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ABSTRACT

Čerenkov luminescence tomography (CLT) is a highly sensitive and promising technique for three-dimensional non-invasive detection of
radiopharmaceuticals in living organisms. However, the severe photon scattering effect causes ill-posedness of the inverse problem, and the
results of CLT reconstruction are still unsatisfactory. In this work, a multi-stage cascade neural network is proposed to improve the perfor-
mance of CLT reconstruction, which is based on the attention mechanism and introduces a special constraint. The network cascades an
inverse sub-network (ISN) and a forward sub-network (FSN), where the ISN extrapolates the distribution of internal Čerenkov sources from
the surface photon intensity, and the FSN is used to derive the surface photon intensity from the reconstructed Čerenkov source, similar to
the transmission process of photons in living organisms. In addition, the FSN further optimizes the reconstruction results of the ISN. To
evaluate the performance of our proposed method, numerical simulation experiments and in vivo experiments were carried out. The results
show that compared with the existing methods, this method can achieve superior performance in terms of location accuracy and shape
recovery capability.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0119787

I. INTRODUCTION

The Čerenkov effect refers to the phenomenon in which
charged particles in a medium emit visible light (named as
Čerenkov radiation) when they travel faster than the speed of
light in the medium.1 Based on Čerenkov radiation, Čerenkov
luminescence imaging (CLI) was proposed to image the distribu-
tion of radiopharmaceuticals in tissues.2 Due to its advantages of
low cost, non-invasive, and high throughput,3–5 CLI has attracted
wide attention and has been successfully applied in clinical
research, including early diagnosis of tumors, endoscopy, and
clinical surgery.6–10 However, CLI is a two-dimensional imaging
method similar to x-ray imaging; therefore, it could not achieve
the depth information and the three-dimensional (3D) distribu-
tion of radioactive probes,11 which limits the further application
of CLI.

To give CLI the ability of 3D imaging, Čerenkov luminescence
tomography (CLT) was proposed,12 which can obtain three-
dimensional distribution information of radioactive probes.13,14

However, the severe photon scattering effect causes ill-posedness of
the inverse problem.15 To alleviate the ill-posed inverse problem in
CLT reconstruction,16 researchers have carried out in-depth
research, and some prior information17–20 was added to improve
the reconstruction performance. For the animal structure prior, the
first CLT reconstruction for small-animal imaging was conducted
with a homogeneous mouse model by assuming that the optical
properties were consistent and uniform,12 but this assumption is
not consistent with reality. Therefore, Hu et al. first employed the
different properties of the biological tissues to establish a heteroge-
neous mouse model, which reduced the systematic error and
showed a remarkable improvement of the tumor location
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accuracy.21 For the Čerenkov spectrum prior, the multispectral
reconstruction method divided the Čerenkov spectrum into several
sub-spectral bands to reduce the ill-conditioned level of CLT recon-
struction, which improved the reconstruction accuracy compared
to the hybrid spectrum method.22 Based on the multispectral
method and the optical characteristics of each sub-spectral band, a
more accurate multispectral hybrid method was proposed by Liu
et al.23 In addition, some regularization methods were used for
CLT reconstruction, such as L2-norm regularization,12 L1-norm
regularization,24 and Lp-norm (0 < p < 1) regularization.22 However,
these regularization methods still have some shortcomings.
L2-norm regularization introduces many reconstructed artifacts, the
result of reconstruction being over-smooth. L1-norm regularization
and Lp-norm (0 < p < 1) regularization are over-sparseness and
incomplete reconstruction of the radiation probe.25 Recently,
Mousavi et al. proposed an iterative convex refinement (ICR)
approach to encourage the sparsity for signal recovery.26 This work
uses the sparsity of source reasonably and overcomes the problem
of over-sparsity and over-smoothness in CLT reconstruction. A
sparse-graph manifold learning (SGML) method was proposed for
CLT.27 Although these strategies improve the performance of CLT
reconstruction, the deviation between the simplified light propaga-
tion model and the actual photon propagation process still limits
the accuracy of CLT reconstruction.

Recently, methods based on deep learning have been widely
used in optical tomographic reconstruction. Different from model-
based methods, neural networks can directly learn the mapping
relation between the surface photon intensity and the Čerenkov
source distribution. A gated recurrent unit based network was pro-
posed to improve the accuracy and speed of single-source recon-
struction.28 A 3D encoder–decoder network is used for
fluorescence molecular tomography (FMT) reconstruction.29

Meanwhile, Zhang et al. applied a multi-layer fully connected
neural network (MFCNN) to reconstruct the distribution of
Čerenkov sources.30 Cao et al. proposed a stacked denoising
autoencoder (SDAE) framework to constantly update the permissi-
ble domain for CLT reconstruction.31 Meng et al. proposed a local
connection network based on K-Nearest Neighbor (KNN) for FMT
reconstruction (KNN-LC), which improved the accuracy and stabil-
ity of FMT reconstruction.32 Zhang et al. applied an attentional
local connection network to CLT reconstruction (AMLC), which
further improved the accuracy of reconstruction.33 In addition,
Zhang et al. proposed a residual neural network for accurate and
stable reconstruction in CLT.34 All existing optical reconstruction
methods based on deep learning directly establish the mapping
relationship between the surface photon intensity and the Čerenkov
source distribution. However, CLT is divided into two processes:
forward propagation and backward reconstruction. The forward
propagation process of light can be described by the radiative trans-
fer equation (RTE), which satisfies the physical regulation In the
physical neural network (PINNS),35 the physical regulation plays a
strong role of constraint. Inspired by the physical neural network,
we believe that introducing the forward process can play a vital role
of constraint on the reconstruction network so that CLT recon-
struction can meet the physical regulation.

In this study, a multi-stage cascade network (MSCN-NET) is
proposed for CLT reconstruction. MSCN-NET cascades an inverse

sub-network (ISN) and a forward sub-network (FSN), the ISN is
used to learn the mapping between the surface photon intensity
and the Čerenkov source distribution, and the FSN is used to
derive the surface photon intensity from the Čerenkov source dis-
tribution. The network structure of ISN is divided into several sub-
modules, each of which contains the attention layer and the
forward feedback layer based on residuals. Particularly, the surface
photon intensity is regarded as a node feature, and the attention
mechanism enables us to notice some more important features,
where nodes with larger energy values will be given more weight.
In addition, FSN is a multi-layer fully connected neural network,
which is used to deduce the surface photon intensity from the
reconstructed source distribution. To improve the performance of
CLT reconstruction, the ISN is jointly constrained by the loss of
FSN and ISN.

The main structure of the rest of this paper is as follows:
Sec. II introduces the network structure and evaluation indicators,
Sec. III designs digital simulation experiments and in vivo
implanted experiments to prove the effectiveness of our method,
and Sec. IV summarizes and discusses this work.

II. METHODOLOGY

A. Model-based CLT reconstruction

In the model-based reconstruction method, the radiative
transfer equation (RTE) is used to describe the transmission
process of light in the organism.25 Because RTE contains multiple
variables, it is difficult to solve complex biological tissues.
Therefore, researchers proposed a simplified diffusion approxima-
tion (DA) equation to describe the optical transmission
process,36,37 which has been widely used in CLT, as well as other
optical molecular tomography. The DA model combined with the
Robin boundary condition can be expressed as38,39

�∇ � (D(r) � ∇Φ(r) )þ μα(r)Φ(r) ¼ S(r), (r [ Ω),
Φ(r)þ 2A(r, n, n0)D(r)(v(r) � D(r)) ¼ 0, (r [ @Ω),

�
(1)

where r is the position vector, D(r) is the diffusion coefficient of
position vector r, Φ(r) is the photon flux density of position vector
r, μα is the absorption coefficient, S(r) is the internal source distri-
bution of position vector r, Ω represents the solution domain, @Ω
represents the boundary of the domain, A is the boundary mis-
match factor between the biological tissues and the surrounding
medium, and v(r) denotes the unit outer normal on @Ω. D(r) and
A(r, n, n0) are calculated as follows:

D(r) ¼ 1
3(μα(r)þ (1� g)μs(r))

, (2)

A(r, n, n0) � 1þ R(r)
1� R(r)

, (3)

where μα(r) denotes the optical absorption coefficient, μs(r)
denotes the optical scattering coefficient, g is the medium anisot-
ropy factor, R(r) is the inner reflection coefficient, n is the refractive
index within Ω, and n0 is the refractive index of an external
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medium. The diffusion equation is discretized by the finite element
method,40,41 and the following linear relation can be obtained:

UX ¼ w, (4)

where U represents the system matrix. X represents the distribution
of Čerenkov sources within the organism, and w is the intensity of
photons on the surface of the organism.

B. Deep learning-based CLT reconstruction

In the method based on deep learning, the neural network is
used to establish the mapping relationship between the photon
intensity on the surface of the organism w and the distribution of
the Čerenkov source inside the organism X, which is defined as
follows:

mink fnn(wjθ)� Xk22, (5)

where fnn denotes the neural network used for CLT reconstruction
and θ denotes the network weight. We can update the network
weight θ by minimizing the mean square error between the recon-
structed and real sources.

C. Multi-stage cascade neural network based on an
attention mechanism

Our MSCN-NET is mainly cascaded by the ISN and FSN. The
ISN is used to establish mapping between the surface photon

intensity and the distribution of the Čerenkov source, and the FSN
is used to derive the surface photon intensity from the recon-
structed source distribution, which conforms to the regulation of
photon transmission. Specifically, the surface photon intensity is
first fed to the ISN to obtain the reconstructed source, and then the
reconstructed source is fed to the FSN to obtain the surface photon
intensity. The structure of MSCN-NET is shown in Fig. 1. The ISN
is composed of two sub-modules, each includes an attention layer
and a forward feedback layer, which also includes layer normaliza-
tion and residual connection. The FSN consists of four fully con-
nected layers, which are used to deduce the surface photon
intensity from the radiation source distribution. The main purpose
of FSN is to improve the performance of ISN. Particularly, the
input and output dimensions of the ISN and FSN are the number
of nodes in the mesh model. In addition, when training
MSCN-NET, train the ISN first and then add FSN to the training
when the ISN is stable. Since the input of FSN is the reconstructed
Čerenkov source of the output of ISN and FSN plays a constraint
role on ISN, inspired by generative adversarial networks (GANs),
when training MSCN-NET, we train it in stages. First, the ISN sub-
network is trained to be stable to obtain a relatively accurate recon-
struction source, and then the FSN subnetwork is added to the
training to further optimize the reconstruction source.

The subnetwork ISN takes the photon intensity of each node
as the feature of the node. In order to make the neural network pay
attention to some more important node features, we introduce the
attention mechanism. The specific operation of the attention mech-
anism is as follows. There are three different vectors, namely, query

FIG. 1. The structure of MSCN-NET.
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vector Q, key vector K, and value vector V, which are obtained by
embedding vector T multiplied by three different weight matrices
Wq, Wk, and Wv . After obtaining Q, K, and V, a feature vector Z is
finally obtained through calculation, and its definition is as follows:

Z ¼ softmax
QKTffiffiffiffiffiffi
dK

p
� �

V : (6)

The subnetwork FSN takes the reconstructed source distribu-
tion of the ISN output as the input and the surface photon inten-
sity as the output. That is, the network is used to learn the
mapping relation of the photon intensity from the radiation source
to the surface, and this relation conforms to the regulation of light
transmission. In particular, we add the error between the surface
photon intensity obtained by FSN and the original surface photon
intensity into loss function as a loss term, which is defined as
follows:

mink fISN (wjθ1)� Xk22 þ kþ fFSN (XISN jθ2)� wk22, (7)

where fISN represents the inverse sub-network, θ1 represents the
weight of the ISN, w represents the surface photon intensity, and X
represents the distribution of radiation sources. fFSN represents the
forward sub-network, where θ2 represents the weight of the FSN
and XISN represents the reconstructed radiation source distribution.

D. Implementation details and evaluation metrics

The training and test of MSCN-NET were implemented using
PaddlePaddle42 and Python 3.7. All operations were performed on
a personal computer with an AMD Ryzen 7 1700 eight-core pro-
cessor 3.00 GHz CPU and an NVIDIA GeForce GTX 3060 Ti
GPU. The optimization function of MSCN-NET was a Stochastic
Gradient Descent (SGD) optimizer with a learning rate of 0.0005.

In order to quantitatively evaluate the performance of the
MSCN-NET network, we adopt the location error (LE), the Dice
coefficient, and the relative intensity error (RIE) as evaluation
indexes. LE represents the positional error between the recon-
structed radioactive source and the actual radioactive source, which

is defined as follows:

LE ¼ kLr � La k, (8)

where Lr denotes the barycenter coordinate of the reconstructed
radioactive source and La denotes the barycenter coordinate of the
actual radioactive source. The Dice coefficient is used to evaluate
the accuracy of Čerenkov source morphology recovery in CLT
reconstruction, and its definition is as follows:

Dice ¼ 2jX > Y j
jXj þ jY j , (9)

where X denotes the reconstructed radiation source region and X
denotes the actual radiation source region. Dice coefficient values
range from 0 to 1, with closer to 1 indicating better shape recovery.
RIE is used to evaluate the relative intensity error between the
reconstructed radioactive source intensity and the actual Čerenkov
source intensity,

RIE ¼ jIr > Iaj
Ia

, (10)

where Ir denotes the intensity of the reconstructed source and Ia
denotes the intensity of the actual source. Obviously, the closer the
RIE is to 0, the better the intensity recovery of the reconstructed
source. The contrast to noise ratio (CNR) is used to evaluate the

FIG. 2. The numerical phantom. (a) shows the numerical phantom-based physical model, (b) shows the standard mesh, and (c) shows the forward simulation result.

TABLE I. Optical coefficients used in numerical simulations.

Tissues μa (mm−1) μs (mm−1) g

Muscle 0.016 0.510 0.90
Heart 0.011 1.053 0.86
Bone 0.021 2.864 0.90
Liver 0.065 0.723 0.90
Lung 0.036 2.246 0.90
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quality of reconstruction results, and CNR is defined as follows:

CNR ¼ jμR � μBj
(mRσ2

R þmBσ2
B)

1/2 , (11)

where μR and μB represent the mean values in the Region Of
Interest (ROI) and background, respectively; σ2

R and σ2
B represent

the variances; and mR and mB represent the number of nodes
included in the ROI and background, respectively. The higher value
of CNR indicates better quality of the reconstruction.

III. EXPERIMENTS AND RESULTS

To verify the performance of MSCN-NET in CLT reconstruc-
tion, two groups of numerical simulation experiments and
one group of in vivo experiments were conducted in this section.
The numerical simulation experiments include a single-source
experiment and a double source experiment. At the same time, the
practicability of MSCN-NET was verified by in vivo experiments.
In addition, Incomplete Variables Truncated Conjugate Gradient

TABLE II. Quantitative comparison of a single-source simulation (mean ± SD).

Method LE Dice RIE CNR

MSCN-NET 0.41 ± 0.22 0.65 ± 0.14 0.19 ± 0.12 0.72 ± 0.11
MFCNN 0.53 ± 0.25 0.51 ± 0.17 0.49 ± 0.17 0.42 ± 0.19
IVTCG 0.76 ± 0.28 0.41 ± 0.21 0.72 ± 0.24 0.23 ± 0.21

FIG. 3. The quantitative results of single-source samples. Represent quantization values of LE, Dice, RIE, and CNR, respectively.
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(IVTCG) and MFCNN were used as the baseline for comparison in
the above experiments.30,43

A. Numerical simulation experiments

1. Data collection

In the numerical simulation experiment, we adopted a cylin-
drical model with a height of 30 mm and a radius of 10 mm to sim-
ulate the body of a living creature. The cylinder model mainly
includes five organs: heart, bone, liver, lung, and muscle, as shown
in Fig. 2(a). The optical parameters of all organs are shown in
Table I, which are taken from the literature.44 Meanwhile,
COMSOL Multiphysics software was used to discretize the model
into a unified tetrahedral mesh,45 which contained 4626 nodes and
25 840 tetrahedral units, as shown in Fig. 2(b). A small ball with a
diameter of 1 mm was set to represent the Čerenkov source, where
the photon wavelength was set to 650 mm. As a data-driven
method, the neural network requires a large amount of data for
training. The surface light flux distribution of all samples was simu-
lated through the Molecular Optical Simulation Environment
(MOSE 2.3) platform,46 as shown in Fig. 2(c). Considering that
Čerenkov sources may be in any part of the model, simulation
samples should cover the whole model as much as possible.
Therefore, 203 single-source samples were simulated. In addition,
by randomly combining two samples from single-source data to
create a dual-source sample, the surface photon intensity of the
dual source and the distribution of the Čerenkov source are

calculated as follows:

wdual ¼
X
i[Sn

wi, (12)

Xdual ¼
X
i[Sn

Xi, (13)

where wdual represents the surface photon intensity of the double
source, Xdual represents the distribution of the dual-source sample,
wi represents the surface photon intensity of the ith single
Čerenkov source, Xi represents the distribution of the ith single-
source sample, and Sn represents the collection of samples of the
single source.

In summary, in this work, 203 single-source samples were
simulated and 5000 dual-source samples were created. 80% of the
data were used for training and the rest for testing.

FIG. 4. Comparison results of single-source numerical simulation experiments. The red color in the cylindrical model represents the location of the original Čerenkov
source. The cylindrical model was cut along the z axis of the Čerenkov source to obtain an axial view, where yellow circles represent the actual position and size of the
Čerenkov source.

TABLE III. Quantitative comparison of a dual-source simulation (mean ± SD).

Method LE Dice RIE CNR

MSCN-NET 0.58 ± 0.18 0.54 ± 0.1 0.24 ± 0.15 0.37 ± 0.12
MFCNN 0.71 ± 0.21 0.37 ± 0.21 0.47 ± 0.19 0.24 ± 0.14
IVTCG 0.89 ± 0.28 0.25 ± 0.26 0.69 ± 0.24 0.17 ± 0.19
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FIG. 5. The quantitative results of dual-source samples. Represent the quantitative value of LE, Dice, RIE, and CNR, respectively.

FIG. 6. Comparison results of the dual-source numerical simulation experiments. The red color in the cylindrical model represents the location of the original Čerenkov
source. The cylindrical model was cut along the x axis of the Čerenkov source, where yellow circles represent the actual position and size of the Čerenkov source.
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2. Single-source simulation experiments

To verify the shape recovery ability of our method, we compare
the reconstruction performance of MSCN-NET, MFCNN, and
IVTCG in a spherical single Čerenkov source. At the same time, we
calculated the average value and the deviation of different evaluation
indexes as shown in Table II. Experimental results show that
MSCN-NET achieves the highest average positioning accuracy, the
highest DICE coefficient, and the smallest RIE. Experimental results
show that the MSCN-NET has good positioning accuracy, morpho-
logical recovery ability, and an energy intensity recovery rate.

Two samples, Model 1 and Model 2, whose Čerenkov source
coordinates are (−6, 5, 12) and (3, 4, 8) mm, were used to measure
the single-source reconstruction results of different methods. The
quantitative results of CLT reconstruction are shown in Fig. 3.
Figure 4 shows the reconstruction results obtained by MSCN-NET,
MFCNN, and IVTCG, respectively, which shows that the
MSCN-NET has good performance in positioning accuracy, mor-
phological recovery ability, and an energy intensity recovery rate.

3. Dual-source simulation experiments

In order to measure the positioning accuracy of MSCN-NET,
we compare the reconstruction performance of MSCN-NET,
MFCNN, and IVTCG in a dual source. At the same time, we calcu-
lated the average value and the deviation of different evaluation
indexes as shown in Table III. Experimental results show that
MSCN-NET still has advantages in LE, Dice, and RIE.

Two samples, Model 3 and Model 4, were used to measure
the dual-source reconstruction results of different methods. In

Model 3, the centers of a dual source were set at (3, 3, 16) and
(−2, −5, 6) mm, respectively. In Model 4, the sources were set at
(1, 3, 7) and (−1, 2, 18) mm. The quantitative results are shown in
Fig. 5. Figure 6 shows the reconstruction results obtained by
MSCN-NET, MFCNN, and IVTCG, respectively, which is consis-
tent with the results of a single-source experiment. The experi-
mental results show that the reconstructed source shape of
MSCN-NET is clear and easy to identify.

4. Anti-noise experiment

To verify the stability of MSCN-NET, we have carried out
anti-noise experiments, taking Model 5 as an example, whose

FIG. 7. Anti-noise experiment of CLT reconstruction. The experimental results of adding 5%, 10%, and 15% noise are shown.

FIG. 8. The schematic diagram of a device structure of a CLT/micro-CT
dual-mode system.
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FIG. 9. The in vivo mouse model is shown in Fig. 9(a), and Fig. 9(b) shows the distribution of the Čerenkov source at a certain location in the mouse body.

FIG. 10. The quantitative results of the in vivo experiments. Represent the quantitative value of LE, Dice, RIE, and CNR, respectively.
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Čerenkov light source coordinates are (2, 2, 8) mm. Three different
levels of Gaussian noise were added: 5%, 10%, and 15%, respec-
tively. The experimental results are shown in Fig. 7. Although LE
and RIE increased and Dice and CNR decreased after adding noise,
position and morphology information could be recovered. The
results prove the robustness of MSCN-NET.

B. In vivo reconstruction

In order to further evaluate the practicability of this method,
we conducted in vivo implanted experiments. The experimental
data were from the CLT/micro-CT dual-modal system on an adult

nude mouse, and the mouse was scanned with micro-CT. An
implanted 7.4 MBq of an 18F-FDG radioactive source was used to
mimic the lesion containing a radionuclide probe. The mouse was
placed on the automatic rotating stage, which was rotating 360°
with 1° intervals to capture the images of CLI and x-ray projection.
Using band-pass filters (FF01-650/13-25, Semrock, USA). The CLI
signal with a wavelength of 650 nm and white light data were col-
lected by cooled high-sensitivity EMCCD (−80 °C, iXonEM Ultra
888, UK). Before the acquisition process of CLT, long exposure

time (5 min), a high given value (300), a high shift speed (13 μs),

and a low speed readout rate (1MHz at 16 bits) are set. Then, CT

FIG. 11. Reconstruction results of different methods of in vivo experiments. The box under the 3D viewing angle represents the cutting surface, and after the cutting plane
was enlarged, the axial viewing plane on the lower was obtained, and the yellow circle in the plane view was the real position and size of the Čerenkov source.
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volume data were acquired by a micro-CT system (a tube voltage of
40 kVp and a tube current of 300 mA). The schematic diagram of
the device structure of a CLT/micro-CT dual-mode system is
shown in Fig. 8.

After reconstruction and segmentation, we obtained the trunk
sections of the mouse with a height of 41mm as shown in Fig. 9(a).
Figure 9(b) shows the distribution of the Čerenkov source at a
certain location in the mouse body. We segmented the main organs
of the mouse, including muscle, lung, heart, stomach, liver, and
kidney, and integrated these organs into the mouse model. Animal
care and protocols were approved by the Fourth Military Medical
University Animal Studies Committee. All surgical and imaging
procedures were performed under isoflurane gas anesthesia, and all
efforts were made to reduce the pain of experimental mice. The
optical parameters of each organ are consistent with those in the
literature.47

Two samples, Model 6 and Model 7, whose Čerenkov source
coordinates are (14.5, 14, 9) and (20.5, 24.5, 28.5) mm, were used
to measure the in vivo results of different methods. The quantita-
tive results are shown in Fig. 10. Figure 11 shows the reconstruction
results obtained by MSCN-NET, MFCNN, and IVTCG, respec-
tively, which is consistent with the results of the numerical simula-
tion experiments. In vivo experiments show that the reconstructed
source shape of MSCN-NET is clear and easy to identify, and the
MSCN-NET has good practicability.

IV. DISCUSSION AND CONCLUSION

CLT is a promising imaging method to obtain the three-
dimensional distribution of radiation probes. However, the tradi-
tional model-based CLT reconstruction method has some problems,
such as a complex solution process and a large approximation error,
which seriously affect its application. On the contrast, the existing
reconstruction methods based on neural networks directly establish
the mapping relationship between the surface photon intensity and
the Čerenkov source without taking into account the influence of
the CLT forward process. In this paper, we propose MSCN-NET for
CLT reconstruction, which introduces a CLT forward process to
feed the reconstructed source of ISN into the FSN to obtain the
surface photon intensity. FSN is used to derive the surface photon
intensity from the reconstructed source distribution, which is
similar to the CLT forward process.

In order to verify the performance of MSCN-NET, we con-
ducted digital simulation experiments, including a single-source
experiment and a dual-source experiment. The traditional model-
based method IVTCG and the neural network-based method
MFCNN are used as a comparison. Experimental results show that
MSCN-NET has the best localization ability and morphology
recovery ability. Meanwhile, to further verify the practicability of
MSCN-NET, glial mice were used for in vivo experiments. The
results show that MSCN-NET performs well both in numerical
simulation experiments and in vivo experiments.

To the best of our knowledge, MSCN-NET is the first network
to introduce a forward process into the reconstruction process,
which further constrains the reconstruction results. All the existing
neural network-based methods directly learn the mapping relation-
ship between the surface photon distribution and the internal

source distribution, while MSCN-NET introduces the forward
process as a special constraint to improve the localization ability
and the shape recovery ability of CLT reconstruction. However,
there are still some defects that limit its application. MSCN-net is
still a data-driven network, and the reconstruction performance is
affected by the quantity and quality of data sets. In particular, there
is still an error between the standard mesh and the actual structure,
and additional optimization methods are needed to balance the
error between the standard mesh and the actual structure.
Combining neural networks and model-based approaches may
overcome these limitations, which will be explored in future work.

In summary, we propose a MSCN-NET for CLT reconstruc-
tion and introduce a forward process to optimize the reconstruction
results. The results show that MSCN-NET has good performance
both in numerical simulations and in vivo experiments. This
method is the first to introduce the forward process into the recon-
struction process, and we believe that this new method will be
helpful to improve the performance of CLT reconstruction and
promote the application of CLT in biological research.
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