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Although many recent deep learning methods have achieved good performance in point cloud analysis, most
of them are built upon the heavy cost of manual labeling. Unsupervised representation learning methods have
attracted increasing attention due to their high label efficiency. How to learn more useful representations from
unlabeled 3D point clouds is still a challenging problem. Addressing this problem, we propose a novel unsuper-
vised learning approach for point cloud analysis, named ULD-Net, consisting of an equivariant-crop (equiv-crop)
module to achieve dense similarity learning. We propose dense similarity learning that maximizes consistency
across two randomly transformed global–local views at both the instance level and the point level. To build feature
correspondence between global and local views, an equiv-crop is proposed to transform features from the global
scope to the local scope. Unlike previous methods that require complicated designs, such as negative pairs and
momentum encoders, our ULD-Net benefits from the simple Siamese network that relies solely on stop-gradient
operation preventing the network from collapsing. We also utilize the feature separability constraint for more
representative embeddings. Experimental results show that our ULD-Net achieves the best results of context-based
unsupervised methods and comparable performances to supervised models in shape classification and segmen-
tation tasks. On the linear support vector machine classification benchmark, our ULD-Net surpasses the best
context-based method spatiotemporal self-supervised representation learning (STRL) by 1.1% overall accuracy.
On tasks with fine-tuning, our ULD-Net outperforms STRL under fully supervised and semisupervised settings,
in particular, 0.1% accuracy gain on the ModelNet40 classification benchmark, and 0.6% medium intersection of
union gain on the ShapeNet part segmentation benchmark. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAA.473657

1. INTRODUCTION

As a common 3D representation, the significant advantage of
point cloud data over other representations (e.g., volumetric
grids, meshes, and depth images) lies in its easy availability.
With the advancement of 3D acquisition technologies, vari-
ous types of 3D scanners, LiDARs, and red, green, and blue
(RGB)-D cameras (e.g., cameras in Kinect and Apple devices)
are becoming ever more accessible; thus, point cloud data can be
quickly acquired without triangulating data into grids or voxel
form. Hence, point cloud data is ideal for wide-ranging appli-
cations, such as autonomous driving [1], building information
modeling [2], and digital preservation of ancient artifacts [3].

Recently, deep learning approaches became a dominant
source in point cloud analysis in resolving various problems,
including 3D shape classification, segmentation, object detec-
tion and tracking, registration, and so on. The remarkable
advances in point cloud shape understanding rely on the large

scale of labeled training data, and the performance improves
logarithmically based on the size of annotated training data. The
tedious and resource-consuming annotation process became a
bottleneck for sustainable success due to the following reasons:
(1) because of the sparsity, annotations for low-resolution point
clouds are always ambiguous; (2) with the huge amount of
points in dense objects, which can reach hundreds of millions,
point-by-point annotation comes with significant costs; (3) the
annotation for 3D objects are inherently more error prone than
for 2D instances as its high complexity; (4) few works have
focused on building automatic annotation tools for 3D point
clouds, existing tools are still in the early stage manifested in
their low accuracy and inconvenience.

In order to resolve the above practical difficulties, researchers
explored unsupervised representation learning (URL) in the
3D point cloud analysis field based on the easy availability of
unlabeled data. In common URL settings, the network learns
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knowledge from pretext tasks without supervision in the pre-
training stage, then, transfers the learned knowledge to other
downstream tasks. Most existing works are based on genera-
tion tasks [4–8] that rely heavily on the specific architecture
designation, such as folding-based decoders for completion
and reconstruction tasks, the performance in downstream
tasks degenerates when using a general multilayer perceptron-
(MLP-) based decoder. Meanwhile, generation-based tasks
concentrate on geometric structures, which results in poor trans-
ferability on scene-level datasets. To eliminate the dependence
on such specific components and improve model transferability
to real-world scenes, several recent works consider context simi-
larities [9–16] between samples to explore generic methods for
URL.

Inspired by the huge success of self-supervised learning in the
2D computer vision domain, several efforts have been devoted
to exploring context similarities in 3D point clouds based on
Siamese networks. Most works built on top of contrastive learn-
ing rely on negative samples, Info3D [15] proposes to learn
representations by maximizing mutual information between
3D objects and their local parts. Towards more discriminative
features from local patches, Du et al . [16] introduced a hard
negative sampling strategy into architecture. PointContrast [9]
extracts dense correspondences across two views of scene point
clouds for point-level contrastive learning. Without the require-
ments of negative samples, spatiotemporal self-supervised
representation learning (STRL) [10] extends bootstrap your
own latent (BYOL) [17] from 2D image processing to 3D point
cloud analysis by learning features between original objects
and their augmented views. However, previous works conduct
unsupervised pretraining with complicated designations, such
as negative pairs sampling [9], memory banks [15], and momen-
tum encoders [10]. Additionally, most methods individually
considered context similarities between transformed views
at the instance level [10,15,16] or point level [9], separately
maintaining consistency at both two levels was not taken into
account.

To this end, we present a dense representation learning
approach named 3D unsupervised learning by dense similarity
learning with equivariant-crop (equiv-crop) (ULD-Net) based
on three common-sense intuitions. First, purely considering
instance-level similarity dismisses local spatial information;
whereas, learning point-level similarity cannot extract repre-
sentative abstract semantic information for the entire object.
Thus, we jointly optimize the model at both levels, which helps
to learn sufficient knowledge for downstream tasks. Second, the
two branches of the network output point-level features within
different scopes; whereas, point-level similarity learning aims
to maximize corresponding features across views, the features
should share the same scopes with one-to-one correspondence.
Therefore, we propose an equiv-crop module equivariant with
the cropping transformation to map the global features to the
local scope. Third, it is proved that without redundant compo-
nents which raise the computational cost, a simple stop-gradient
(sg) design can get the network rid of collapse [18]. Using
these inductive biases alone, we can train a Siamese network
with a sg operation on top of SimSiam [18] to output point
embeddings with objectives maximizing similarities between
embeddings across local–global views, aiming at pretraining

Fig. 1. Illustration of the proposed method.

dense representations with strong transferability in downstream
tasks.

The process of the proposed method is illustrated in Fig. 1.
The pair of augmented point clouds (shown as blue dots) in
global–local views are processed by the same encoder network
and a projector network to extract features (shown as pentagons
or crosses in other colors).

The equiv-crop module is applied to the global view side to
project global features to the local scope. The predictor network
is applied on one side, and the sg operation is on the other side.
After taking dense similarity learning as a pretext task during
pretraining, the trained encoder network transfers the learned
knowledge to downstream tasks, such as shape classification,
part segmentation, semantic segmentation, and so on. We
theoretically prove the intuitions can improve the performance
through serial experiments conducted, the method we pro-
posed achieves competitive results to existing methods. Our
contributions can be summarized as follows:

(1) We propose a novel method for 3D point cloud unsuper-
vised representation learning, which learns dense features
by maximizing their local–global similarities at the point
level and instance level, eliminating the need for negative
samples or other complicated designs.

(2) We introduce a novel point mapping strategy named equiv-
crop for correspondence across views with local and global
scopes, to provide the foundation for point-level feature
learning. The local scope is produced by a cropping opera-
tion, and two augmented views are generated by integrating
with an inv-aug strategy; whereas, the robustness is boosted.

(3) We present a feature separability constraint that maxi-
mizes the separability of feature vectors from different
dimensions; whereas, boosting the representability of
features.

2. RELATED WORKS

A. Deep Architectures for Point Cloud Processing

The advances in deep learning and learning-based point descrip-
tors have been helpful to the impressive performance of recent
point cloud processing for several 3D understanding tasks.
Existing methods focus on alleviating the difficulty caused by
the irregularity of 3D point clouds with most works extracting
features directly from points.
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PointNet [19] is the seminal work using deep learning that
performs directly on raw point clouds, which achieved input-
order invariance by symmetric functions. Since PointNet
learns features independently through pointwise MLP for each
point, later works paid attention to capturing local structural
information using various methods. PointNet++ [20] learns
local features by a hierarchical network, which is stacked by set
abstraction layers. PointCNN [21] designed discrete convolu-
tional kernel χ -conv particular for point clouds. Considering
each point-in-point clouds as a vertex, DGCNN [22] and
RGCNN [23] construct graphs in spatial and spectral spaces.
Kd-Net [24] learns features by constructing hierarchical data
structures based on K-d trees. Recently, transformer-based
methods [25,26] are proposed for long-range visual dependen-
cies learning. In this paper, common architectures are suitable
to be utilized as backbone networks because of our flexible
designation.

B. Deep Architectures for Point Cloud Processing

URL is drawing increasing interest owing to its superiority in
resolving the annotation bottleneck. Since annotations for 3D
data take higher costs than 2D vision data, 3D tasks are sup-
posed to benefit much more from URL. However, compared
with natural language processing and 2D vision, the unsuper-
vised pretext task defined for 3D point cloud data is much less
mature.

Numerous pretext tasks have been proposed for strong
presentation acquisition with specific objectives, which can
be broadly divided into two categories: generation-based and
context-based tasks. Generation-based tasks take point clouds
themselves as supervised information, including reconstructing
original input from low-dimensional vectors [4,5], generating
new point clouds similar to training samples from random
noise [6], up-sampling point clouds from sparse to dense [7],
and completing missing parts [8]. Learning features through
context-based methods is another rising research direction,
including performing instance discrimination [9,10], solving
3D jigsaw puzzles [11], predicting rotation angles [12], predict-
ing the next point in the sequence [13], and disentangling the
mixed point clouds [14]. Considering multilevel similarity, a
pretext task defined as optimizing the cosine similarities at both
the instance level and the point level is proposed, accompanied
by a feature separability constraint aiming at more representative
features.

C. Siamese Neural Networks

The Siamese network consists of two identical artificial neural
networks for comparing the projected representations of the
two input vectors. The key challenge in Siamese methods is how
to avoid collapsing solutions. SimCLR [27] and MoCo [28]
are proposed based on the core idea of contrastive learning that
drags positive sample pairs and pushes negative sample pairs
away. Different from comparing samples in the current batch in
SimCLR and MoCo builds a dynamic dictionary with a queue
and a moving-averaged encoder to get rid of the dependence on
large batch size and to improve the consistency of the queues.
Clustering-based methods construct Siamese networks with

clustering intergraded, whereas, achieving competitive results
without a memory bank. Specifically, SwAV [29] solves degen-
erate solutions through computing cluster assignments from
one view playing as negative samples relying on the Sinkhorn–
Knopp algorithm. Asymmetric methods prevent features from
collapsing using asymmetric architecture. BYOL [17] uses
a momentum encoder accompanied by sg and moving aver-
age; whereas, SimSiam [18] removes the momentum encoder
and keeps minimum core architecture as an elegant realiza-
tion. Inspired by SimSiam, we build our network based on the
Siamese architecture with a sg operation as its computational
advantage.

3. METHOD

The overall pipeline of our ULD-Net is depicted in Fig. 2.
Taking unsupervised point cloud datasets as source data, our
fundamental idea is to train an encoder network by modeling
dense consistency between local–global features from trans-
formed views to extract representations for better transferability
on downstream tasks.

For each point cloud object P , we first transform the original
input into two random augmented views in the global and
local scope by inv-aug and cropping transformations. Then,
we encode the point clouds to generate feature maps in high-
dimensional space by a weight-shared encoder network fθ .
Inspired by SimSiam, we promote the representational ability
of the encoder by minimizing the dissimilarities between fea-
ture maps through dense similarity learning. We integrate the
instance-level [Fig. 2(a)] and point-level [Fig. 2(b)] similarity
learning into a unified framework, and we utilize feature sepa-
rability constraint [Fig. 2(c)] for more discriminative features.
Taking our approach to pretrain an encoder network from
unlabeled data, the learned encoder can be transferred to various
downstream tasks for feature extraction.

A. Views and Features Generation

Given each input point cloud P ∈RN×3 with N elements, we
transform its geometric features (X Y Z coordinates) by inv-aug
and cropping operations with random factors. Inv-aug is a
collection of data augmentations consisting of rotation, trans-
lation, scaling, and jittering. We start the transformation with
two randomly inv-aug augmentations I (1) and I (2) that output
two augmented point clouds A1 = I (1)(P ) and A2 = I (2)(P ).
Regarding one augmented point cloud A1 as the global view

Fig. 2. Overall overview of the proposed pretraining method.
(a) Instance-level similarity learning. (b) Point-level similarity learning.
(c) Feature separability constraint.
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Vglobal = A1 of the input point cloud P [as in Eq. (3)], we con-
duct a cropping operation C on another augmented point cloud
to generate the local view. Different from inv-aug, which keeps
the object complete, the cropping operation transforms points
to a random local scope.

1. CroppingOperation

The cropping operation C consists of two steps conducted at
the augmented point set A2. First, we compute the indices
of, at least, 50% of points inside the coordinate range
defined by a random 3D cuboid with computed indices
m = { ji ∈ [1, . . . , N], i ∈ [1, . . . , L]}, and the selected L
points A2[m] inside a cuboid local scope are kept as downsam-
pled points. Since the point sequence is invariant to inv-aug
operations I (1) and I (2), the downsampled point set A2[m]with
L elements corresponds exactly to points with the same indices
m in the global scope point set Vglobal (i.e., A1). Second, we
upsample the downsampled point set A2[m] from size L to the
predefined input size N of the encoder network. We choose the
inverse distance weighted average based on k-nearest neighbors
[as in Eq. (1), in default we use p = 2, K = 3] for interpolation,
the outputs upsampled point set regarded as the local view [as in
Eq. (4)],

Vlocal[i] =

K∑
r=1

wr (A2[i])Aknn[i, r ]

K∑
r=1

wr (A2[i])

, i ∈ [1, . . . , N], (1)

where Aknn ∈RN×K×3 denotes the K -nearest neighbors of N
points in the entire point set A2, the neighbors are searched in
the downsampled point set A2[m], d(·) denotes the Euclidean
distance between two points, andwr is computed for the weight
of the r th neighbor,

wr (A2[i])=
1

d(A2[i], Aknn[i, r ])p . (2)

In conclusion, the correspondence between two scales is
constructed by downsampled indices m and the K -neighbors
Aknn. Thus, two different views in the local and global scopes
with transformation in Eqs. (3) and (4) are produced

Vglobal = A1 = I (1)(P ), (3)

Vlocal =C(A2)=C(I (2)(P )). (4)

2. Dense FeatureMapGeneration

The global–local views from the same point cloud are then
processed by a backbone encoder network fθ with parame-
ters θ . The encoder shares the same weights between views.
For local input Vlocal, the encoder fθ computes a point-level
feature map F pt

local = fθ (Vlocal) including representations for
each point in the local view Vlocal, the feature vector for the i th
point is noted as F pt

local[i]. Simultaneously, fθ yields a high-
dimensional vector αlocal after max pooling describing the entire

local view Vlocal at the instance level. Following the same com-
putation pipeline with local features, a point-level feature map
F pt

global = fθ (Vglobal) and an instance-level representation αglobal

from the global view are generated

αglobal =maxpooling( fθ (Vglobal)), (5)

αlocal =maxpooling( fθ (Vlocal)). (6)

3. Equiv-Crop

Denoting high-dimensional features from the global and local
views without max pooling as Fglobal, Flocal ∈RN×D, where
D denotes the number of feature dimensions, the global view
features Fglobal can be transformed to the local scope through
a module EC equivalent to the cropping operation. Since the
network is permutation invariant, the sequences of output fea-
tures correspond to network input sequences. Namely, there is a
one-to-one correlation between the input point and the output
feature. For example, the i th point Vglobal[i] in the global view
is represented by the feature vector Fglobal[i]. Based on such a
principle, global features Fglobal can be directly mapped into
the corresponding local scope using the same correspondence
in the cropping operation performed in views transformation.
Specifically, we gather the global features of points in the same
local cuboid scope in cropping following the same downsam-
pling and upsampling steps. First, we downsample the features
by selecting indices m saved in cropping, the downsampled
features Fglobal[m] represent features of points in downsampled
points A2[m] in cropping. Then, with the downsampled fea-
tures Fglobal[m], we upsample the features from the searched
K -nearest neighbors Aknn the same as in cropping,

EC(Fglobal[i])=

K∑
r=1

wr (A2[i])Fknn[i, r ]

K∑
r=1

wr (A2[i])

, i ∈ [1, . . . , N],

(7)
where Fknn ∈RN×K×D denotes features of neighbors Aknn, d(·)
denotes the Euclidean distance between two vectors, and wr

denotes the weight of the r th neighbor. The equiv-crop module,
then, transforms global features into the local scope defined in
cropping.

B. Dense Similarity Learning

To achieve a sophisticated similarity measurement, we learn
local–global consistency through dense similarity learning.
Solely learning consistency between local and global views at
the instance level would cause most of the spatial information to
be discarded during pooling. To tackle this question, we jointly
learn instance-level and point-level similarities. Moreover, for
point-level feature learning, we utilize the equiv-crop module
in Section 3.A.3 towards mapping point embeddings from the
global scope to the local one.
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1. Instance-Level Similarity Learning

We learn instance-level similarity from representations αlocal

and αglobal, the pipeline is shown in Fig. 2(a). We first transform
features by the same projector network q ins, which is a three-
layer MLP head output with features zglobal = q ins(αglobal) and
zlocal = q ins(αlocal). Then, a predictor network h ins transforms
the projected feature from one view to predict another, out-
puts predictions e global = h ins(zglobal) and e local = h ins(zlocal).
Meanwhile, a sg operation is applied to the projected features
from another view. We symmetrically minimize the distance of
feature maps and predictions from another view,

L instance =
1

2
D(e local, sg(zglobal))+

1

2
D(e global, sg(zlocal)),

(8)
where sg avoids the outputs of the network collapsing to a con-
stant and D(·) in Eq. (9) is a distance function measuring nega-
tive cosine similarity in high-dimensional feature space,

D(e local, zglobal)=−
e local

||e local||2
·

zglobal

||zglobal||2
, (9)

where || · ||2 denotes l2 normalization.

2. Point-Level Similarity Learning

We formulate point-level similarity learning as shown in
Fig. 2(b) to maximize the similarity of point predictions. Input
with point-level feature maps F pt

local and F pt
global, following the

same pipeline with instance-level similarity learning, a projector
q pt is used to transform the point-level features first. For each
point, we predict its feature from another view. However, due to
the input point represented by the i th feature mismatch between
local and global scopes, it is incompatible with common sense
to predict directly between two features from the same indices.
To bridge the gap, an equiv-crop module EC maps the projected
features from global to local scopes, and the projected features
are noted as J pt

global = EC(q pt(F pt
global)), J pt

local = q pt(F pt
local). After

that, the predictions Spt
global = hpt(J pt

global) and Spt
local = hpt(J pt

local)

for each point are outputted from the point-level predictor hpt.
We symmetrically maximize the similarity between the

projected feature for the i th point and its prediction,

Lpoint =

N∑
i=1

1

2
D(Spt

local[i], sg(J pt
global[i]))

+
1

2
D(Spt

global[i], sg(J pt
local[i])). (10)

C. Feature Separability Constraint

It is common that projected features and predictions (such
as J pt

global[i] and Spt
local[i]) contain different information after

random augmentations, but similarity learning forces these
embeddings to be close to each other, which leads to a risk of fea-
tures from different dimensions degenerating to the same value.
To address the degenerating issue, besides the sg operation, we
further propose a feature separability constraint as illustrated in
Fig. 2(c) to boost the expressiveness of features.

The channel embeddings are obtained by the sum of multipli-
cation between the feature maps and the predictions,

F ch
global =

N∑
i

J pt
global[i] · EC(F pt

global)[i], (11)

F ch
local =

N∑
i

J pt
local[i] · F

pt
local[i], (12)

where F ch
global, F ch

local ∈R
D×D′ , D and D′ represent the number

of output feature channels in the predictor and encoder.
Similar to similarity learning, we transformed the embed-

dings by a projector composed of MLP head q ch and predictor
hch output embeddings J ch

global = q ch(F ch
global), J ch

local = q ch(F ch
local)

and predictions Sch
global = hch(J ch

global), Sch
local = hch(J ch

local). By
using the information-noise-contrastive estimation (info-
NCE) loss [30], the similarities of features in different channels
decreased, which leads to higher separability. Specifically, we
optimize the feature separability by Eq. (13),

L separability =
1

2
L info−NCE(Sch

local, sg(J ch
global))

+
1

2
L info−NCE(Sch

global, sg(J ch
local)), (13)

where L info−NCE is the info-NCE loss as

L info−NCE(S, J )=−
R∑

r=0

log
exp(S[r ] · J [r ]/τ)

R∑
r ′=0

exp(S[r ] · J [r ′]/τ)

, (14)

where τ denotes the temperature coefficient of 0.1 in default and
R denotes the number of dimensions of the prediction feature S.

4. EXPERIMENTS AND RESULTS

A. Datasets

To validate the effectiveness and transferability of our method,
three benchmarks [ModelNet40 [31], the ShapeNet part [32],
and the Stanford 3D indoor spaces (S3DISs) [33]] are used in
the experiments. In the pretraining stage, ModelNet40 is used
for all experiments, and ShapeNet55 is additionally used for
linear evaluation comparison. For downstream tasks, we use the
ModelNet40 benchmark for shape classification, the ShapeNet
part benchmark for the shape part segmentation, and the S3DIS
benchmark for scene semantic segmentation.

ModelNet40. ModelNet40 includes 12,311 synthesized 3D
objects (divided into 9843 training samples and 2468 testing
samples) from 40 categories. We downsample each object to
2048 points whose X Y Z coordinates normalized into a unit
sphere following the preprocessing method from PointNet [19].

ShapeNet Part. ShapeNet55 [34] contains 57,748 synthetic
3D shapes from 55 categories. The ShapeNet part bench-
mark includes 16,881 shapes of 16 categories selected from
ShapeNet55. Each sample is annotated with two to five parts,
part labels for all categories amounted to 50. Intersection of
union (IoU) is widely used for segmentation evaluation that
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measures the ratio between pointwise ground truth and predic-
tion. For the part segmentation task, we compute category mean
IoU (mIoU) by averaging IoUs over parts of the same object
category, and instance mIoU is obtained by averaging over all
test shapes.

S3DIS. The S3DIS dataset contains 3D scans of six different
places including 271 rooms, which cover over 6000 m2. Each
point is represented by a nine-dimensional vector consisting of
X Y Z coordinates, RGB color values, and normalized location,
and the individual point is labeled with 13 semantic categories.
We use the same preprocessing procedures as the original work,
each room is split into blocks with 1m × 1m areas, and each
block contains 4096 points sampled. To evaluate semantic
segmentation performance, mIoU is computed by averaging
IoUs over all points.

B. Implementation Details

Architecture Parameters. For a fair comparison with previous
methods, the DGCNN backbone is used as the default encoder
network, which outputs features with 1024 dimensions. All
projectors and predictors are designed with the same architec-
ture. Specifically, each projection MLP head consists of three
fully connected layers with dimensions of [512,256,256], each
prediction MLP head consists of two fully connected layers
with dimensions of [512,256], each layer has batch normali-
zation applied, and LeakyReLU activation with a negative
slope of 0.2 is used except for the final output layer. For jointly
learning instance-level similarity, point-level similarity, and
feature separability, our ULD-Net optimizes the total loss
L = λ1L instance + λ2Lpoint + λ3L separability to balance the sig-
nificance of all tasks, we choose λ1 = λ2 = 100 and λ3 = 10
based on the numbers of each loss to keep them in the same
order of magnitude.

Pretraining Setup. We follow the settings of the STRL in
unsupervised pretraining experiments. We implemented our
paper with the deep learning library PyTorch using a single
TITAN RTX GPU for all experiments. Specifically, the Adam
optimizer is used in our model with an initial learning rate of
0.001, the learning rate is decayed by 0.7 every 20 epochs, and
the batch size is 24 by default. We pretrain ULD-Net for 200
epochs on ModelNet40.

Fine-tuning Setup. As an end goal in URL, we verify the
effectiveness of the pretrained features transferred to new tasks
in a fully supervised fashion. For 3D shape classification on
ModelNet40, we use a batch size of 24 for training and testing
with 250 epochs, the stochastic gradient descent optimizer is
used with an initial learning rate of 0.1, momentum 0.9, and
weight decay 0.0001, and the learning rate is decayed with a
cosine annealing scheduler. Slightly different from the above
settings for the classification task, the batch size used for 3D
part segmentation on the ShapeNet part is 16, and we train
the network for 100 epochs with the Adam optimizer for 3D
semantic segmentation on the S3DIS.

C. Downstream Results

1. Evaluation for ShapeClassification

For 3D shapes classification, we train a linear support vector
machine (SVM) on the target dataset ModelNet40 to evaluate
the effectiveness of the learned instance-level features follow-
ing the common protocol in prior URL works [8,10,11]. For
the SVM classifier, the input features are obtained after the
pretrained encoder network with the following pooling layer,
and the weights of the feature extractor are frozen during evalu-
ation. Following the settings in the DGCNN classification
network, the pooling layer outputs concatenated features after
max-pooling and average-pooling operations. The classification
results compared with the state of the art are shown in Table 1, all
methods tabulated are implemented with the DGCNN back-
bone as a feature extractor for a fair comparison. As shown in the
table, the proposed method achieves 91.9% and 92.0% overall
accuracy after pretrained on the ShapeNet55 and ModelNet40
datasets, which outperform the existing unsupervised method
STRL [10] by 1.0% and OcCo [8] by 2.8%. These results sug-
gest that the features attained by our pretraining method are
discriminative that can easily achieve competitive performance
even with little effort of training on the SVM.

Towards a better understanding of the capability of our
method proposed, we visualize the learned features on the test
dataset of the ModelNet10 as illustrated in Fig. 3, which is
compared with features from a randomly initialized encoder
network. Using t-distributed stochastic neighbor embedding
[35] to project the instance-level high-dimensional features in
2D space, we observe that the learned features from instances
of different categories are separable except dressers and night
stands, which are difficult to distinguish even by a human.

Table 1. Classification Accuracy Results (%) with
Linear SVM in URL Methods on ModelNet40

a

Pretraining Dataset Method OA

ShapeNet FoldingNet [4] 88.4
Du et al . [16] 89.6
Jigsaw3D [11] 90.6

Rotation 3D [12] 90.8
STRL [10] 90.9

Ours 91.9
ModelNet40 FoldingNet [4] 84.4

Jigsaw3D [11] 87.8
MAP-VAE [5] 90.2

OcCo [8] 89.2
Ours 92.0

a“OA” denotes overall accuracy.

Fig. 3. Visualization of pretrained instance-level features.



Research Article Vol. 39, No. 12 / December 2022 / Journal of the Optical Society of America A 2349

Compared with the projected features from random initializa-
tion, our pretrained methods are dragged to further distances
between features of distinct categories. Since the random ini-
tialized features can be regarded as the prior of the encoder
network, the comparison proves our pretraining method can
learn knowledge of 3D shapes without supervision.

2. Supervised Fine-Tuning for 3DShapeClassification

Further fine-tunes the encoder network on ModelNet40
without freezing, resulting in better classification accuracy.
Following a common fine-tuning pipeline in URL methods,
after an unsupervised pretraining stage aimed at maximizing
dense similarities, we take the pretrained encoder network
parameters as the initialization for the encoder network used
in transfer learning, then optimize the network by the specific
objective for the classification task in a supervised fashion. To
produce predictions for the classification task, we train a classi-
fication MLP head during fine-tuning along with the encoder
network, and the classification head takes instance-level features
after pooling as input and output with classification scores for
each object towards supervised validation on ModelNet40.
Comparisons of fine-tuned classification results are illustrated in
Table 2.

As shown in Table 2, after fine-tuning from our pretrained
model, the proposed method achieves an additional 1.0% accu-
racy gain over the original DGCNN trained from randomly
initialized parameters (93.2% versus 92.2%), which suggests
our pretraining method can boost the ability of the feature
extractor. Our method outperforms unsupervised methods
OcCo and STRL by 0.2% and 0.1% in terms of overall accuracy
and achieves the best fine-tuned performance on ModelNet40.
The results indicate that our ULD-Net can attain a comparable
performance with the state-of-the-art fully supervised methods.

Our method accelerates the convergence of the encoder
framework during the fine-tuning stage. As shown in Fig. 4,
compared with the random initialization, the loss number of our

Table 2. Comparisons of Our Fine-Tuned
Classification Accuracy (%) Result Against Other
Methods on ModelNet40

a

Method Sup. OA

PointNet [19] 3 89.2
RGCNN [23] 3 90.5
PointNet++ [20] 3 90.7
KD-Net [24] 3 91.8
PointCNN [21] 3 92.2
DGCNN [22] 3 92.2
Point Cloud
Transformer [26]

3 93.2

PointTransformer [25] 3 93.7
Jigsaw 3D [11] 7 92.4
Info 3D [15] 7 93.0
OcCo [8] 7 93.0
FoldingNet [4] 7 93.1
STRL [10] 7 93.1
Ours 7 93.4

a“Sup.” denotes supervised.

Fig. 4. Convergence curves during fine-tuning.

Table 3. Fine-Tuned Results (%) under a
Semisupervised Setting

Method 1% 5% 10% 20%

DGCNN [22] 58.4 80.7 85.2 88.1
STRL [10] 60.5 82.7 86.5 89.7
Ours 60.6 82.5 86.8 89.8

method remains lower than random initialization at about 0.2
during training and convergence after fewer epochs.

3. Semisupervised Fine-Tuning for 3DShapeClassification

We further evaluate our pretrained model on the shape clas-
sification task under a semisupervised setting. We use the
same setting as the STRL and report the overall accuracy on
ModelNet40 as shown in Table 3. Specifically, we reduce the
annotated input shapes to 1%, 5%, 10%, and 20% of the train-
ing data, and, at least, one shape is selected for each category.
Then, we evaluate the model fine-tuned by the reduced training
data on the full test dataset. The results show that our model
surpasses the randomly initialized model by 2.2% and 1.7%
when 1% and 20% of training shapes were sampled, and our
ULD-Net slightly outperforms the STRL when the sampling
ratios of 1%, 10%, and 20% indicate our pretraining method
improves annotation efficiency.

4. Supervised Fine-Tuning for 3DShapePart Segmentation

To validate the effectiveness of fine-grained point-level features
gained from our method, we fine-tune the pretrained network
for the part segmentation task. Different from classification,
fine-tuning only transfers parameters from the encoder net-
work, and segmentation fine-tuning uses parameters from the
pretrained encoder and its attached point-level projector. We
fine-tune them on the ShapeNet part dataset to verify the per-
formance of our ULD-Net on the part segmentation task. The
quantitative results compared with the state-of-the-art URL
and supervised methods are shown in Table 4. It shows that our
ULD-Net shows the best performance (85.7% instance mIoU)
among other URL approaches and achieves top performance
in six categories, such as aeroplane, car, and knife. Since the
ShapeNet part is a long-tailed dataset, the instance of mIoU is
mostly decided by shapes of large amounts (aeroplanes, chairs,
lamps, tables, etc.), which leads to the unbalance performance
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Table 4. Fine-Tuning Part Segmentation mIoU Results (%) on ShapeNet Part Dataset
a

Supervised Method Unsupervised Method

Shapes DGCNN [22] RSCNN [36] PCT [26] LGAN [6] Method in [16] Jigsaw 3D [11] OcCo [8] STRL [10] Ours

Ins. 85.2 86.2 86.4 57.0 82.3 85.3 85.5 85.1 85.7
Aero 84.0 83.5 85.0 54.1 82.1 84.1 84.4 83.7 84.7
Bag 83.4 84.8 82.4 48.7 74.5 84.0 77.5 80.3 82.8
Cap 86.7 88.8 89.0 62.6 83.6 85.8 83.4 87.6 83.8
Car 77.8 79.6 81.2 43.2 74.9 77.0 77.9 77.7 78.3
Chair 90.6 91.2 91.9 68.4 87.9 90.9 91.0 90.9 90.9
Earphone 74.7 81.1 71.5 58.3 72.4 80.0 75.2 78.0 77.0
Guitar 91.2 91.6 91.3 74.3 89.9 91.5 91.6 91.4 91.3
Knife 87.5 88.4 88.1 68.4 85.4 87.0 88.2 87.7 88.2
Lamp 82.8 86.0 86.3 53.4 79.1 83.2 83.5 83.7 83.8
Laptop 95.7 96.0 95.8 82.6 95.2 95.8 96.1 96.1 95.6
Motor 66.3 73.7 64.6 18.6 67.3 71.6 65.5 66.7 68.6
Mug 94.9 94.1 95.8 75.1 93.3 94.0 94.4 95.0 94.3
Pistol 81.1 83.4 83.6 54.7 81.0 82.6 79.6 81.2 80.6
Rocket 63.5 60.5 62.2 37.2 58.2 60.0 58.0 58.2 61.9
Skateboard 74.5 77.7 77.6 46.7 74.0 77.9 76.2 75.3 75.1
Table 82.6 83.6 83.7 66.4 79.2 81.8 82.8 82.1 83.4

a“Ins.” denotes instance mIoU.

Fig. 5. Qualitative results on the ShapeNet part dataset.

on different categories of shapes. Compared with supervised
methods, we also achieve comparable results.

The segmentation results of all shapes are qualitatively illus-
trated in Fig. 5. These visualization results show our method can
segment one shape to clear parts close to the ground truths.

Furthermore, we compare our ULD-Net with the STRL
and OcCo on shapes including aeroplanes, bags, and cars as
illustrated in Fig. 6, which shows ULD-Net captures more
local details than the STRL and OcCo. In confusing regions
annotated with blue bounding boxes, containing points in
the intersection of the main body and other parts of the differ-
ent categories, such as the tail of aeroplanes demonstrated in
Fig. 6(a), the handle of bags in Fig. 6(b), and the roof of cars
in Fig. 6(c), show that our method distinguishes such regions
better.

Fig. 6. Visual comparison of part segmentation on the ShapeNet
part.

5. Supervised Fine-Tuning for 3DSemantic Segmentation

Transferring features pretrained on synthetic computer-aided
design object models to real-world segmentation tasks is con-
sidered more challenging than tasks on synthetic shapes. To
elucidate this problem, we also test our method for the indoor
semantic segmentation task on the S3DIS dataset to validate
the cross-domain generalizability of our pretrained features to a
real-world dataset.

Using the pipeline similar to part segmentation, we transfer
the parameters of the encoder and point-level projector to super-
vised fine-tuning for the semantic segmentation task. We test
our model under sixfold cross validation over the six areas as in
the original work [33]. As the quantitative results summarized
in Table 5, our ULD-Net achieves the best segmentation result
with 85.5% overall accuracy and 59.2% mIoU, which surpasses
the state-of-the-art method OcCo by 0.4% overall accuracy
and 0.7 mIoU. Compared with existing URL methods, these
results demonstrate better transferability of our ULD-Net from
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Table 5. Semantic Segmentation Results (%) on
S3DIS Dataset

Method Sup. OA mIoU

PointNet [19] 3 78.6 47.6
PointNet++ [20] 3 81.0 54.5
PointCNN [21] 3 88.1 65.4
DGCNN [22] 3 84.1 56.1
Jigsaw [11] 7 84.4 56.6
OcCo [8] 7 85.1 58.5
Ours 7 85.5 59.2

Fig. 7. Visualization of semantic segmentation results on the S3DIS
dataset.

synthetic shapes to real-world scene datasets. It is observed that
our results even surpass the supervised PointNet, PointNet++,
and DGCNN, and achieve competitive performance with other
supervised models.

We show qualitative results of the S3DIS indoor seman-
tic segmentation by visualizing selected rooms in Fig. 7.
Empirically, we observe that our network is able to under-
stand and classify semantic objects in a real-world scene, and our
segmentation results are close to the ground truth.

D. Ablation Study

To investigate the effectiveness of our key components in ULD-
Net, we study the impact of adopting different combinations
of losses and transformations during the pretraining stage by
validating the downstream SVM classification results using their
pretrained features on ModelNet40.

1. Transformations

We analyze the effectiveness of different transformations in
inv-aug and cropping for view generation used in the pre-
training stage. We remove certain transformations to produce
augmented views when pretraining and validate the implication
with SVM. As summarized in Table 6, our full model A1 uses all
transformations and achieves the best result of 92.0%. Without
any transformations (model B1), the network inputs of the two

Table 6. Results (%) from Pretrained Features with
Different Transformations

a

Model C Rot. Trans. Scal. Jit. OA

A1 3 3 3 3 3 92.0
B1 7 7 7 7 7 88.0
C1 7 3 3 3 3 89.6
D1 3 7 3 3 3 91.0
E1 3 3 7 3 3 91.0
F1 3 3 3 7 3 91.0
G1 3 3 3 3 7 91.0

a“Rot.” denotes rotation, “Trans.” denotes translation, “Scal.” denotes scal-
ing, “Jit.” denotes jittering.

Table 7. Ablation Study Results (%) of Different
Pretraining Objectives

Model L instance Lpoint L separability OA

A2 3 7 7 91.3
B2 3 3 7 91.7
C2 3 7 3 91.6
D2 3 3 3 92.0

branches are exactly the same, which makes the network overfits
pretraining samples due to too many task-irrelevant detailed
features captured; hence, the classification result degenerates to
88.0%. The result reduces when one transformation is removed,
proving that each adopted transformation schedule boosts the
performance of pretrained features. Among transformations,
removing the cropping transformation C (model C1) affects
the performance the most by a 2.4% descent (92.0% vs 89.6%)
compared with model A1. Removing each transformation in
inv-aug including rotation (model D1), translation (model E1),
jittering (model F1), and scaling (model G1), the performance
degenerates to 91.0%, 91.0%, 91.2%, and 91.5% respec-
tively, which indicates the importance of each transformation is
decreasing by the above order.

2. Losses

We further study how the training objectives affect the perform-
ance of pretrained features. The results are shown in Table 7, the
baseline model A2 is trained by the instance-level similarity loss,
which closes the distance between the instance and its local parts
in embedding space and gets a classification accuracy of 91.3%.
Combined with one of the point-level similarity loss (model B2)
or feature separability loss (model C2), we observed 0.4% and
0.3% improvements, respectively. Our full model joint learns
with three objectives (model D2) and achieves a notable 92.0%
on ModelNet40.

E. Robustness

To test the robustness of our method to random noise, we ran-
domly jitter the X Y Z coordinates of points with Gaussian
noises in linear evaluation on ModelNet40 during test
time. Each point cloud is jittered with randomly sampled
Gaussian noises with zero mean and standard deviation
σ ∈ {0.025, 0.05, 0.075, 0.1}. As shown in Fig. 8, we com-
pare our ULD-Net with OcCo and the STRL under different
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Fig. 8. Results with Gaussian noise.

noise levels. We can see that our ULD-Net remains robust with
83.9% accuracy even when noise is at a high level with a 0.1
standard deviation. It can also be observed that our ULD-Net
gets competitive results with existing URL methods OcCo and
the STRL.

5. DISCUSSION AND CONCLUSION

In this paper, we propose a novel URL method for point cloud
analysis. Our method extracts features by dense similarity
learning, which is composed of instance-level and point-level
similarity learnings with the feature separability constraint. We
also present the equiv-crop module to project point-level fea-
tures from global to local scope to build correspondence across
the transformed views. Without negative pairs, momentum
encoder, or other complicated designs, ULD-Net pretrains the
network that extracts representations with the best results on
linear SVM validation. After fine-tuning the pretrained network
on other downstream tasks including shape classification, shape
part segmentation, and semantic segmentation, our ULD-Net
also achieves competitive performances.

Although our ULD-Net can generalize representations across
domains and achieve competitive results on real-world scene
understanding tasks, there still exists a domain gap for trans-
ferring from synthetic to scene-level data due to the large point
numbers and complicated structures. In the future, we will
further explore how to extend our method to domain adaptive
analysis of point clouds with the domain gap bridged. We hope
the dense similarity learning, the feature separability constraint,
and the equiv-crop module proposed could provide insights
into future context-based discriminative URL methods.
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