain two-dimensional distribution
of radionuclide probe and lacks depth information,9 so in 2010, a
tomographic imaging technology based on CLI image was proposed
by Li et al. and named as Cerenkov Luminescence Tomography

(CLT).10 Nevertheless, for CLT two major problems also exist. First,
it is known that the reconstruction problem of CLT is highly ill-
posed, which means that it is difficult to accurately reconstruct the
distribution of radionuclides. This will produce some artifacts in the
recovered image.11–13 Second, the CL emitted from the tissue surface
is weak in real experiments, which leads to the fact that the noise
signal may easily affect the collected CL data. This defect will make
the reconstruction result easily interfered by noise, which limits the
application of CLT technology.14–16

To address these problems, researchers have proposed var-
ious methods to improve the reconstruction accuracy, such as
Tikhonov regularization, sparsity regularization, ln regularization
method, multispectral data-based method, multi-modal imaging
system, etc.17–19 However, from the reconstruction result, it can
be found that not only the nodes of the light source have a value
larger than 0, but also many other nodes have such values due
to the ill-posedness of CLT, forming artifacts which will mis-
lead researchers to make a wrong diagnostic decision. The most
frequently-used method in CLT study is to adopt a hard threshold to
eliminate these artifacts. The threshold is typically set as 70% of the
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reconstructed maximum energy value, and then the nodes with the
value lower than that are set to 0.20 But in some cases, these arti-
facts have a similar value to that of the light source, which makes it
difficult to set an appropriate threshold. Therefore, an effective post-
processing method is needed for CLT. In 2018, Yi et al. proposed
an adaptive threshold method for Fluorescence Molecular Tomog-
raphy (FMT) technology.21 In the method, the reconstructed nodes
are sorted according to value and then a threshold is calculated.
However, the situation that some nodes in artifacts have a relatively
large value (that may be similar to that of light sources) is still not
considered.

In this paper, we proposes a new reconstruction method for
CLT based on artificial neural network (ANN). First, the value of
a node and its neighbors in the reconstruction result are assembled
by Near Four Element Fields (NFEF) strategy. Then, the assembled
data are used to train a Fuzzy Autoencoder (FAE) network. In this
step, fuzzy number is introduced to enhance the robustness and the
capability of the network, consequently reducing the impact of noise
on the results. Finally, the latent features obtained by FAE are used
as the inputs of the Fuzzy C-means (FCM) clustering algorithm to
cluster the reconstructed nodes into two groups, and the group with
the lower total energy will be set to 0.22

This paper is mainly divided into four sections. Section II gives
the corresponding theoretical knowledge of the method, as well as
the details of all the steps. Section III gives out the experimental
settings and the corresponding results as well as their analysis. The
conclusion and discussion are presented in Section IV.

II. METHOD
A. CLT reconstruction

For CLT, Diffusion Approximation (DA) model can be used to
describe the transmission of photons. The DA model combined with
the Robin boundary condition is described in Eq. (1):

{
−∇D(r)∇Φ(r) + µa(r)Φ(r) = S(r), r ∈ Ω
Φ(ξ) + 2ZnD(ξ) = 0, ξ ∈ ∂Ω

(1)

where Φ(r) denotes the luminescent flux density of the photon at
the point r in the region Ω, D(r) = 1/[3(µa + µ′s)] is the diffusion
coefficient, µa and µ′s represent the absorption coefficient and the
reduced scattering coefficient, respectively, ξ represents the point at
the boundary of the surface of the object, Z is determined by the
degree of matching of the corresponding biological tissue and the
refractive index of the air, and n is the unit normal vector whose
direction points to the outside of ∂Ω.

With the finite element method (FEM) framework, a linear
relationship between the photon energy flow rate of the outer surface
and the unknown internal source distribution can be established as
Eq. (2):19

AX = Φ (2)

where Am×n is a system matrix describing the transmission of
Cerenkov radiation in biological tissue, Φ is the surface photon
flow rate, and Xn×1 is the unknown source distribution to be
solved. In this paper, the Incomplete Variables Truncated Conjugate

Gradient (IVTCG) algorithm23 is employed as the reconstruction
algorithm.

In the CLT reconstruction methods available, the manual
threshold is often used to filter the results. Empirically, the threshold
is set as 70% of the maximum energy value Ψ shown as Eq. (3).

f (X) = {
X,X ≥ 0.7 ×Ψ
0, otherwise

(3)

This approach is simple in practice, but in some cases, it
may engender biased results because the mere artificial threshold
setting is lacking in flexibility, leading to erroneous conclusions.
Hence, focusing on this issue, we introduce the FAE-FCM into post
processing.

B. FAE-FCM method for post-processing
Fig. 1 is a schematic flowchart of FAE-FCM method, which

contains three parts as follow:

1) Data Processing: transforming the reconstructed result vector
X to a matrix M through the NFEF strategy, then fuzzifying M
to

⌢

M.
2) Feature Extraction: Training the FAE network through

⌢

M,
minimizing the loss function, and obtaining the feature matrix
Y ;

3) Clustering: applying FCM clustering algorithm to Y to obtain
the effective energy Ee and the background noise En respec-
tively, and the final result vector X′ being determined based
on Ee.

C. Data processing
In order to apply X to train the AE network, and inspired by the

definition of Markov Random Field (MRF),24 we proposed an NFEF
strategy to increase the numbers of each row of X. In NFEF strat-
egy, the energy value of each node and the energy of its four nearest

FIG. 1. Schematic flow chart of FAE-FCM method.
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neighbors are combined, transforming the original result vector X in
Eq. (2) to the following form:

Mn×5 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 xQ1,1 xQ1,2 xQ1,3 xQ1,4
x2 xQ2,1 xQ2,2 xQ2,3 xQ2,4
... ... ... ... ...
xn xQn,1 xQn,2 xQn,3 xQn,4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

where the first column of the M matrix is the original X vector,
xNi ,j represents the j nearest neighbors of the i th element in the
original X.

To improve the robustness of the training process of AE, the
fuzzy number, which is flexible is introduced, and thus the FAE is
got.25 Given a real number k and an input i, there will be a map-
ping relationship: for i = k, f (i) = 1. When the absolute value of
i approaches to infinity, f (i) = 0. Here, f (i) is the corresponding
membership function. In this paper, the symmetric triangular fuzzy
number will be adopted: f (i) = max(1 − |i − k|/β, 0), where β is a pos-
itive constant that controls the width of

⌢

k. Actually,
⌢

k corresponds
to a closed interval [kL, kR] and its center is k.

For a given constant σ ∈ [0, 1], we can define a new membership
function:

t(i) = {
f (i), f (i) ≥ σ
0, otherwise

(5)

The new mapping relation is called the σ-cut of
⌢

k, and symbol
⌢

k[σ] is used to represent it. It is worth noting that the
⌢

k[σ] is also
a fuzzy number which has the same center as

⌢

k does. We can also
define its left bound

⌢

k[σ]L and right bound
⌢

k[σ]R. From Eq. (5),
it is obvious that

⌢

k[0] =
⌢

k and that
⌢

k[1] =
⌢

k. In the latter case,
the fuzzy number degrades to a common real number. Thus, we can
fuzzy each element of M matrix in Eq. (4) to get:

⌢

M(i,j) = [ML(i,j)σ(i,j), MR(i,j)σ(i,j)], i ≤ n, j ≤ 5 (6)

The loss function of AE is used to measure the proximity of the
input data and the output. However, a fuzzy number corresponds
to an interval that contains infinitive points and we cannot compute
the reconstructed error for every point. So it is necessary to discretize
the continuous fuzzy domain to facilitate the establishment of loss
function, and the σ-cut is used here. In this paper, the closed interval
[0, 1] is divided into m equivalent subintervals and thus we have m
+ 1 endpoints, and then we define

σr =
r
m

, r = 0, 1, . . . , m. (7)

Where m = 10 in this paper. According to the previous description,
it can be seen that each σ ∈ [0, 1) corresponds to two real numbers
M[σ]L and M[σ]R, and Eq. (6) can be then expressed as:

⌢

M(i,j) = (ML(i,j),ML(i,j)σ1, ...,ML(i,j)σ9,M(i,j),MR(i,j)σ9, ...,

×MR(i,j)σ1,MR(i,j)), i ≤ n, j ≤ 5 (8)

In this paper, Eq. (8) is split to the left and the right as the input
of AE, whose rationality has been demonstrated by our previous
work:26

{
SL(i,j) = (ML(i,j),ML(i,j)σ1, ...,ML(i,j)σ9,M(i,j))
SR(i,j) = (M(i,j),MR(i,j)σ9, ...,MR(i,j)σ1,MR(i,j))

(9)

D. Feature extraction
After the data processing, the original result X has been fuzzi-

fied, and two fuzzy matrices in Eq. (9) are obtained as the training
data of the AE network. The AE consists of an input layer, an output
layer and a hidden layer, is used to find suitable parameters ξ1 and ξ2
to satisfy the relationships between input SL, SR and output SL′, SR′
as:27,28

{
f (SL′∣SL ) = f (SL′∣SL ; ξ1)

f (SR′∣SR ) = f (SR′∣SR ; ξ2)
(10)

Moreover, the AE can be seen the combination of an encoder
and a decoder, which can be seen in Eq. (11) and Eq. (12), separately.

{
y1 = fξ1(SL) = ε(W1 × SL + b1)

y2 = fξ2(SR) = ε(W2 × SR + b2)
(11)

⎧⎪⎪
⎨
⎪⎪⎩

SL′ = f ′ξ1
′(y1) = ε(W1

′
× y1 + b1

′
)

SR′ = f ′ξ2
′(y2) = ε(W2

′
× y2 + b2

′
)

(12)

where ξ1, ξ2, ξ1
′ and ξ2

′ denote the set of parameters {W1, b1},
{W2, b2}, {W1

′, b1
′
} and {W2

′, b2
′
}, separately. ε(x) = 1/(1 + e−x)

is the Sigmoid activation function. It should be noted that in this
paper, the left and right parts of AE network are both 40 hidden
neurons. And in the implementation of our network, according to
the previous work, W′ can be directly replaced by WT .29 Then, the
loss function L in this paper is established as:

L(S′, S) = ∫
1

0
(∥ SL − SL′ ∥ + ∥ SR − SR′ ∥)dσ (13)

After minimizing the loss function, one parameter set,
θ = {W1,W1

T ,W2,W2
T , b1, b1

′, b2, b2
′
}, can be determined and the

output of encoder: y1 and y2 are used as the latent features of the
input data.26 The basic AE network is shown in Fig. 2(a), while the
FAE used in this paper is depicted in Fig. 2(b).

E. Clustering
After the feature extraction process, we get the latent features

of the input. Then, we combine y1 and y2 to generate matrix Y, as
shown in Fig. 1. Then, FCM is selected as the clustering algorithm.22

Given U = (µi ,j)n×c is a fuzzy classification matrix, where c
is the number to be classified (in this paper, c=2), and µi ,j is the
membership of sample j for classification, and the sample type Y j
is the feature of the hidden layer of the FAE. Construct the objective
function as follows:22

J =∑2
i=1∑

g
j=1 µ

m
i,jd

2
i,j (14)

where m ∈ (1, ∞) is the fuzzy index, which determines the degree
of classification matrix ambiguity. In this paper, m = 2, and
di ,j = ||Y j − ωi||, ωi denotes the center of the cluster i.

Using the Lagrangian multiplier method to minimize objective
function, the following membership optimization expression can be
obtained:

µi,j = 1/∑
2
k=1 (di,j/dk,j)

2/(m−1), i ∈ (1, 2), j ∈ (1, g) (15)

AIP Advances 9, 065105 (2019); doi: 10.1063/1.5088234 9, 065105-3

© Author(s) 2019

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 2. (a) Schematic diagram of an AE network; (b)
Schematic diagram of the special AE network used in this
paper.

And the optimized cluster center:

ωi =∑
g
j=1 µ

2
i,jYj/∑

g
j=1 µ

2
i,j (16)

After clustering, feature matrix Y can be clustered into two new
matrices. As each row of the matrix Y corresponding to one element
in vector X, thus, the two new matrices represent the latent features
of the two parts of X. We define the part with higher sum value is the
effective nodes, and the corresponding matrix is named as Ee, while
the other one named as En. So, after setting the value of the nodes
corresponding to En to 0, we can get the final reconstruction result
vector X′.

III. EXPERIMENT AND RESULTS
In this paper, the reconstruction method is implemented by

using MATLAB 2018A. The main configuration of the computer is a
3.70 GHz Intel Core i7 CPU, 16 GB RAM, and NVIDIA GTX 1080Ti
GPU.

In order to evaluate the performance of the proposed method
in this paper, several sets of numerical simulations and physical
phantom experiments are conducted. Several quantitative evalua-
tion indicators including the centroid error (EC), the weighted center
error (EWC), the reconstructed volume ratio (RV ), and the coinci-
dent tetrahedral ratio (RT) are employed to quantitatively assess the
reconstruction results.

The centroid error EC is defined as the Euclidean distance
between the centroid coordinates of the reconstruction result (x, y, z)
and the true Cerenkov source (x0, y0, z0).

The weighted center error EWC is defined as the Euclidean dis-
tance between the weighted center coordinates of the reconstruction
result (xc, yc, zc) and the center coordinates of the real Cerenkov
source (xc0, yc0, zc0).

The reconstruction volume ratio RV is defined as the ratio
between the total volume of the reconstructed tetrahedron Vrec and

the volume of the real source V true, as follows:

RV = Vrec/Vtrue (17)

The reconstruction algorithm obtains the energy values of a
group of nodes, which will form the corresponding internal tetrahe-
dral structure. Accordingly, these tetrahedral structures constitute
the final reconstruction area. The overall volume of the tetrahe-
dron can be calculated by the coordinates of the four nodes of the
tetrahedron. But, some nodes of some tetrahedrons may have no
energy value, which means that only a part of the volume of the
tetrahedron belongs to the reconstruction result. For these tetra-
hedrons, the volume corresponding to each tetrahedron can be
equally divided into four parts, and if there are several nodes whose
energy values are non-zero, it is considered that the tetrahedron con-
tributes the volume of the corresponding number of parts in the
reconstruction area. For the mesh used in this paper, this method
can effectively calculate the total volume of the reconstruction
tetrahedron Vrec.

The coincident tetrahedron ratio RT is the number of intersec-
tions between the index of the reconstructed tetrahedron (Irec) and
the index of real source tetrahedron (Iture), divided by the number of

TABLE I. Optical parameters of different tissue and organs of the numerical mouse
for 630nm.

Material µa/mm−1 µs/mm−1 g

Muscle 0.016 0.510 0.9
Heart 0.011 1.053 0.86
Stomach 0.002 1.525 0.9
Liver 0.065 0.723 0.9
Kidney 0.012 2.472 0.9
Lung 0.036 2.246 0.9
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FIG. 3. (a) Model of single source numerical mouse; (b) Model of double sources
numerical mouse; (c) Forward simulation result of the single source; (d) Forward
simulation result of the double source.

unions between the index of the reconstructed tetrahedron and the
index of real source tetrahedron, as follows:

RT = num(Irec ∩ Itrue)/num(Irec ∪ Itrue) (18)

A. Numerical mouse simulation
In the following simulations, the numerical mouse model is

used.30 The optical parameters are given in Table I.18 Spheres
with a radius of 0.8mm serve as the light sources. In the single
source simulation, one light source is placed at (12mm, 14mm,
25mm), as shown in Fig. 3(a). In the double source simula-
tion, two light sources are placed at (9mm, 7mm, 18.5mm) and
(26mm, 7mm, 18.5mm), separately, as shown in Fig. 3(b). The
Monte Carlo (MC) method is used to generate the photon flow
rate distribution of the forward model. And the FEM method is
used to discretize the numerical mouse into 2206 surface trian-
gular patches, 47407 internal tetrahedrons, and 8588 mesh nodes.
Figs. 3(c) and (d) show the surface photon flow results gener-
ated by using Molecular Optical Simulation Environment (MOSE)
software.31

1. Single source numerical mouse simulation
Fig. 4(a) shows the raw reconstruction results without any

post-processing for single-source case. Figs. 4(b) and (c) show
the processed result with manual threshold and the FAE-FCM

FIG. 4. Reconstruction results in the single-source simulation. (a)-(c) are 3D views of the raw reconstruction result, the processed result with a manual threshold of 70%, and
the result with the FAE-FCM method. (d)-(f) are the corresponding cross-section views of the three methods at plane of Z=25mm, where black circles show the real locations
of light sources.
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TABLE II. Quantitative evaluation results of the three methods in single source numerical simulation.

Method Centroid Coordinates/mm Weighted Center Coordinates/mm Ec/mm Ewc/mm Rv RT

Raw Result (12.05, 13.81, 25.38) (12.10, 13.92, 25.48) 0.43 0.50 3.86 0.22
Manual Threshold (12.00, 13.90, 25.36) (12.08, 13.98, 25.43) 0.38 0.44 2.02 0.25
FAE-FCM (12.05, 14.31, 24.94) (12.20, 14.06, 25.34) 0.32 0.40 1.20 0.54

method, respectively. Figs. 4(d), (e) and (f) are two-dimensional
cross-sectional views of (a), (b) and (c) at plane of Z=25mm. The
quantitative results for single-source case are shown in Table II.
According to the experimental results, it can be seen that although
the artifacts with lower energy values can be filtered by the man-
ual threshold, those with higher values still exist. Compared with
the manual threshold, the proposed FAE-FCM method yields bet-
ter results, which is due to the combination of the energy dis-
tribution of the light source and the implicit spatial geometry
information of nodes.

2. Double source numerical mouse simulation

Fig. 5 shows the comparison among the raw reconstruc-
tion result, the processed result with a manual threshold of
70%, and the result with FAE-FCM method in the double-
source case. Table III further presents the quantitative analysis
of the results. When the nodes with higher energy value are

not located inside the light source, the artificial filtering method
will yield a deteriorated result. Fig. 5 shows the results obtained
by different methods intuitively, and a comparison of Figs. 5(b)
and (c) will show the advantage of the proposed FAE-FCM
framework over the artificial threshold approach. The quantita-
tive results in Table III also show the error evaluating indica-
tors (EC and EWC) of the manual threshold method increase
significantly.

To further test the proposed method with more compli-
cated settings, two more experiments of double source numer-
ical mouse simulation are conducted. In the first experiment,
there are two sources with different power density in the
numerical mouse model (one is 1 nW/mm3 and the other is
0.5 nW/mm3), and the location of light sources are (9mm, 7mm,
18.5mm) and (26mm, 7mm, 18.5mm). Fig. 6(a) is the forward
simulation result, while Fig. 6(b) is the reconstruction result. It
can be concluded that the two light sources can be well recon-
structed. For the second experiment, the initial values of light

FIG. 5. Reconstruction results in the double-source simulation. (a)-(c) are 3D views of the raw reconstruction result, the processed result with a manual threshold of 70%,
and the result with the FAE-FCM method; (d)-(f) are the corresponding cross-section views of the three methods at plane of Z=18.5mm, where black circles denote the true
locations of light sources.
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TABLE III. Quantitative evaluation results of the three methods in double source numerical simulation.

Method Centroid Coordinates/mm Weighted Center Coordinates/mm Ec/mm Ewc/mm Rv RT

Raw Results (9.72, 7.68, 19.20) (9.63, 7.60, 18.91) 0.73 0.93 4.23 0.02(26.07, 7.50, 18.90) (25.93, 7.50, 18.53)

Manual Threshold (9.72, 7.68, 19.20) (9.36, 7.60, 18.91) 5.18 3.14 0.32 0.11(17.86, 10.99, 17.31) (20.79, 7.77, 19.29)

FAE-FCM (9.54, 7.23, 18.81) (9.45, 7.28, 18.68) 0.66 0.53 1.30 0.57(25.93, 7.50, 18.53) (26.07, 7.50, 18.90)

sources are the same, but the distance between them is closer
than that in the previous experiment, with the location being
(9mm, 7mm, 18.5mm) and (13mm, 8mm, 18.5mm). Fig. 6(c) is
the forward simulation result, while Fig. 6(d) is the reconstruction
result.

B. Real physical phantom experiments
1. Materials and instruments

Here, 18F-deoxyglucose (18F-FDG) is selected as the radioac-
tive material. It is made by GE’s MINItrace cyclotron. The radio-
chemical purity of 18F-FDG is 97%, radioactive concentration
is 5 GBq/mL, pH is 8.0, and the purity is greater than 99.9%.

FIG. 6. (a) and (c) is the forward simulation result, while (b) and (d) is the recon-
struction result. In (a), the power densities of the two sources are different; and
in (c), the distance between the two sources is closer than that of (a), with the
densities are the same.

The optical information of the simulated surface was collected
by IVIS imaging system manufactured by Calipers Life Sciences,
USA.

In this section, a cube and a cylinder phantom made of
polyoxymethylene are used. The height of the cube and the
cylinder are 25mm, and the length of the cube and the diam-
eter of the cylinder are both 25mm. A cylindrical hole with a
diameter of 3mm and depth of 12.5mm is drilled at the top
of two phantoms respectively. By injecting 10µg of 18F-FDG
into the hole, a cylindrical light source about 2mm high with
a center coordinate of (6.25mm, 0mm, 1mm) was constructed.
After injecting, the top of the phantom holes is sealed with
masking tape to avoid interference from other factors. The
aperture of phantom was sealed with a light-shielding tape.
The phantoms geometry and the source setting are shown in
Figs. 7(a) and (b). The surface signals of the two phantoms are
separately collected by the IVIS system, and the final result of
the surface closest to the light source is shown as shown in
Figs. 7(c) and (d).

FIG. 7. (a) and (b) are the geometric structure of the cube and cylinder phantom
with a cylindrical source, where the pale-yellow part is the schematic position of the
light source; (c) and (d) are the corresponding single views of the surface signal
collected in the IVIS system.

AIP Advances 9, 065105 (2019); doi: 10.1063/1.5088234 9, 065105-7

© Author(s) 2019

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 8. Reconstruction results for the cubic physical phantom experiment. (a)-(c) are the 3D views of the raw reconstruction result, the processed result by manual threshold,
and the result by FAE-FCM method, where the pale-yellow cylinders represent the true sources and the dark-green areas represents the reconstructed sources; (d)-(f) are
cross-section views of the three methods at plane of Z=1mm, where black circles show the location of the 18F-FDG cylindrical light sources.

2. Result of cubic phantom experiment
Fig. 8 show the raw reconstruction result of the cubic phan-

tom experiment, the processed result with the manual threshold
and the result with the FAE-FCM method, respectively. The quan-
titative analysis of the results is shown in Table IV. It can be
seen from Fig. 8 that the all of reconstructed source size is sig-
nificantly reduced compared to the numerical simulation, which
mainly caused by the inevitable loss and error in signal acqui-
sition. This leads to an over-filtering phenomenon in Figs. 8(b)
and (e). A large amount of the lower energy portion is filtered
out, resulting in a too small reconstructed result. Similar con-
clusions can be drawn from Table IV. The experimental results

by the proposed method are similar to the previous numerical
simulations.

3. Result of cylinder phantom experiment
The comparison results among the raw reconstruction result

of the cylinder phantom experiment, the processed result with the
manual threshold and the result with the FAE-FCM method are
shown in Fig. 9. The quantitative analysis of the results is shown in
Table V. Similar to cubic phantom experiment, the higher energy
portion of the reconstructed result is located outside the 18F-FDG
source, as shown in Figs. 9(a) and (d). This leads to that most of
the energy information inside the source is filtered out with the

TABLE IV. Quantitative evaluation results of the three methods in the cubic physical phantom experiment.

Method Centroid Coordinates/mm Weighted Center Coordinates/mm Ec/mm Ewc/mm Rv RT

Raw Results (5.66, 0.29, 1.22) (5.71, 0.38, 1.28) 0.69 0.72 1.97 0.25
Manual Threshold (5.80, 0.27, 1.16) (5.64, 0.74, 1.41) 0.55 1.04 0.11 0.06
FAE-FCM (5.97, 0.12, 1.43) (5.71, 0.37, 1.23) 0.53 0.69 0.88 0.34
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FIG. 9. Reconstruction results for the cylinder physical phantom. (a)-(c) are the 3D views of the raw reconstruction result, the processed result by manual threshold, and
the result by FAE-FCM method, where the small pale-yellow cylinders represent the true sources and the dark-green areas represents the reconstructed sources; (d)-(f) are
cross-section views of the three methods at plane of Z=1mm, where black circles show the location of the 18F-FDG cylindrical light sources.

TABLE V. Quantitative evaluation results of the three methods in cylinder physical phantom experiment.

Method Centroid Coordinates/mm Weighted Center Coordinates/mm Ec/mm Ewc/mm Rv RT

Raw Results (5.26, -0.38, 0.74) (5.19, -0.55, 0.74) 1.09 1.22 2.03 0.15
Manual Threshold (4.90, -0.78, 0.82) (5.06, -0.69, 0.78) 1.57 1.39 0.68 0.08
FAE-FCM (5.37, -0.53, 1.43) (5.51, -0.24, 0.79) 1.11 0.80 0.87 0.33

manual threshold method, and certainly causes a bigger location
error in the final result, as shown in Figs. 9(b) and (e) and Table V.
On the contrary, the proposed post-processing method performed
better. It filters out the portion located in the non-source region even
though the mesh nodes in this portion have a relatively higher energy
value.

IV. CONCLUSION AND DISCUSSION
In this paper, we propose a novel post-processing method for

CLT reconstruction. Compared to the traditional threshold method,
the proposed method is free from artificial threshold, and performs
better even when the nodes with the maximum intensity value in
the reconstructed source region are not located inside the true ones.
The reconstruction results of simulations and physical phantom

experiments presented in Section III demonstrate that the FAE-
FCM post-processing method can improve the quality of the recon-
structed images by reducing artifacts and increasing the location
accuracy.

However, it should be noted that in the algorithm of this paper,
there are two parameters that may have a significant impact on the
reconstruction result, and they are the unit number of hidden layer
neurons and the maximum fuzzy factor. In all of the experiments
involved in this paper, the left and right parts of AE network are
both 40 hidden neurons. We use 80 as the unit number of hidden
layer neurons because a larger number cannot improve the per-
formance of the reconstruction result, according to an additional
experiment shown in Fig. 10(a), which depicts the reconstruction
results obtained by using a serious of the different number of hid-
den layer neurons, and other parameters are consistent with the
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FIG. 10. (a) Reconstruction results with different unit num-
ber of hidden layer neurons; (b) Reconstruction result with
different maximum fuzzy factor.

numerical experiments of single light source. It is obvious that
when the number of hidden layer neurons is larger than 80,
the result will not change significantly. As for the selection of
maximum fuzzy factor (10 is used in this paper), we have also
conducted a serious of experiments to investigate its impact on
the reconstruction result. Four experiments with different max-
imum fuzzy factors are conducted and the results are shown
in Fig. 10(b), and other parameters are consistent with the
cubic physical phantom experiment, we can see that when the
maximum fuzzy factor exceeds 10, the results mainly remain
unchanged.

As one main contribution of this work is that the FAE-FCM is
a post-processing part of the CLT framework, it can be combined
with any other reconstruction method. So, we hope this work may
provide a useful tool for the CLT, as well as other optical molecular
tomography technologies.
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