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Abstract. As one of the eight wonders in the world, the virtual restoration of Terracotta
Warriors is of great significance to archaeology. However, some parts of fragments were cor-
roded for thousands of years, resulting in the existence of several holes in most of the restored
cultural heritage artifacts. Based on the structural and textural information, we present a frame-
work for filling the hole. First, a method based on the Poisson equation was employed to fill the
hole on the triangular mesh model. Then, to complete the surface color and texture information
of the three-dimension (3D) model, make the hole patch, and the original model surface texture
natural transition, the 3D problem is converted into two-dimension (2D) image inpaint problem,
and a refined network is added into EdgeConnect to generate a higher resolution result. A set of
experiments is performed to evaluate the performance of our proposed framework. We hope the
proposed framework can provide a useful tool to guide the virtual restoration of other cultural
heritage artifacts. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1
.JRS.15.046503]
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1 Introduction

The Terracotta Warriors and Horses of Qin Shihuang are the political, military, and cultural
symbols of the ancient Qin Dynasty in China and are the precious cultural heritage of human
beings.1–4 There are three pits in the Terracotta Army of the Qin Dynasty and thousands of life-
size Terracotta Warriors with different facial features. Besides, there are weapons, ceramic
horses, and chariots [Fig. 1(a)]. Due to time-induced natural corrosion and other reasons, many
Terracotta Warriors were in a damaged state when unearthed. To reproduce the form of cultural
relics, the matching and restoration of cultural relics have become one of the main tasks of
archaeologists. With the development of computer vision technology, computer-assisted virtual
restoration technology (CAVR) has become one of the powerful tools to convert cultural relics
into 3D models and guide the restoration of cultural relics. The main step in CAVR is the
reassembly of the broken fragments. The related strategies generally fall into two categories:
geometry-driven methods (also called the automatic methods) and semiautomatic methods.
The geometry-driven methods are based on the completeness and smoothness of the frac-
ture-regions, whereas the semiautomatic methods incorporate expert opinions and knowledge
to select the fragments that can be assembled. However, as the fracture surfaces of many frag-
ments are eroded, the matched fragments cannot be glued tightly, resulting in the existence of
holes on the assembled relics [Fig. 1(b)].

Filling these holes on the surface of cultural relics reasonably is of great significance for the
subsequent development of virtual restoration technology of cultural relics.5–9 In the virtual dis-
play, the surface color and texture information of 3D cultural relics are also particularly impor-
tant. Therefore, to address the problem of missing surface texture after structural repair of 3D
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mesh. Based on the traditional geometric repair algorithm and deep neural network, we proposed
the 3D cultural relic hole repair method, which can repair texture information while filling the
hole 3D information and produce a textured high-resolution model. Besides, for the 2D image
inpainting, we added a refine network after the original EdgeConnect to construct the improved
network, which makes the transition of texture information of the restored cultural relic surface
more natural. Finally, the textural image is projected onto the 3D mesh model by utilizing the
Mudbox software to obtain the completed model.

To summarize, the main contributions are as follows:

(1) A hole filling framework for the Terracotta Warriors is proposed, which may inspire the
restoration of other cultural relics in the future.

(2) The framework can repair the texture information while filling holes, and the final com-
plete model is with high-resolution textural information.

(3) Experiments demonstrate that our framework can produce higher quality repair results
compared with the existing methods.

The remainder of the paper is organized as follows. In Sec. 2, the related works are described.
The methods, network architecture, and our framework are described in Sec. 3. The experimental
results and analysis are provided in Sec. 4. Discussion and conclusion are presented in
Sec. 5.

2 Related Work

2.1 3D Shape Completion

Many hole-filling algorithms have been proposed in recent years. In general, existing algorithms
can be categorized into two classes: traditional geometric-based methods and deep learning-
based methods. On the one hand, the traditional geometric methods repair the holes based on
template matching and mesh surface fitting. Deep learning methods are divided into voxel-based
and point cloud-based completion methods according to the different representations of 3D
objects.

Patched-based methods are suitable for repairing the larger holes. The easiest way is to find
patches similar to the missing area from the 3D template library to fill the holes.10,11 Chaudhuri
and Koltun12 and Kim et al.13 retrieved the closest shape with the shape database. Li et al.14

searched objects from the 3D data shape database and obtained a model that closely matched

Fig. 1 (a) The image of the pit K9901 of the Terracotta Army; and (b) the assembled 3D model
of the Terracotta Warrior.
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the original combination through alignment and scaling. Guo-Hua et al.15 selected the best
matching template to fill the incomplete model by constructing feature matching candidate
sets. Sahay and Rajagopalan16 created a depth map database of the 3D model, projected the
missing model into a 2D depth map, matched the best depth map in the template library, and
restored it to a 3D partial surface to fill the hole. However, due to the limited data of the template
library, the repair cannot be completed when the incomplete model does not match the template
library.

Therefore, many research methods use the nonlocal similarity of the 3D model to complete
the hole repair.17–19 Sharf et al.20 and Park et al.21 found the best matching patch of the hole
according to the geometric information of the given model and transplanted similar regions into
the hole. Fu et al.22 divided the point cloud into cubes of the same size, used the similarity
measure to select the cube that is most similar to the missing area from the source area, and
combined the graphic signal processing technology to fill the hole. Dinesh et al.23 mainly
selected adaptive templates based on geometric methods using the principle of nonlocal sim-
ilarity and filled holes with block matching by calculating similarity. The above method can
fill larger holes well, but at least one complete model similar to the model with holes is required.

The method based on mesh surface can be used to repair smaller holes and use the topological
relationship of the 3D mesh to fit and reconstruct the missing region. Fortes et al.24 proposed a
method to use the reconstruction function based on the 3D grid to combine the effective region
features to fit and reconstruct the missing regions. Lin et al.25 proposed a surface fitting recon-
struction method based on tensor voting for discrete point cloud surfaces. Combining the advan-
tages of the edge projection-based 3D reconstruction method and the radical basis function
(SFM) method, Gai et al.26 proposed a hole filling fitting algorithm based on SFM. The pro-
jection method is used to extract the hole boundary from the 2D depth map, and the radial basis
function is used to complete the hole information, which can effectively restore the information
of the complex surface hole. Besides, many methods directly act on the missing region.
According to the effective features around the hole, the fitting plane is obtained by interpolation
within the hole.27,28 Zhang and Zhou29 constructed a symbolic distance function, used the varia-
tional level set method to extract holes, and repaired the entire missing area by iterative diffusion
based on effective voxels. Ngo and Lee30 used the curve around the hole to reconstruct the char-
acteristic curve of the missing area, divided the hole into several smaller sub-holes, and then
filled the subholes. However, because traditional geometric methods use information such as
curvature and topological structure to reconstruct, they cannot accurately repair sharp and com-
plex geometric features, and it takes a long time to run the algorithm and cannot handle larger
and more holes on 3D models. Li et al.31 proposed a method that performs better even holes with
more sharp curvature. This work fitted and reconstructed the predicted surface based on the
Poisson equation and adjusted the normal vector of the missing region to stitch the patch and
the original model to complete the hole repair.

Many learning-based methods are developed to inpainting regular holes. Earlier work used a
voxel convolutional network to complete the incomplete model,32–37 but some geometric infor-
mation will be lost when the model is voxelized, which limits the model resolution.

With the proposal of PointNet,38 it is possible for the convolutional network to directly act on
the disordered point cloud. Many studies use the encoder to convert input point cloud data into
latent vectors and then use the decoder to decode back to point cloud data.39–41 Yang et al.42

raised a method based on the combination of autoencoder and GAN and reconstructed high-
dimensional accurate 3D structures from a single depth map repair the object. Chen et al.43 com-
bined the autoencoder and the GAN network, took the potential features encoded by the autoen-
coder as the input of the generator, and trained the discriminator to recognize the point cloud
model and the original model generated by the generator. Compared with traditional methods,
deep learning-based methods have more reasonable results. However, the voxel-based model
requires high computer memory, and due to the limitation of the input point cloud data, the
generated point cloud model cannot guarantee the resolution. The purpose of this paper is
to predict the surface texture information based on the completed patched and evenly integrate
the effective missing area uniformly. So we use hole-filling based on Poisson equation,31 which
can obtain a uniform density with an effective area and restore the repaired mesh with original
characteristics.
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2.2 2D Image Inpainting

Broadly speaking, conventional image inpainting methods are divided into partial differential equa-
tion-based algorithms and sample patch-based algorithms. The former is mainly aimed at small-
scale damage, using a single-pixel as the basic unit of predict, and using the principle of diffusion to
complete information, but its robustness is poor and it is easy to cause blur. The latter finds the
patch with maximum similarity from the known area and copies it to the defect area.

Recently, deep learning-based methods usually encode an image into a latent feature and
decode the feature back into an image. Context encoder44 combined the encoder–decoder and
the GAN to predict the large-scale image by context pixel prediction and can generate a rea-
sonable result. But the above method does not take into account the overall consistency of the
image. Iizuka et al.45 added global and local context discriminator to context encoder enable it to
judge the generation effect from both global and local perspectives and can predict any irregu-
larly shaped missing area. Yu et al.46 copied and improved the latest recent repair model45 to
build its basic generated image repair network and introduce a coarse to refinement network
structure, where the first network made initial coarse predictions, and the second network took
the prediction as input and predicted higher-quality inpainting results. The existing convolution
methods have shortcomings, because convolution layers act on all pixels, causing color incon-
sistency and blurriness. Partial convolution47 was proposed to predict irregular holes, where the
convolution is only performed in the valid area of the image (the mask part is 0), and the mask of
the picture will continue to iterate and shrink as the number of layers of the network deepens.
Existing deep learning approaches can generate coherent structures in the missing regions. But
for the earth-colored 3D shape of the Terracotta Warriors, the image can be repaired according to
the change of its surface texture. So the method based on edge prediction48 is more suitable,
which predict image by predicting the edge of the missing area, and our experiments show that
it can produce superior results.

3 Methodology

3.1 Hole Identification

An incomplete 3D Terracotta Warriors model may have many different types of holes in different
locations (e.g., Fig. 2). The hole can be classified into four types (erosion, reassembly, human,

Fig. 2 The types of holes existed on the Terracotta Warriors: (a) erosion factor, (b) reassembly
factor, (c) human factor, and (d) scanning factor.
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and scanning factors). Except for the scanning factor, the former three need to manually delete
the original incomplete triangular meshes at the repaired location before identifying the hole.
Due to the lack of topology information, it is challenging to accurately detect holes before repair-
ing the model. Here, we propose a hole identification method as described in Algorithm 1.

In this paper, hole detection is applied on the 3D mesh model, which is composed of multiple
triangular grid mosaics. As shown in Fig. 3(a), adjacent triangles are connected to the same
triangular mesh vertices (e.g., mi), and two vertices of an edge in the same triangle mesh are
adjacent point (e. g., vi and vj are adjacent points to each other). According to the triangle
principle, the one-adjacent triangle of the vertex of the complete 3D mesh model is equal to
the number of one-adjacent points.

Therefore, we traverse the unvisited vertices first, to determine whether the number of tri-
angles containing the vertex and the number of adjacent points of the vertex are equal, then to
determine whether the vertex belongs to the hole vertices collection, until the hole vertices col-
lection forms a closed loop [Fig. 3(b)]. Thinking of the situation contains more than a hole,
we find the vertices are not visited for again until all vertices have been accessed.

3.2 Structural Repair for Holes

In this paper, a structural repair based on Poisson reconstruction is adopted.31 The algorithm
establishes the Poisson equation according to the normal vector of the 3D directed point set

Algorithm 1 Hole identification algorithm.

Initialize. An incomplete 3D Terracotta Warriors mesh model.

Input: Vertices V with vertex v i , and a flag bi whether the current vertex has been checked (the default is false)

Step 1: Select one of vertex v i that bi is false.

Step 2: Check every triangle mi that contain vi , and then loop every adjacent point v j except vi on the
mesh mi .

Step 3: If the bj is false and vi v j is the boundary line (the edge connects exactly one triangle mesh,
because an edge of the triangle mesh can share two triangle meshes).

Step 4: The v i and v j are added into the hole edges set H.

Step 5: Repeat the step 2–4 until a closed hole is formed.

Step 6: Find other vertex and bi is false.

Output. The vertices collection of holes.

Fig. 3 (a) Schematic diagram of related concepts of holes and (b) examples of hole identification.
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and the Laplacian operator and then obtains the 3D surface equation by solving the Poisson
equation and finally apply the marching cubes algorithm extracts the iso-surface of the equation
to obtain the 3D surface, where the iso-surface extraction is to obtain points on the same surface.
Poisson equation fits and reconstructs the input incomplete mesh model from the global and local
perspectives, and this method can obtain smooth surfaces and avoid self-intersection. After the
algorithm obtains the predicted surface, the direction of the generated triangular patch will be
adjusted according to the normal vector information of the grid around the hole, so the generated
patch can conform to the original feature distribution as much as possible. The flowchart is
shown in Fig. 4.

Fig. 4 The flowchart of the proposed structural repair method.
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3.3 Texture Repair for Holes

To repair the 3D hole topology while preserving the color and texture information of the surface
of the Terracotta Warriors, an improved deep neural network for image inpainting is proposed.
Inspired by the EdgeConnect,48 a refined network is added in the original EdgeConnect second
stages, the proposed network can generate the details of the Terracotta Warriors surfaces. The
network can be divided into two parts: the edge generation network (EGN) and the texture
inpainting network (TIN). The EGN produces the edge map for the masked region, whereas TIN
uses the predicted edge to guide the repair of the missing texture of the image. Specifically, the
TIN consists two modules: a coarse network and a refine network. There are also two discrimi-
nator networks: edge discriminator network and image discriminator network, which are used
to predict an edge/inpainted image is real or not, and the discriminator uses the PatchGAN
discriminator in Ref. 49. The architecture of the network is shown in Fig. 5.

3.3.1 Edge generation network

The Pgt and Egt are the ground truth image and edge, Pgray is the grayscale image of Pgt. The
input of EGN consists of three parts: image mask, the incompleted edge, and the incompleted
grayscale image. Let Pgray ¼ Pgray ⊙ ð1 −MÞ and Ein ¼ Egt ⊙ ð1 −MÞ be the incompleted
grayscale image and edge image. The mask image M as the precondition (1 for missing areas
and 0 for background). The prediction output of the EGN is predicted edge image, which can be
expressed as

EQ-TARGET;temp:intralink-;e001;116;154Eout ¼ GEGNðM;Ein; PgrayÞ: (1)

EGN is trained with an objective comprised of an adversarial loss and feature-matching loss
as follows:

EQ-TARGET;temp:intralink-;e002;116;96lEGN ¼ α · ðmin
GEGN

lGEGN
þ min

DEDN

lDEDN
Þ þ β · min

GEGN

lFM; (2)

Fig. 5 The framework of texture repair method based on edge information.
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where α and β are the regularization parameters, lFM is the feature-matching loss.50 lEGN is the
composed loss of EGN, which is defined as the least square loss function [Eq. (3) and (4)]. The
lDEDN

and lGEGN
are the loss of discriminator and generator, respectively. It can generate higher

image accuracy and make the network training process more stable, which are different with
EdgeConnect:

EQ-TARGET;temp:intralink-;e003;116;675min
GEGN

lGEGN
¼ 1

2
EðPgray;EoutÞ½DðEoutÞ − 1�2; (3)

EQ-TARGET;temp:intralink-;e004;116;619min
DEGN

lDEGN
¼ 1

2
EðPgray;EgtÞ½DðEgtÞ − 1�2 þ 1

2
EðPgray;EoutÞ½DðEoutÞ�2: (4)

3.3.2 Texture inpainting network

The TIN has two modules: the coarse (TIN1) and refine (TIN2) networks. We input the predicted
edge Eout and the incomplete RGB image Prgb ¼ Pgt ⊙ ð1 −MÞ into the coarse network, which
outputs a coarse RGB image. To infer a more accurate result, the refine network is adopted,
which takes the coarse image Pcoarse and the former predicted edge Eout as input. Finally, a reality
and more precise image is generated. And the refine network has a similar architecture as the
coarse network. The prediction output of the TIN can be expressed as

EQ-TARGET;temp:intralink-;e005;116;486Pcoarse ¼ G1
TINðEout; PrgbÞ; (5)

EQ-TARGET;temp:intralink-;e006;116;441Prefine ¼ G2
TINðEout; PcoarseÞ; (6)

whereG1
TIN andG2

TIN are the coarse network and refine network of the TIN module, respectively.
The loss of TIN is a combination of l1 loss, adversarial loss lTIN, perceptual loss

51 lperc, and
style loss52 lsty. Specifically, the TIN module includes two generators and one discriminator. The
final loss can be defined as

EQ-TARGET;temp:intralink-;e007;116;379lTIN ¼ a · ðl1
GTIN

þ l2
GTIN

þ l2
DTIN

Þ þ b · ðl1
prec þ l2

precÞ þ c · ðl1
sty þ l2

styÞ þ d · ðl1
1 þ l2

1Þ;
(7)

where the adversarial loss is defined similar to EGN, as follows:

EQ-TARGET;temp:intralink-;e008;116;321min
GTIN

l1
GTIN

¼ 1

2
EðPcoarse;EoutÞ½DðPcoarseÞ − 1�2; (8)

EQ-TARGET;temp:intralink-;e009;116;265min
GTIN

l2
GTIN

¼ 1

2
EðPrefine ;EoutÞ½DðPrefineÞ − 1�2; (9)

EQ-TARGET;temp:intralink-;e010;116;231min
DIDN

lDIDN
¼ 1

2
EðPgt;EoutÞ½DðPgtÞ − 1�2 þ 1

2
EðPrefine;EoutÞ½DðPrefineÞ�2: (10)

More details can refer to EdgeConnect,48 and in this article, the above-mentioned parameters are
set as α ¼ 1, β ¼ 10, a ¼ b ¼ 1, c ¼ 100, d ¼ 1.

After the repaired texture image is generated, we map the texture image to the surface of the
3D mesh model. The work is done by the graphic editing software Autodesk Mudbox.

3.4 Proposed Framework

Based on the above methods, the flowchart of our proposed hole filling framework for the
Terracotta Warriors is shown in Fig. 6. The proposed framework can repair the texture infor-
mation of the surface while completing the 3D structure. Since the whole Terracotta Warriors
model contains a large number of triangle mesh. And it occupies a large memory, which affects
the efficiency of the algorithms. Therefore, we only extract the patches with holes as the input of
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the algorithm and to improve the execution efficiency of the algorithm. It is worth noting that
during the experiment, enough effective areas will be guaranteed to achieve the real complement
effect. Besides, the denoise process will be done before our experience by the Arctect when
combining the raw scan data.

First, we apply Algorithm 1 to detect holes in the virtual mesh model. After locating the
position of the holes, the images and mesh patches containing the hole are obtained.
Second, the feature enhancement algorithm based on Poisson’s equation is used to complete
the mesh structure, and the network based on edge prediction is applied to repair the image.
Third, the repaired 2D surface texture information is mapped to the 3D mesh surface by
Mudbox. Finally, the 3D model patch with structure information and surface textual information
is merged with the initial model to obtain a complete repair result.

4 Experiment and Results

4.1 Dataset and Implementation Details

In this paper, the fragments of the Terracotta Warriors unearthed in pit K9901 of Qin Shihuang’s
mausoleum are used. The point cloud of these fragments was scanned using a Creaform VIU

Fig. 6 The overall framework.
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handy scanner. The scan resolution was 3.91 mm, which favors speed but results in relatively low
precision. The point cloud exhibits a strong local imbalance in the sampling pattern and contains
realistic noise that was the result of the scanning process. To assemble these fragments, a multi-
feature fusion method proposed in Ref. 53 is used. The 3D structural repair is an algorithm that
does not require prelearning, therefore the denoised incomplete model can directly input and
output the completed result. By performing the coordinate conversion, rotation, and normali-
zation operations on the 3D model with color texture, the image dataset for training is obtained
in batches.

The 3D structural repair is implemented with the Visual Studio 2019 and OpenGL, whereas
the texture repair network is implemented by Pytorch. The hardware of the PC is i7-7820 CPU/
3.6 GHz, 64GiB memory, and RTX TITAN GPU.

4.2 Results of Structural Completion

Figure 7 shows the results of hole completion in the 3D mesh based on Poisson’s equation. The
algorithm can generate uniform and reasonable mesh patches for different parts of the Terracotta
Warriors models. It can be seen from Fig. 7(b) that the generated patch boundary cannot perfectly
match the input model, resulting in a partial depression at the boundary. But the merging result is
smoother after feature enhancement [see Fig. 7(c)]. For completing a hole with larger curvatures,
such as the nose, the completed triangular mesh is dented after the initial repair, and repaired
patch can be more consistent with the original model after feature enhancement. As shown in
Fig. 7, the algorithm can produce the same density as the original mesh and less self-intersection
even the 3D mesh with complex features and can improve the calculation efficiency.

4.3 Results of Texture Completion

Because the effective area around the hole has a great effect on filling the missing content, and
the surface information far away from the hole plays a small role in repairing the hole.
Considering computer memory, it is necessary to preprocess the original Terracotta Warriors
model for training. We crop the 2D image to generate a 256*256 image patch. A total of
25,933 image patches extracted from 80 Terracotta Warriors models are used.

Fig. 7 The result of structural repair of the head of the Terracotta Warriors. N-FM indicates the
process without feature enhancement, and FM indicates feature enhancement of the triangular
mesh: (a) input, (b) output (N-FM), and (c) output (FM).
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The irregular masks are obtained from the work of Liu et al.47 For training, the missing image
is generated by combining the mask with the original image, and the edge maps are generated
using the Canny edge detector. It is worth noting that the training dataset contains scenes with
different views for various parts of the model. During the training, the batch size is set to 8, and
the total epochs of 1,000,000 are set to ensure that the network can converge completely. The
optimization operator is Adam54 with β1 ¼ 0 and β2 ¼ 0.9. The EGN and TIN are trained sep-
arately with a learning rate of 10−4 until the losses plateau, and then lower the learning rate to
10−5 and continue to train EGN and TIN until convergence.

To verify the impact of the Gaussian smoothing filter δ of Canny edge detector on the texture
repair results, some preliminary experiments are conducted. From Fig. 8, it is obvious that δ
should be set 1 to obtain the best experimental effect. When δ is too large, there are too few
edges to guide the texture restoration correctly. In contrast, there are too many edges when δ is
too small, and it can mislead the generated image.

Figure 9 shows inpainting results under the change of δ. The first one in the first line is the
image to be repaired with mask, and others are the predicted edge images. The second line only
shows the region of completed holes. And the first one in the second line is ground truth, the
others are the repair results obtained based on the predicted edge. The best result can be gen-
erated when δ ¼ 1. Although the mask in the figure is small, it can be seen that when δ is greater
than 2, the fusion of the generated repair patch and the original image is reduced, and the repair
quality is degraded.

We use the Terracotta Warriors dataset to fine-tune based on the parameters of the first and
second phases of EdgeConnect, and in the third phase of the refined network, we use the param-
eters obtained in the second phase to fine-tune. When generating the valid set, we randomly
generate single or multiple holes for each 2D image of Terracotta Warriors. To verify the effec-
tiveness of the improved method is compared with the state-of-the-art image inpainting methods
on the Terracotta Warriors Dataset. The improved methods include two deep learning-based

Fig. 8 The impact of Gaussian smoothing filter δ of Canny edge detector on the texture repair
results: (a) PSNR and (b) SSIM55 are used.

Fig. 9 The effect of the edges generated by different δ values on the inpainting image.
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models: EdgeConnect48 and Global&Local,45 and the traditional inpainting method
PatchMatched.56

During the test, we used common evaluation metrics, i.e., peak signal-to-noise ratio (PSNR),
structural similarity (SSIM),55 and mean square error (MAE), which is calculated by the com-
plete image and the ground-truth image in pixel space, to quantify the performance of the mod-
els. Table 1 shows the evaluation results, the higher the values of PSNR and SIMM, the better
result of network predict, whereas the MAE is the opposite. In the deep learning-based method,
our model outperforms the existing methods on all three metrics. From the results, we can see
that the PatchMatch method is better than Global&Local. The results can be explained that the
surface color is earthy and the model has the nature of local similarity, so the method based on
patched matching has better repair than the deep learning method. Furthermore, Edgeconnect has
a better prediction should be due to the edge-based guidance. When the refine network was
added, the model improved performance on all three evaluation indicators, the PSNR,
SSIM, and MAE value is increased by 0.486%, 0.290%, and 6.97%, respectively, compared
with EdgeConnect, which shows the effectiveness of the improved network.

Figure 10 shows a visual comparison of our method with existing methods. As can be seen
from the figure, PatchMatch56 generates a smooth texture. But for images with obvious feature
changes, the result is not consistent in color. Global&Local45 has a large difference in the color of
the generated results, which cannot be well integrated with the original model. EdgeConnect48

can generate smooth and reasonable images because of boundary guidance and the addition of an
attention model, but there are still subtle differences. After adding the refine network, the object
has a very natural boundary and a coherent surface with the neighborhood context. In addition,
the image with the surface depression due to corrosion can be masked to make the repaired
surface more realistic and coherent (e.g., the last line).

4.4 Hole Repair Results

Three groups of experiments are conducted to verify the proposed framework. The holes in the
first group are caused by natural causes, as shown in Fig. 11. Most of the holes existed in the
fragment splicing areas [see Fig. 11(a)]. The mask, which denotes the area to be repaired, is first
generated manually. It should be slightly larger than the original hole region, as shown in
Fig. 11(d). The structural repair results are shown in Fig. 11(e), and the textual repair results
are shown in Fig. 11(f). The final repair results are shown in Fig. 11(b).

The second holes are caused by human factors. The holes in Fig. 12(a) are caused by artificial
marks. The repair result is shown in Fig. 12(b), and more details can be found in Figs. 12(c)–
12(f), which demonstrate that proposed framework can deal with these holes well.

Figure 13 shows the holes caused by natural reasons or scanning reasons, which contains
many irregular missing holes on the surface [see Fig. 13(c)]. The repair result is shown in
Fig. 13(b) demonstrates the proposed framework has good repair results for repairing the missing
areas of complex physical structures and textures.

4.5 Texture Mapping

In this paper, Mudbox is used to map the 2D texture image back to the surface of the repaired
model of the 3D Terracotta Warrior structure. By corresponding to spatial vertices, the infor-
mation such as color and texture is projected onto the surface, and then automatically deforming

Table 1 Quantitative results of different methods.

Methods PatchMatch Global&Local EdgeConnect Ours

PSNR 36.8368 35.6802 37.0322 37.2125

SSIM 0.9584 0.9533 0.9640 0.9668

MAE 0.0050 0.0051 0.0046 0.0043
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Fig. 10 Qualitative comparison with the state-of-the-art method. From left to the right are: input
image with holes, PatchMatch,56 Global&Local,45 EdgeConnect,48 our improvement model, and
the ground-truth, respectively.

Fig. 11 Repair results of the holes that were caused by natural causes: (a) the original model,
(b) the repair results, (c) details of the hole area, (d) masks of the area to be repaired, (e) structure
repair results, and (f) texture repair results.
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the model based on its depth, to make it more suitable for 3D surface curvature changes to cover
the surface of the 3D Terracotta Warriors. The feature master module of Mudbox is utilized to
map the feature, 2D image information is assigned to the 3D model using tools, such as moving,
rotating, adjusting the brush radius, the JPG file of the repaired UV line is exported, and then the
UV file of the original model is replaced. We finally obtain the 3D Terracotta Warrior model after
the structure and texture restoration are obtained (Fig. 14).

Fig. 12 Repair result of the holes caused by human factors: (a) The original model, (b) the repair
result, (c) details of the hole area, (d) mask of the area to be repaired, (e) structure repair results,
and (f) texture repair results.

Fig. 13 Repair result of the holes caused by natural reasons and scanning reasons: (a) the origi-
nal model, (b) the repair result, (c) details of the hole area, (d) mask of the area to be repaired,
(e) structure repair result, and (f) texture repair result.

Fig. 14 Comparison of the model before and after repair. (a) Before repair and (b) after 3D repair,
the result of mapping the 2D image to the 3D surface.

Chu et al.: Hole-filling framework by combining structural and textural information. . .

Journal of Applied Remote Sensing 046503-14 Oct–Dec 2021 • Vol. 15(4)



4.6 Other Experiments

To prove the necessity of loss function, we studied the loss function of TIN stage. (a) The second stage
has only the least squares GANs; (b) the loss function includes the lGAN and l1 loss functions; (c) adds
the perceptive loss function lperc on top of the b loss function; (d) adds the joint loss function after the
style loss lsty; and contains EPN, TIN1, and TIN2. As shown in Table 2, the network model repair
effect gradually improves as the loss function increases. The reason is that the four loss functions have
different functions, the generate adversarial loss function is to make the network generate more real-
istic repair results, whereas the loss function l1 is to judge the difference between the predict results
and the missing image, and the perceived loss function lperc to ensure that the real image and the repair
image are more similar, and the style loss function lsty to ensure that the repair results of the missing
areas without feature loss.

5 Discussion and Conclusion

As an important carrier of cultural heritage, many cultural relics have been damaged to varying
degrees due to the impact of environmental and human factors. The virtual restoration of cultural
relics is the process of using the scanned 3Dmodel to go through a series of process operations to
obtain the original model after restoration. We propose a 3D cultural relics restoration frame-
work, which can restore the 3D physical structure while retaining the surface texture informa-
tion. Taking the Terracotta Warriors as an example, by identifying the holes in the 2D cultural
relics, using the Poisson-based reconstruction method for surface reconstruction, and enhancing
the characteristics of the reconstructed triangular patches, then a smooth surface can be obtained.
In texture restoration, combining neural networks and GAN networks and leveraging edge infor-
mation to guide the inpainting process, the coarse and refine two-stage network model can pro-
duce more coherent texture information, and finally generate more surface authenticity, texture
coherence, and structural integrity relics. Experimental results show that the framework of this

Table 2 Quantitative comparison of different loss functions used in
the TIN stage.

Loss PSNR SSIM MAE

a 36.8368 0.9633 0.0051

B 36.8927 0.9646 0.0049

C 37.0322 0.9654 0.0045

D 37.2125 0.9668 0.0043

Fig. 15 Inpainting results of different repair inputs patch with holes, where (a) and (b) represent
two different 3D Terracotta Warriors model.
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paper can produce good results in the field of 3D cultural relics with different types of multiple
irregular shape missing areas.

In addition, to improve the efficiency of the algorithm, we use local patches as input.
Figure 15 shows that different patch regions containing the same holes have different repair
results. So when we extract the input, which should include as much effective information
around the holes as possible. Because it is believed that the closer feature to the hole, the greater
effect of repairing the hole. Of course, the framework of this paper also has certain limitations.
For holes with large missing areas, by reason of the algorithm directly calculate the output results
without prelearning, as a result, the quality of 3D structural repair is reduced. Therefore, in future
work, we will study the use of deep learning technology to use a large number of datasets to learn
the potential features of the Terracotta Warriors and horses to repair and improve the efficiency
and accuracy of repair.

In general, this work proposes a 3D virtual heritage restoration framework. The restoration
framework is established by combining 3D structure completion and 2D texture inpainting.
Experimental results show that the framework has a good restoration effect. We hope that this
work can promote the development of digital restoration of cultural relic models in the field of
computer graphics.

Acknowledgments

We thank the Emperor Qinshihuang’s Mausoleum Site Museum for providing the Terracotta
Warriors data. This work was supported in part by the National Key Research and Development
Program of China (Grant No. 2019YFC1521103); China Post-doctoral Science Foundation
(Grant No. 2018M643719); Young Talent Support Program of the Shaanxi Association for
Science and Technology (Grant No. 20190107); Key Research and Development Program of
Shaanxi Province (Grant No. 2019GY-215); Major research and development project of Qinghai
Grant No. 2020-SF-143).

References

1. P. S. Quinn et al., “Building the Terracotta Army: ceramic craft technology and organisation
of production at Qin Shihuang’s mausoleum complex,” Antiquity 91(358), 966–979 (2017).

2. W. Zilin, “The museum of Qin Shi Huang Terracotta Warriors and horses,” Museum Int.
37(3), 140–147 (1985).

3. J. Wang, Z. Hui, and L. Li, “Research on digitizing processing of the Terracotta Warriors and
Horses of the Qin dynasty,” in Int. Conf. Geometric Model. and Graphics, pp. 201–207
(2003).

4. H. Kinoshita, “The first emperor: China’s Terracotta Army: exhibition at the British
museum, 13 September 2007–6 April 2008,” Asian Aff. 38(3), 371–376 (2007).

5. M. Dellepiane et al., “Using digital 3D models for study and restoration of cultural heritage
artifacts,” in Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration,
Reconstruction of Ancient Artworks, pp. 39–70 (2011).

6. M. Pieraccini, G. Guidi, and C. Atzeni, “3D digitizing of cultural heritage,” J. Cult. Herit.
2(1), 63–70 (2001).

7. R. Scopigno , M. Callieri, and P. Cignoni et al., “3D models for cultural heritage: beyond
plain visualization,” Computer 44(7), 48–55 (2011).

8. C. Serain, “The contribution of digital technologies to the mediation of the conservation-
restoration of cultural heritage,” in Euro-Mediterranean Conf., pp. 283–289, Springer
(2016).

9. F. Wang, “A study of digital image enhancement for cultural relic restoration,” Int. J. Eng.
Tech. Res. 11(7), 41–44 (2017).

10. N. J. M. Mark Pauly et al., “Example-based 3D scan completion,” in Eurographics Symp.
Geometry Process.,H. P. M. Desbrun, Ed., pp. 1–10 (2005).

11. J. Rock et al., “Completing 3D object shape from one depth image,” in IEEE Conf. Comput.
Vision and Pattern Recognit. (CVPR), pp. 2484–2493 (2015).

Chu et al.: Hole-filling framework by combining structural and textural information. . .

Journal of Applied Remote Sensing 046503-16 Oct–Dec 2021 • Vol. 15(4)

https://doi.org/10.15184/aqy.2017.126
https://doi.org/10.1111/j.1468-0033.1985.tb00572.x
https://doi.org/10.1109/GMAG.2003.1219688
https://doi.org/10.1080/03068370701574030
https://doi.org/10.1016/S1296-2074(01)01108-6
https://doi.org/10.1109/MC.2011.196
https://doi.org/10.1109/CVPR.2015.7298863
https://doi.org/10.1109/CVPR.2015.7298863


12. S. Chaudhuri and V. Koltun, “Data-driven suggestions for creativity support in 3D model-
ing,” ACM Trans. Graphics 29(6), 1–10 (2010).

13. Y. M. Kim et al., “Guided real-time scanning of indoor objects,” Comput. Graphics Forum
32(7), 177–186 (2013).

14. Y. Li et al., “Database-assisted object retrieval for real-time 3D reconstruction,” Comput.
Graphics Forum 34(2), 435–446 (2015).

15. G. Guo-Hua et al., “Three-dimensional model restoration with shape-constrained sample
filling,” Opt. Precis. Eng. 26, 2863–2872 (2018).

16. P. Sahay and A. N. Rajagopalan, “Geometric inpainting of 3D structures,” in IEEE Conf.
Comput. Vision and Pattern Recognit. Workshops (CVPRW), pp. 1–7 (2015).
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