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Abstract. This paper establishes the fuzzy autoencoder (FAE) to detect multiple changes
between two one-dimensional multitemporal images. Different from the traditional approaches
based on the pixel intensity, FAE includes a multilayer structure through self-reconstruction to
extract the feature from an image. Due to the existence of noise in the images, the raw data tend
to be corrupted and fail to detect the real changes. Therefore, the fuzzy number is introduced to
the autoencoder to establish the FAE which is able to suppress the noise and learn robust fea-
tures. In this way, the information in the fuzzy domain is introduced into the input, and in prac-
tice the fuzzy domain is discretized to facilitate the calculation. In addition, the weighted
Frobenius norm is used to establish the loss function which can be minimized to achieve
the optimal parameters. The framework is highlighted by the newly designed FAE. As the
fuzzy number is introduced into the autoencoder, more information concerning the fuzzy domain
is taken into consideration and thus the impact brought by the noise is relieved to a large extent.
Hence, the FAE can generate robust features, enhancing its performance on deep feature rep-
resentation learning. Several tests on three datasets show us the proper parameter settings, and
the experimental results from the FAE framework and the other compared approaches demon-
strate its effectiveness and robustness in terms of accuracy and elapsed time. © 2018 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.12.035014]
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1 Introduction

Researchers usually define the task of change detection as the process to detect and recognize the
changes occurring in multitemporal images that cover the same area but are taken at different
times.1 In both scientific research and practical use, it is treated as a significant issue due to its
wide applications in remote sensing,1–6 urban studying,7–11 and agricultural survey.12

In the literature, the research of change detection begins with the detection of changes from
the unchanged areas. It is viewed as a classification problem and was originally researched
through the utilization of the pixel intensity. For example, the Bayes formula is applied to
the image histogram through the Kittler–Illingworth criterion13,14 or the expectation-maximiza-
tion iteration.15 A more accurate approach is the fuzzy c-means clustering (FCM) algorithm due
to the use of fuzzy membership. Based on FCM, many improved versions have been proposed,
such as the reformulated fuzzy clustering with local information (RFLICM),16 fuzzy clustering
based on the Markov random field (MRFFCM),17–19 and two-level clustering,20 in which the
spatial information is flexibly utilized. Recently, researchers have turned to the multiple change
detection, a task where the changes are subdivided into several subclasses, and the change vector
analysis (CVA) technique have been developed to deal with it.2,21 Some other hierarchical frame-
works based on CVA have also been applied to the hyperspectral images and very high-reso-
lution images.22,23 These typical intensity-based approaches, however, conduct the computations
depending on fixed and complicated equations and thus have limited ability to realize the
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knowledge learning and feature extraction. In fact, serving as a class-unbalanced problem,
change detection can be formulated as an incremental learning problem, and the artificial neural
networks (ANNs) are considered as an opportune tools to solve it.

Several ANN models have found their application to change detection. Gong et al.24 pro-
posed an approach by using the binary restricted Boltzmann machine (RBM) network. In the
approach, several RBMs are arranged in series to extract the features from the two images, and
such features are passed layer by layer. Zhang et al. then proposed a change-detection framework
which incorporates unsupervised feature learning and mapping analysis. In the framework, the
autoencoder is adopted in the feature learning process, and the features are mapped through
another mapping network.25 In the two literatures, the neighborhood pixels are involved in
the input, i.e., the network incorporates the spatial information flexibly. Then based on such
information, the whole network is optimized through the minimization of the reconstruction
function. Due to the combination of the spatial information and deep learning techniques,
these approaches are able to cope with some complicated tasks in change detection.
Specifically, the technique in the work by Gong et al.24 is capable of tackling the case of synthetic
aperture radar (SAR) images which are usually severely corrupted by speckle noise,26 while the
framework by Zhang et al.25 is especially designed for the images with different resolutions.

Despite the feature representation ability of ANNs, it is found that the units in every layer and
the parameters that represent the relationships between layers are restricted to be constants. Chen
et al.27 have pointed out several disadvantages of a regular RBM due to such a structure.
Actually, the similar structure can also be found in an autoencoder, so it has the similar problems.
First, the feature extracted from an autoencoder is not so robust when the input itself is corrupted
by noise. Second, the parameter learning process is confined in a restricted small space, which
will limit its capability to represent the feature. In change detection, images are usually corrupted
by noise, and the complicated terrain feature will make it more difficult to discern the changes.
Particularly, the learning processes in Refs. 24 and 25 are based on determinate input and output
values, and therefore these networks are quite sensitive to noise. In addition, these works aims to
cope with the binary change detection task, and as for the multiple change detection, it is rea-
sonable to develop some more robust ANNs which are able to tackle such a complicated task.

To improve the presentation ability of ANNs, the fuzzy neural networks (FNNs) are proposed
and have been applied to many fields. By FNN is meant the ANN that incorporates fuzzy knowl-
edge, such as the Takagi & Sugeno (TS) model, type-2 fuzzy method, fuzzy number, etc. Several
techniques have been proposed oriented to the control system, reasoning, classification, and so
on. For example, Lin et al.28 embed the wavelet strategy after the rule layer in the FNN, designing
a robust and intelligent approach and applying it to the electric power steering system. In Ref. 29,
the authors combined the generalized ellipsoidal basis function and FNN by designing a proper
TS model, realizing the dynamic tanker steering control system. In addition, in Ref. 30, the
authors made an elaborate research of type-2 fuzzy systems and showd a modeling framework
by ameliorating the fuzzification layer. Many other approaches based on FNN incorporating the
type-2 system have been proposed. Some of them are focused for theoretical study31,32 and some
are of practical use.33,34 In Ref. 35, the authors suggested utilizing the fuzzy number to improve
the performance of regression analysis and a fuzzy support vector machine is used. Such an idea
is also adopted to enhance the deep learning capability of the RBM as fuzzy RBM (FRBM),27

and the theoretical analysis and the final test results demonstrate the excellent performance of the
FRBM by incorporating fuzzy numbers.

This paper deals with the multiple change detection for the images with only one spectral
channel, or one-dimenional (1-D) images as usually referred to. Compared with multichannel
images (such as hyperspectral images and polarimetric SAR images), 1-D images are easy to
visualize and occupy less storage space. Nevertheless, containing only one spectral channel, 1-D
images are not as capable as the multichannel images to show more complicated surface features,
which are also challenging to discern by using some ordinary methods. In Refs. 21 and 36, the
authors have pointed out the CVA technique does not apply to the 1-D images. To overcome such
a limitation, in Ref. 37 the authors provided an approach in which one 1-D image is expanded
into a multichannel feature map by using the denoising autoencoder (DAE) and the CVA tech-
nique is applied to the feature map, which provides us a basic framework to the multiple change
detection for 1-D images. Following the framework and enlightened by Refs. 27 and 35, we
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propose a fuzzy autoencoder (FAE), an FNN that will be applied to detect multiple changes. In
the FAE, fuzzy numbers are introduced to the autoencoder to create a fuzzy domain for the input
data, and thus fuzzy information will be involved in its learning process. In this way, the network
utilizes not only the spatial information but also the fuzzy information to alleviate the impact
brought by the noise and increase the robustness.

The paper is organized into six sections. Section 2 gives out the corresponding background
knowledge. Section 3 introduces the proposed FAE and its learning process as well as its appli-
cation to multiple change detection. The datasets used in experiments and the experimental set-
tings are introduced in Sec. 4 and the corresponding results along with their analysis are given in
Sec. 5. Finally, the conclusions are drawn in Sec. 6.

2 Background

Let us consider I1 ¼ fI1ði; jÞ; 1 ≤ i ≤ A; 1 ≤ j ≤ Bg and I2 ¼ fI2ði; jÞ; 1 ≤ i ≤ A; 1 ≤ j ≤ Bg,
two multispectral images taken over the same geographical area at two different times, respec-
tively. The task of change detection is to generate a map IF that shows the unchanged class (U)
and k types of changes (C1;C2; : : : ;Ck). This section gives an introduction to the related back-
ground knowledge about the autoencoder and the fuzzy number.

2.1 Autoencoder

The autoencoder is a model used to obtain the feature representation of the given data.38 Given
a normalized input vector x ¼ ðx1; x2; : : : ; xNÞT ∈ ½0;1�N, the network first encodes it into
the code vector y ¼ ðy1; y2; : : : ; yMÞT ∈ ½0;1�M, which is then mapped back as x† ¼
ðx†1; x†2; : : : ; x†NÞT ∈ ½0;1�N . This is shown as

EQ-TARGET;temp:intralink-;e001;116;428

�
y ¼ sðWxþ bÞ
x† ¼ sðW 0yþ cÞ : (1)

s is the sigmoid function usually defined as sðtÞ ¼ 1∕ð1þ e−tÞ. Usually the case of tied
weight is considered, i.e., W 0 ¼ WT, so there are actually three parameters to be determined.
Here the symbol θ is used to denote the parameter set, i.e., θ ¼ fW; b; cg. A loss function L is
then established between x and x†, and several forms can be used to establish L, such as the
squared error and the average reconstruction cross-entropy that have been introduced in Ref. 38.
By minimizing L, θ can be determined. Such a minimization problem can be solved by the
stochastic gradient descent algorithm, avoiding local minima of the training error.39 In this
way, y can be viewed as an appropriate representation of x, or the feature as usually referred
to. The autoencoder is shown in Fig. 1.

In Ref. 40, two modified versions of the autoencoder, the DAE, and the sparse autoencoder
are summarized, and they have been demonstrated to be more robust than the regular autoen-
coder. From the introduction above, the optimal parameters are determined by L, which is based
on x. When x is corrupted by noise, L will also be affected. Although the loss function of DAE

Fig. 1 Structure of the autoencoder.
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can alleviate the impact of noise to some extent as reported in Ref. 38, L is still established on x
which has been originally corrupted. In fact, to optimize L is to find an excellent fitting between
the constant vector x and the reconstructed x†. If such a fitting is based on fuzzy numbers, the
learning space will not be confined in a restricted small space but extended to a fuzzy domain,
and thus the network will become robust when extracting the features. The fuzzy number is first
introduced here.

2.2 Fuzzy Number

2.2.1 Basic concept

The concept of fuzzy number was first proposed by Zadeh, and is well described in detail in
Ref. 41. Given a real number x, a map f∶R → ½0;1� is established such that

EQ-TARGET;temp:intralink-;e002;116;579

(
fðtÞ ¼ 1 ⇔ t ¼ x
lim
jtj→∞

fðtÞ ¼ 0: (2)

Such a mapping relation is called a fuzzy number, and the symbol x is used to represent it as
in Ref. 27. fðtÞ is the corresponding membership function. In practice, a symmetric and locally
monotonic membership function is of practical significance. In this paper, the symmetric triangu-
lar fuzzy number will be adopted, and its membership function is

EQ-TARGET;temp:intralink-;e003;116;478fðtÞ ¼ max

�
1 −

jt − xj
a

; 0

�
; (3)

where a is a positive constant that controls the width of x. Obviously, the center of x is x.
Actually, x corresponds to a closed interval ½xL; xR�, and we refer to xL and xR as the left
bound and right bound of x, respectively. We define xL ¼ ½xL; x� and xR ¼ ½x; xR� that are called
the left interval and the right interval of x, respectively. Figure 2 shows the symmetric triangular
fuzzy number.

2.2.2 α-cut

Given a real constant α ∈ ½0;1�, a new membership function can be defined as

EQ-TARGET;temp:intralink-;e004;116;325gðtÞ ¼
�
fðtÞ; if fðtÞ ≥ α
0; otherwise

: (4)

Thus, the new mapping relation is called the α-cut of x and the symbol x½α� is used to represent it.
x½α� is also a fuzzy number which has the same center as x does. We can also define its left bound
x½α�L and right bound x½α�R. From Eq. (4), it is obvious that x½0� ¼ x and that x½1� ¼ x. In the
latter case, the fuzzy number degrades to a common real number. Figure 3 shows the α-cut of the
symmetric triangular fuzzy number.

Fig. 2 Symmetric triangular fuzzy number.
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2.2.3 Operations

The symmetric triangular fuzzy number actually corresponds to a closed interval, so its operation
is just the interval arithmetic operation. Upon the determination of the membership function, we
use the expression x ¼ ½xL; xR� as in Ref. 27 if no confusion is engendered.

In Ref. 42, the interval arithmetic is given. For two fuzzy numbers x ¼ ½xL; xR� and
y ¼ ½yL; yR�, the addition and subtraction operations are

EQ-TARGET;temp:intralink-;e005;116;540HðxÞ ¼
�
xþ y ¼ ½xL þ yL; xR þ yR�
x − y ¼ xþ ð−yÞ ¼ ½xL − yR; xR − yL� : (5)

For a monotonic function Hð·Þ, the function operation is

EQ-TARGET;temp:intralink-;e006;116;482HðxÞ ¼
� ½HðxLÞ; HðxRÞ�; if Hð·Þ is ascending
½HðxRÞ; HðxLÞ�; if Hð·Þ is descending : (6)

According to Eq. (6), we can define the scalar-multiplication. Given a constant λ ∈ R, we
have

EQ-TARGET;temp:intralink-;e007;116;412

λx ¼

8>><
>>:

½λxL; λxR�; if λ > 0

0; if λ ¼ 0

½λxR; λxL�; if λ < 0

: (7)

3 Design of FAE for Multiple Change Detection

3.1 Basic Outline of FAE

As in Refs. 24 and 25, a normalized input x ¼ ðx1; x2; : : : ; xNÞT includes a certain pixel and its
neighborhood pixels, and thus the spatial information is taken into consideration. The FAE not
only involves the spatial information but also fuzzifies the input. First, the fuzzy number trans-
formation x → x ¼ ðx1; x2; : : : ; xNÞT is involved. Therefore, we have

EQ-TARGET;temp:intralink-;e008;116;238

8>>><
>>>:

xL ¼ ðxL1 ; xL2 ; : : : ; xLNÞT
xR ¼ ðxR1 ; xR2 ; : : : ; xRNÞT
x ¼ ½xL; xR�
xL ¼ ½xL; x�
xR ¼ ½x; xR�

: (8)

Through the FAE, the reconstructed fuzzy vector x† is generated. Thus, the loss function
L ¼ Lðx; x†Þ in the FAE should reflect the proximity of two fuzzy vectors x and x†. The
aim of using the fuzzy number is to find a robust proximity by extending the range into the
fuzzy domain, and to exhibit a robust feature representation, the left interval xL and the
right interval xR are used to establish the reconstructed error, respectively. Therefore, two param-
eter sets, θL ¼ fWL; bL; cLg and θR ¼ fWR; bR; cRg are involved. Through the optimization of
xL, the appropriate parameters can be obtained. Upon these ideas, the FAE can be designed as
shown in Fig. 4.

Fig. 3 Illustration of the α-cut of the fuzzy number.
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3.2 Discretization Approximation

The loss function L is used to measure the proximity of x and x†. However, a fuzzy number
corresponds to an interval that contains infinitive points and we can not compute the recon-
structed error for every point. So it is necessary to discretize the continuous fuzzy domain
to facilitate the establishment of L, and the α-cut is used here.

First, the closed interval ½0;1� is divided intom equivalent subintervals and thus we havemþ
1 endpoints f0;1∕m; 2∕m; : : : ; ðm − 1Þ∕m; 1g. And then we define

EQ-TARGET;temp:intralink-;e009;116;371αr ¼
r
m
; r ¼ 0;1; : : : ; m: (9)

According to Sec. 2.2.2, each α ∈ ½0;1Þ corresponds to two real numbers x½α�L and x½α�R; in
the case where α ¼ 1, there is only one corresponding value x. Therefore, the mþ 1 endpoints
correspond to 2mþ 1 real numbers ranging from xL to xR. Obviously, we have x½α0�L ¼
x½0�L ¼ xL, x½α0�R ¼ x½0�R ¼ xR, and x½αm� ¼ x½1� ¼ x. Thus, x can be expressed in vector
form as

EQ-TARGET;temp:intralink-;e010;116;273x ¼ ðxL; x½α1�L; : : : ; x½αm−1�L; x; x½αm−1�R; : : : ; x½α1�R; xRÞ: (10)

The original input of the autoencoder is a column vector, and in Eq. (10), each element has
been extended into a fuzzy row vector. Hence, the fuzzy input vector can be expressed as an
N × ð2mþ 1Þ matrix as
EQ-TARGET;temp:intralink-;e011;116;204

x ¼ ðxL; x½α1�L; : : : ; x½αm−1�L; x; x½αm−1�R; : : : ; x½α1�R; xRÞ:

¼

2
666664
xL1 x½α1�L1 : : : x½αm−1�L1 x1 x½αm−1�R1 : : : x½α1�R1 xR1
xL2 x½α1�L2 : : : x½αm−1�L2 x2 x½αm−1�R2 : : : x½α1�R2 xR2
: : : : : : : : : : : : : : : : : : : : : : : : : : :

xLN x½α1�LN : : : x½αm−1�LN xN x½αm−1�RN : : : x½α1�RN xRN

3
777775: (11)

In Eq. (11), the rows of x denote all the pixels involved in a neighborhood, and the columns
denote the fuzzy domain. Therefore, the input matrix x represents not only the spatial informa-
tion but also the fuzzy information, which serves as a great enhancement.

Fig. 4 Illustration of the FAE. The gray part in the image I represents the pixel ði ; jÞ and the yellow
area represents its neighborhood.
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Similarly, xL and xR can be expressed in Eqs. (12) and (13), respectively:
EQ-TARGET;temp:intralink-;e012;116;723

xL ¼ ðxL; x½α1�L; : : : ; x½αm−1�L; xÞ

¼

2
66664
xL1 x½α1�L1 : : : x½αm−1�L1 x1
xL2 x½α1�L2 : : : x½αm−1�L2 x2
: : : : : : : : : : : : : : :

xLN x½α1�LN : : : x½αm−1�LN xN

3
77775; (12)

EQ-TARGET;temp:intralink-;e013;116;625

xR ¼ ðx; x½αm−1�R; : : : ; x½α1�R; xRÞ

¼

2
66664

x1 x½αm−1�R1 : : : x½α1�R1 xR1
x2 x½αm−1�R2 : : : x½α1�R2 xR2
: : : : : : : : : : : : : : :

xN x½αm−1�RN : : : x½α1�RN xRN

3
77775: (13)

Thus, we can use Eqs. (14) and (15) to describe the FAE:

EQ-TARGET;temp:intralink-;e014;116;519

�
yL ¼ sðWLxL þ bLqÞ
x†L ¼ sðWLTyL þ cLqÞ ; (14)

EQ-TARGET;temp:intralink-;e015;116;477

�
yR ¼ sðWRxR þ bRqÞ
x†R ¼ sðWRTyR þ cRqÞ : (15)

It is worth noting that xL or xR is no longer a vector but a matrix. Therefore, the row vector
q ¼ ð1;1; : : : ; 1Þ is used to change the bias vectors into the matrix form. Thus, the hidden layer is
also a fuzzy version, and thus the FAE is more robust in information transfer between layers than
the ordinary autoencoder.

3.3 Establishment of the Loss Function

The loss function L is used to measure the proximity of x and x†, and its form will be more
complicated due to the incorporation of fuzzy numbers. When two fuzzy numbers are equal, two
corresponding intervals are totally coincident. Since the α-cut can represent any two symmetric
points in the interval, the loss function can be expressed as an integral form as

EQ-TARGET;temp:intralink-;e016;116;303Lðx; x†Þ ¼
Z

1

0

ðkx½α�L − x½α�†Lk þ kx½α�R − x½α�†RkÞdα: (16)

However, this is difficult to realize due to the integral operation, so it is necessary that we use
the discrete form to rewrite Eq. (16). In fact, the Euclidean norm for vectors used in the loss func-
tion means the sum of the square error. Since in Sec. 3.2 we have turn x and x† into matrices, the
matrix Frobenius norm (F-norm), which possesses similar meaning to vector 2-norm, is adopted. In
addition, as the fuzzy domain is involved, the F-norm will be modified in a weighted version.

If the ordinary F-norm is used, we have

EQ-TARGET;temp:intralink-;e017;116;187L̄ðx; x†Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
s¼1

Xm
r¼0

ðx½αr�Ls − x½αr�†Ls Þ2
vuut þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
s¼1

Xm
r¼0

ðx½αr�Rs − x½αr�†Rs Þ2
vuut : (17)

Equation (17) can be viewed as the discrete form of Eq. (16). However, each element is
treated equally, which will result in a biased result because each element in the fuzzy domain
does not function equally. If the membership is not taken into account, the loss function will lead
to a biased result and also make the interval corresponding to the fuzzy number indiscriminative.
To represent such inequality, a weight is allocated to each element. According to the definition of
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the fuzzy number, the corresponding membership αr to each element can serve as the weight.
Thus, L is expressed as

EQ-TARGET;temp:intralink-;e018;116;711 Lðx; x†Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
s¼1

P
m
r¼0 αrðx½αr�Ls − x½αr�†Ls Þ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
s¼1

P
m
r¼0 αrðx½αr�Rs − x½αr�†Rs Þ2

p
: (18)

By minimizing L through the stochastic gradient descent algorithm, the parameters
θL ¼ fWL; bL; cLg and θR ¼ fWR; bR; cRg can be determined.

3.4 Parameter Sharing

From the analysis above, each input corresponds to one basic block of FAE. For the entire n
inputs in an image, we can arrange them to share a common set of parameters. For the input
element xðtÞ, we can obtain the training result θLðtÞ and θRðtÞ by using the FAE with θLðt−1Þ and
θRðt−1Þ, t ¼ 1;2; : : : ; n. Then, θLðnÞ and θRðnÞ are applied to all the input elements, and the objec-
tive function J is minimized:

EQ-TARGET;temp:intralink-;e019;116;560J ¼ 1

n

Xn
t¼1

LðxðtÞ; x†ðtÞÞ: (19)

Thus, the optimal parameters θL� and θR� can be obtained and we can compute the corre-
sponding fuzzy feature layer yð1Þ; yð1Þ; : : : ; yðnÞ. Figure 5 shows the FAE with respect to all the
inputs clearly.

3.5 Defuzzification

The obtained feature to each pixel is a fuzzified one and it is necessary to defuzzify it from a
matrix to a column vector. The weighted idea is employed again and we have

EQ-TARGET;temp:intralink-;e020;116;414y ¼
Xm
r¼0

αry½αr�L þ
Xm
r¼0

αry½αr�R ¼ yLαL þ yRαR; (20)

where

EQ-TARGET;temp:intralink-;e021;116;353

8<
:

αL ¼
�
0; 1m ; 2m ; : : : ; m−1

m ; 1
�
T

αR ¼
�
1; m−1

m ; : : : ; 2m ; 1m ; 0
�
T
:

(21)

3.6 Detection of Multiple Changes

For the pixel ði; jÞ, the corresponding feature vector is yði; jÞ, and thus anM-channel feature map
Y is generated as shown in Fig. 6 intuitively.

Fig. 5 Illustration of the FAE with respect to all the inputs.
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In this way, the feature information in the original image is distributed into M channels, and
due to the incorporation of fuzzy information, the feature is robust to noise interference.
Actually, feature extraction is just like the process to generate a multispectral image.
Therefore, the compressed CVA (C2VA) technique21 which is originally designed to detect
multiple changes for multispectral images is used to generate the final map IF.

We briefly recall the C2VA technique here. First, the feature maps Y1 and Y2 are generated
from I1 and I2 through the FAE, respectively, and then the difference feature map Z ¼ Y2 − Y1

is calculated. According to Z, the multiple changes can be detected by using the magnitude and
the direction angle which can be computed through the related formulae in Ref. 21. This process
is shown in Fig. 7.

4 Dataset Description and Experimental Settings

Three datasets are used to demonstrate the effectiveness of the FAE-based framework and the
corresponding experimental settings will also be given in this section.

4.1 Datasets

The first dataset consists of two SAR images (290 × 260, resolution 8 m × 8 m), reflecting the
changes of the Yellow River near the Dongying City, China, and hence the name Yellow River
(YR for short) dataset. Figures 8(a) and 8(b) show the two images taken in 2008 and 2009,
respectively. It can be seen that some area is flooded, whereas that some new lands emerged.
The reference map, shown in Fig. 8(c), is generated by artificial marking through a combination
of on-the-spot investigation and expert knowledge.

The second dataset is called the Irving dataset (591 × 491, resolution 12 m × 12 m)
from optical remote sensing radars, reflecting the changes happening in the Irving City.
Figures 9(a) and 9(b) are taken in 2001 and 2015, respectively. Three kinds of changes
can be found: the new artificial constructions (such as the square and the high way), the
disappearance of lands, and the emergence of wood (newly planted trees). Figure 9(c) is
the reference map generated by an on-the-spot investigation and expert knowledge.

The third dataset, the Tunzhuang dataset (522 × 383, resolution 10 m × 10 m) also from
optical remote sensing radars, shows the changes of the Tunzhuang Village in the Puyang

Fig. 6 Generation of the M-channel feature map Y.

Fig. 7 Process to detect multiple changes by using the C2VA technique after feature extraction.
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City, China, between September and October, 2014. From Figs. 10(a) and 10(b), the crops
(mainly the wheats) were harvested and some new crops were sown. In addition, many lake
algae bred in the pond and some of the lands were flooded. Therefore, there are four kinds
of changes, and the reference map which is based on an on-the-spot investigation is shown
in Fig. 10(c).

4.2 Experimental Settings

Four experiments are designed here. The first one is the test of parameters including the input
size N and the hidden feature size M. As stated in Sec. 3, N depends on the size of the

(a) (b)

(c)

Fig. 9 Irving dataset. (a) The image taken in 2001. (b) The image taken in 2015. (c) The reference
map.

(a) (b)

(c)

Fig. 8 YR dataset. (a) The image taken in 2008. (b) The image taken in 2009. (c) The reference
map.
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neighborhood, and here three neighborhoods with their sizes 3 × 3, 5 × 5, and 7 × 7 are chosen.
Thus, N ranges among 9, 25, and 49.M is set artificially from 10 to 50 at intervals of 10. We will
test their impact on both accuracy and elapsed time.

The second experiment is the test of the integer parameter m which denotes the number
of the subintervals that [0,1] is divided into. m will be set ranging from 1 to 20 at intervals of
1. It is worth noting that the case where m ¼ 1 corresponds to the original autoencoder, so
this experiment can also show the comparison of the performance of the autoencoder and the FAE.

The third experiment is to show the comparison of the final maps from different approaches.
Two available classification approaches for image segmentation, FCM and KWFLICM,43 will be
adopted as the intensity-based comparison algorithm. FCM is the basic fuzzy clustering method
and KWFLICM is the kernel weighted version by fully considering the local information. They
are both pixel intensity-based algorithms. In addition, we will also show the results from the
DAE-based approach where the FAE is replaced by the DAE in Fig. 7.

The fourth experiment is a comparison of the results from the weighted F-norm and the
ordinary F-norm. This is to show the superiority the weighted F-norm to the ordinary F-
norm when the loss function is established.

For the quantitative evaluations, the classification performance table (the data in which com-
prise a matrix) is given as in Ref. 21. According to the table, the percentage correct classification
(PCC) and the Kappa coefficient (KC) can be calculated as introduced in Ref. 44. Since more
classification information is incorporated, KC is a more cogent criterion that can reflect the over-
all performance than PCC.

5 Experimental Results and Analysis

5.1 Test of N and M

Figures 11 and 12 show the test results from the three datasets, and they include the impact on
KC (which is cogent in accuracy) and elapsed time (in seconds). Their respective analyses are
given as follows.

5.1.1 Influence of N

N depends on the size of the selected neighborhood. From Fig. 11, the 5 × 5 neighborhood
generates the highest accuracy. In fact, the utilization of the neighbors as the input is based
on the hypnosis that the neighbors share the same property of the central pixel. This is thought
to be true if a moderate neighborhood is considered. As the image is usually corrupted by

(a) (b)

(c)

Fig. 10 Tunzhuang dataset. (a) The image taken in September, 2014. (b) The image taken in
October, 2014. (c) The reference map.
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random noise, a small neighborhood (say 3 × 3) does not involve enough information to balance
the noise influence, and a larger one will correspond to a better feature representation from this
point of view. However, when the neighborhood is so large (say 7 × 7), the relevance between the
central pixel and a far neighbor will be quite low, especially in the heterogeneous edge area.
Therefore, too large a neighborhood size may fail to represent the feature of the central
pixel and thus generate a low accuracy instead. In addition, according to Fig. 12, it takes
more time for the algorithm concerning a larger neighborhood to run, just as anticipated.
Therefore, in the following experiments, the 5 × 5 neighborhood is selected and N is set as 25.

5.1.2 Influence of M

Obviously, the accuracy and the time are both positively associated with M. By extracting the
features, the information of a certain type of change can be expressed in one or a few channels. A
small value of M will lead to the overlap of some information, leading to inaccuracy. As M
increases, the feature information will be detailed and exhibited into more channels, facilitating
the classification process. On the other hand, too large a value of M may lead to information
redundancy, a similar phenomenon occurring in hyperspectral images. In this case, more time is
required, but the accuracy does not increase so much. An integration of the KC values and the
elapsed time suggests that it is appropriate to set M as 30.

5.2 Test of m

The test results of m on the accuracy and elapsed time are shown in Figs. 13 and 14. When
m ¼ 1, the result corresponds to an ordinary autoencoder.

From Fig. 13, the accuracy becomes high whenm > 1, which demonstrates the superiority of
the fuzzy number optimization to real number optimization. When optimizing a fuzzy number,
the process involves fuzzy extension and thus the features will be affected less by the corrupted
inputs. Especially when there is a severe noise corruption (such as the YR dataset), the accuracy
increases remarkably at first. In addition, afterm increases to a certain value, the accuracy almost
remains stable. In addition, from Fig. 14, the time almost linearly increases, and this is due to the
fact that Eqs. (18) and (20) incorporate the sum operation which linearly depends on the value of
m. So after an integrative observation and analysis, m is set as 12 in the following experiments.

(a) (b) (c)

Fig. 12 Impact of N and M on the elapsed time (in seconds). (a) The YR dataset. (b) The Irving
dataset. (c) The Tunzhuang dataset.

(a) (b) (c)

Fig. 11 Impact of N and M on KC. (a) The YR dataset. (b) The Irving dataset. (c) The Tunzhuang
dataset.
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(a) (b) (c)

Fig. 14 Impact of m on the elapsed time (in seconds). (a) The YR dataset. (b) The Irving dataset.
(c) The Tunzhuang dataset.

Fig. 15 Final maps from the YR dataset by: (a) FCM, (b) KWFLICM, (c) the DAE-based frame-
work, and (d) the FAE-based framework.

(a) (b) (c)

KC KC KC

Fig. 13 Impact ofm on KC. (a) The YR dataset. (b) The Irving dataset. (c) The Tunzhuang dataset.
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5.3 Final Maps from Different Approaches

According to the first two experiments, we set N,M, and m as 25, 30, and 12, respectively. This
setting will generate both satisfactory accuracy and moderate elapsed time.

5.3.1 YR dataset

Figure 15 and Table 1 show the results from the YR dataset by different approaches.

Table 1 Values of the evaluation criteria on the YR dataset.

FCM

Estimated class

U C1 C2

True class U 0.6116 0.0006 0.0005

C1 0.1345 0.0262 0

C2 0.2125 0 0.0140

PCC 0.6518

KC 0.1403

KWFLICM

Estimated class

U C1 C2

True class U 0.7887 0.0022 0.0005

C1 0.1010 0.0246 0.0001

C2 0.0690 0 0.0139

PCC 0.8272

KC 0.2703

DAE

Estimated class

U C1 C2

True class U 0.8992 0.0019 0.0007

C1 0.0247 0.0249 0

C2 0.0347 0 0.0138

PCC 0.9379

KC 0.5340

FAE

Estimated class

U C1 C2

True class U 0.9432 0.0004 0.0003

C1 0.0061 0.0264 0

C2 0.0094 0 0.0142

PCC 0.9838

KC 0.8277

Note: The bold characters are used to emphasize the overall evaluation criteria (PCC and KC) from the pro-
posed FAE technique.
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The YR dataset consists of two SAR images with severe speckle noise corruption, and there-
fore the results by the two intensity-based approaches are seriously affected by noise. From
Figs. 15(a) and 15(b), the use of spatial information can reduce the impact of the noise to
some extent, so the result by KWFLICM is better than that by FCM in which no spatial infor-
mation is utilized. But such improvement is limited as it is still based on pixel intensity. Another
reason is that the two approaches are not hierarchical-based, and the noise corruption from the
unchanged class will severely affect the classification of the two changed classes. Taking these
two factors into consideration, from Fig. 15(c) DAE generates a much better map because it
suppresses the noise by extracting the inner feature. In addition, FAE further improves the detec-
tion accuracy from Fig. 15(d), and this results from the fact that the FAE involves the fuzzy
domain, providing a wider range. Thus, the corrupted pixels may be ameliorated in the opti-
mization process. From Table 1, the PCC and KC from the FAE are 0.9838 and 0.8277, respec-
tively, much higher than those from the other three approaches.

5.3.2 Irving dataset

Figure 16 and Table 2 show the final maps and the quantitative results, respectively.
A comparison between Fig. 16(a) and the reference map suggests many wrongly detected

regions as well as some vital undetected areas. Especially, some newly planted regions that show
the vegetation status fails to be detected by FCM. KWFLICM performs better than FCM from
Fig. 16(b), but it is still based on the intensity information without utilizing its deep feature, so
some errors can also be found (e.g., the absent detection of the highway). The DAE improves the
accuracy by dispersing the changed information into different feature bands, and for the FAE, the
flexible fuzzy domain makes it possible to detect the real multiple changes. From the quantitative
results, the KC value for the FAE is 0.9393, the highest of the four.

Fig. 16 Final maps from the Irving dataset by: (a) FCM, (b) KWFLICM, (c) the DAE-based frame-
work, and (d) the FAE-based framework.
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Table 2 Values of the evaluation criteria on the Irving dataset.

FCM

Estimated class

U C1 C2 C3

True class U 0.5957 0.0084 0.0238 0.0193

C1 0.0112 0.1181 0.0013 0

C2 0.0018 0.0003 0.0261 0

C3 0.0797 0.0001 0.0017 0.1126

PCC 0.8524

KC 0.7111

KWFLICM

Estimated class

U C1 C2 C3

True class U 0.6313 0.0079 0.0120 0.0136

C1 0.0085 0.1181 0.0001 0

C2 0.0083 0.0008 0.0403 0.0058

C3 0.0404 0 0.0006 0.1124

PCC 0.9022

KC 0.8056

DAE

Estimated class

U C1 C2 C3

True class U 0.6642 0.0038 0.0059 0.0092

C1 0.0021 0.1224 0.0010 0

C2 0.0068 0.0007 0.0460 0.0008

C3 0.0152 0 0.0001 0.1219

PCC 0.9545

KC 0.9076

FAE

Estimated class

U C1 C2 C3

True class U 0.6702 0.0018 0.0039 0.0055

C1 0.0046 0.1249 0.0001 0

C2 0.0033 0.0001 0.0489 0.0002

C3 0.0103 0 0 0.1261

PCC 0.9700

KC 0.9393

Note: The bold characters are used to emphasize the overall evaluation criteria (PCC and KC) from the pro-
posed FAE technique.
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5.3.3 Tunzhuang dataset

Figure 17 shows the final maps from different approaches and Table 3 exhibits the corresponding
quantitative results.

Four types of changes are involved in the 1-D images in the Tunzhuang dataset, and therefore
their detection appears more difficult than those of the YR and Irving datasets. As anticipated,
FCM and KWFLICM generate many wrongly detected areas, and this is shown in two aspects.
One is some unchanged areas are detected as changed areas, and the other is one type of change
is wrongly detected as another. In Figs. 17(a) and 17(b), many areas are falsely detected as the
areas with new crops, emergence of algae and flooded areas, which will mislead the judgement
of the agricultural survey. In Fig. 17(c) from DAE, the classification performance becomes much
better because of the utilization of the inner feature, but on the white background, some tiny
multicolor spots can be found due to the influence of noise. Just as expected, the FAE eliminates
the spots to a great extent and thus further ameliorates the performance. The values of evaluation
criteria in Table 3 are consistent with the final maps visually, demonstrating the robust ability of
the FAE to detect multiple changes from 1-D images.

5.4 Results from Different Norms for Establishing the Loss Function

In this experiment, the performance of two loss functions that adopt the ordinary F-norm and the
weighted F-norm, as in Eqs. (17) and (18), respectively, are compared. Figures 18–20 show the
final maps based on two loss functions with the corresponding PCC and KC values shown in
Table 4, which also shows the elapsed time.

The results show the superiority of using the weighted F-norm to the ordinary F-norm when
the loss function is established. Since the fuzzy number has a vague expression, every element
functions differently in the network, and therefore it is inappropriate to treat each element equally
in the fuzzy domain. If the ordinary F-norm is adopted, the robustness of the features will
decrease. From the maps based on the ordinary F-norm, some falsely detected areas (such
as many colored spots on the white background) can be found, and many of these areas vanished

Fig. 17 Final maps from the Tunzhuang dataset by: (a) FCM, (b) KWFLICM, (c) the DAE-based
framework, and (d) the FAE-based framework.
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Table 3 Values of the evaluation criteria on the Tunzhuang dataset.

FCM

Estimated class

U C1 C2 C3 C4

True class U 0.7119 0.0155 0.0011 0.0002 0.0035

C1 0.0061 0.0816 0 0 0

C2 0.0048 0.0001 0.0401 0.0009 0.0002

C3 0.0215 0 0 0.0109 0.0030

C4 0.0527 0 0 0.0100 0.0360

PCC 0.8805

KC 0.7020

KWFLICM

Estimated class

U C1 C2 C3 C4

True class U 0.7347 0.0132 0.0002 0.0020 0.0096

C1 0.0079 0.0836 0 0 0

C2 0.0174 0.0003 0.0410 0 0

C3 0.0062 0 0 0.0109 0.0005

C4 0.0308 0 0 0.0090 0.0325

PCC 0.9028

KC 0.7441

DAE

Estimated class

U C1 C2 C3 C4

True class U 0.7544 0.0075 0.0018 0.0004 0.0026

C1 0.0043 0.0889 0.0001 0 0

C2 0.0011 0.0007 0.0393 0 0

C3 0.0077 0.0001 0 0.0167 0.0008

C4 0.0295 0 0 0.0049 0.0393

PCC 0.9387

KC 0.8362

FAE

Estimated class

U C1 C2 C3 C4

True class U 0.7762 0.0041 0 0.0023 0.0029

C1 0.0030 0.0930 0 0 0

C2 0.0022 0.0001 0.0412 0.0001 0

C3 0.0031 0 0 0.0174 0.0005

C4 0.0126 0 0 0.0022 0.0393

PCC 0.9670

KC 0.9083

Note: The bold characters are used to emphasize the overall evaluation criteria (PCC and KC) from the pro-
posed FAE technique.
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in the maps based on the weighted F-norm. From Table 4, the detection accuracy is high when
the weighted F-norm is used, which also demonstrates its effectiveness. Moreover, the weighted
F-norm leads to a little more time, and this is due to the additional weighted operation. But this
time is acceptable when we consider its high accuracy.

Fig. 18 Final maps from the YR dataset based on the loss functions by using: (a) ordinary F-norm
and (b) weighted F-norm.

Fig. 19 Final maps from the Irving dataset based on the loss functions by using: (a) ordinary
F-norm and (b) weighted F-norm.

Fig. 20 Final maps from the Tunzhuang dataset based on the loss functions by using: (a) ordinary
F-norm and (b) weighted F-norm.
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6 Concluding Remarks

This paper introduces the FAE-based framework for coping with the multiple change detection
task for two 1-D remote sensing images. Since the intensity-based approaches fail to discover the
inner feature of the images and thus lead to inaccuracy, we turn to the deep neural networks and
design the FAE in which the fuzzy number is used to improve the performance of the autoen-
coder. In the FAE, the input vector is modified into a fuzzy number vector, utilizing both the
spatial information and fuzzy domain information. To further facilitate the calculation, the α-cut
is used, discretizing the continuous fuzzy domain and turning each input into a matrix. Based on
the discretized fuzzy number, the corresponding loss function is established by using the
weighted F-norm. Finally, after the defuzzification process, the C2VA technique is applied
to the multichannel feature map to detect multiple changes. Through the experiments on
three datasets, its advantages over the intensity-based approaches are demonstrated and the
most appropriate parameter settings are also determined.

In general, the FAE-based framework exhibits its unique superiority to traditional intensity-
based approaches in terms of the multiple change detection for 1-D images. The FAE modifies
the autoencoder into an FNN by using the fuzzy number. In this way, the features extracted by
the FAE retain more information due to the incorporation of the fuzzy domain, reducing the
impact brought by the corruptive noise. In the recent literatures, the networks with some
deep structures, or the deep neural networks as usually referred to, have also been focused
on due to their outstanding representation ability.39,45,46 Hence, future work will focus more
on the further theoretical study of the combination of FAE and deep learning, and it is also
worthwhile to promote its applications to the other fields in remote sensing image processing.
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