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a b s t r a c t 

Background and objective: Endometrial hyperplasia (EH), a uterine pathology characterized by an in- 

creased gland-to-stroma ratio compared to normal endometrium (NE), may precede the development 

of endometrial cancer (EC). Particularly, atypical EH also known as endometrial intraepithelial neoplasia 

(EIN), has been proven to be a precursor of EC. Thus, diagnosing different EH (EIN, hyperplasia without 

atypia (HwA) and NE) and screening EIN from non-EIN are crucial for the health of female reproductive 

system. Computer-aided-diagnosis (CAD) was used to diagnose endometrial histological images based on 

machine learning and deep learning. However, these studies perform single-scale image analysis and thus 

can only characterize partial endometrial features. Empirically, both global (cytological changes relative 

to background) and local features (gland-to-stromal ratio and lesion dimension) are helpful in identifying 

endometrial lesions. 

Methods: We proposed a global-to-local multi-scale convolutional neural network (G2LNet) to diagnose 

different EH and to screen EIN in endometrial histological images stained by hematoxylin and eosin 

(H&E). The G2LNet first used a supervised model in the global part to extract contextual features of en- 

dometrial lesions, and simultaneously deployed multi-instance learning in the local part to obtain textural 

features from multiple image patches. The contextual and textural features were used together to diag- 

nose different endometrial lesions after fusion by a convolutional block attention module. In addition, we 

visualized the salient regions on both the global image and local images to investigate the interpretability 

of the model in endometrial diagnosis. 

Results: In the five-fold cross validation on 7812 H&E images from 467 endometrial specimens, G2LNet 

achieved an accuracy of 97.01% for EH diagnosis and an area-under-the-curve (AUC) of 0.9902 for EIN 

screening, significantly higher than state-of-the-arts. In external validation on 1631 H&E images from 135 

specimens, G2LNet achieved an accuracy of 95.34% for EH diagnosis, which was comparable to that of 

a mid-level pathologist (95.71%). Specifically, G2LNet had advantages in diagnosing EIN, while humans 

performed better in identifying NE and HwA. 

Conclusions: The developed G2LNet that integrated both the global (contextual) and local (textural) fea- 

tures may help pathologists diagnose endometrial lesions in clinical practices, especially to improve the 

accuracy and efficiency of screening for precancerous lesions. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Endometrial cancer (EC), also called uterine cancer or corpus 

teri cancer, is the most common female reproductive system can- 

er in developed countries and the second most common gyneco- 
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ogic malignancy worldwide [1] . EC often occurs in perimenopausal 

r menopausal women at an average age of 55 years, but the age 

f onset has gradually become younger and the incidence contin- 

es to increase due to the unprecedented rate of obesity [2–5] . 

ecent studies suggest that endometrial hyperplasia (EH), a uter- 

ne pathology characterized by an increased gland-to-stroma ratio 

ompared to normal proliferative endometrium, may precede the 

evelopment of EC and that the two share common predisposing 

isk factors [ 6 , 7 ]. The World Health Organization (WHO) further di- 
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ided EH into hyperplasia without atypia (HwA) and atypical en- 

ometrial hyperplasia (AEH) [8–10] . HwA is a group of benign le- 

ions that prefer progestin conservative treatment, whereas AEH, 

lso known as endometrial intraepithelial neoplasia (EIN), has been 

roven to be a precursor (premalignancy) of endometrioid (type I) 

C [ 10 , 11 ]. Previous findings showed that without treatment, 20 –

2% of EIN would develop into endometriosis, compared to 2% of 

wA [12] . Since EIN may progress to or coexist with EC, the most 

ppropriate treatment is hysterectomy [ 13 , 14 ]. Conspicuous differ- 

nces in severity and treatment options prompt us to diagnose dif- 

erent EH and to screen EIN from HwA and normal endometrium 

NE) as early as possible. 

Histopathological examination after endometrial biopsy is cur- 

ently the gold standard for the diagnosis of different endome- 

rial lesions [15] . Specifically, EIN shows a minimum dimension 

f 1 mm, gland area exceeding stromal area, cytological changes 

elative to background, and exclusion of carcinomas and mimics, 

hile EH that does not meet these criteria is identified as HwA 

 12 , 16 ]. Computer-assisted morphometry (D-score) was also devel- 

ped to quantify the architectural (volume percentage of stroma 

nd outer surface density of glands) and cytological (standard de- 

iation of the shortest nuclear axis) features of endometrium, and 

as been used to the assisted diagnosis of hematoxylin and eosin 

H&E) slides [ 17 , 18 ]. Nevertheless, confirmation of these diagnoses 

till relies on specialized visual assessment, which leads to an ex- 

essive demand for pathologists [19] . According to the China Di- 

gnostic Pathology Industry Analysis Report, we needed 84,0 0 0- 

68,0 0 0 pathologists based on 1-2 pathologists per 100 beds, but 

here were only 18,0 0 0 pathologists on record in 2018, leaving a 

ap of at least 66,0 0 0 pathologists. As a result, pathologists need 

o perform histological analysis of H&E slides as quickly as possi- 

le, which sometimes results in conflicting or even erroneous di- 

gnostic results due to prolonged overwork. That is, the scarcity 

f pathologists as a bottleneck has largely hindered efficient and 

ccurate endometrial medical care. 

Computer-aided diagnosis (CAD), as a promising tool to as- 

ist clinicians in decision making, provides automated alternatives 

or effective diagnosis of various cancers such as rectal cancer 

20] , ocular adnexal lymphoma [21] , renal cancer [22] , lung can- 

er [23] and breast cancer [24] in high-throughput medical im- 

ges. In particular, several studies designed CAD systems to the 

ifferentiation of endometrial lesions in histological [25–29] , hys- 

eroscopic [ 30 , 31 ], ultrasound [ 32 , 33 ] and magnetic resonance im-

ges [34] . For example, researchers at the University of Athens em- 

loyed machine learning (ML) models including logistic regression 

29] , classification and regression trees [25] and artificial neural 

etworks [26] to differentiate benign from malignant endometrial 

iquid-based cytological smears, achieving an overall classification 

ccuracy of 81.33–85% and 90.87–95% for endometrial nuclei and 

esions, respectively. Downing et al. [27] segmented endometrial 

istological slides into epithelium, cells and nuclei and then ex- 

racted 1413 image features, from which 75 representative features 

ere selected to distinguish different endometrial tissues using a 

andom forest model, resulting in a classification accuracy of 94.2% 

etween the benign, EIN and malignant groups. 

Despite encouraging results, these ML-based CAD requires 

abor-intensive and time-consuming cytological preprocessing, 

uch as manual segmentation of the endometrial nuclei, which 

akes an average of 10–20 min per specimen [26] . In addition, the 

erformance of ML models depends on to how well the hand- 

rafted features match the classification task, which often shows 

uboptimal performance if domain knowledge is not available. 

eep learning (DL), one of the most important branches of ML, 

an automatically extract task-relevant features without much pre- 

rocessing and can continuously improve the performance through 

nd-to-end learning [35] . Notably, single convolutional neural net- 
2 
ork (CNN) [36] and the ensemble of multiple CNNs [37] have 

een used to classify hysteroscopic images of endometrial lesions 

nto benign, premalignant and malignant lesions with an accuracy 

f 80.8% and 90.29%, respectively. Sun et al. [24] developed a CNN 

odel with an attention mechanism (called HIENet) for diagnosing 

ifferent endometrial tissues from H&E images, obtaining 76.91% 

nd 95.94% accuracy in four-class classification (NE, EH, endome- 

rial polyp and EC) and binary classification (benign and malig- 

ant), respectively. 

These studies have shown the potential of DL in the classifi- 

ation of different endometrial tissues. However, they mainly fo- 

us on the diagnosis of malignant and benign endometrial lesions 

ithout much attention to the identification of precancerous le- 

ions such as EIN. In addition, current CAD performs image anal- 

sis at one fixed single-scale and thus can only characterize lo- 

al or global features of endometrial histopathological images. It 

s known that both global (cytological changes relative to back- 

round) and local features (gland-to-stromal ratio and lesion di- 

ension) are helpful in identifying different endometrial lesions. 

herefore, we proposed a global-to-local multi-scale convolutional 

eural network (G2LNet) to diagnose different EH and to screen 

IN in endometrial histological images stained by H&E. The G2LNet 

rst used a supervised CNN model in the global part to extract 

ontextual features of endometrial lesions, and simultaneously de- 

loyed multi-instance learning in the local part to obtain textu- 

al features from multiple image patches ( Fig. 1 ). The contextual 

nd textural features were used together to diagnose different en- 

ometrial lesions after fusion by the convolutional block attention 

odule (CBAM) [38] . We anticipate our work may provide an ef- 

cient and accurate diagnostic tool for premalignant endometrial 

iseases. 

. Materials and dataset 

.1. Study population 

This retrospective study was approved by the Medical Ethics 

ommittee of Northwestern Women’s and Children’s Hospital and 

he informed consent was waved. From January 2016 to Decem- 

er 2020, 602 endometrial specimens were collected by diagnostic 

urettage, hysteroscopic surgery or hysterectomy from 452 female 

atients who did not receive radiotherapy, chemotherapy or hor- 

one therapy before surgery and had no other gynecologic tumor 

omplications. Subsequently, these patients were pathologically la- 

eled (Section II.C) as NE (140 patients with 185 specimens), HwA 

132 patients with 177 specimens) and EIN (180 patients with 240 

pecimens) with a mean age of 38 ± 7.2 (23–54), 47 ± 5.4 (26–68) 

nd 54.7 ± 6.5 (27–71) years, respectively. 

.2. Specimen preparation 

Following the standard protocol for histological reporting of EC 

ublished by the Royal College of Pathologists [39] , the endome- 

rial specimens were prepared by the following 5 steps: (1) the 

ndometrial specimens were fixed in 10% neutral buffered forma- 

in at room temperature for 12–48 h; (2) the fixed specimens were 

ehydrated by immersion in ethanol solutions in a series of in- 

reasing concentration; (3) the dehydrated samples were cleared 

sing xylene; (4) the cleared samples were immersed in melted 

araffin wax for embedding and serially sectioned at 4 μm thick- 

ess; (5) routine staining of sections with H&E was started after 

araffin dissolution, and slides were made and sealed. 

.3. Pathological labeling 

According to the WHO diagnostic criteria (4th edition, 2014) [8] , 

wo experienced pathologists (M.J.W and H.Y.Z, over 20 years of 
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Fig. 1. Framework of the global-to-local multi-scale convolutional neural network (G2LNet). (a) Global feature extractor. (b) Local feature extractor. (c) Fusion and attention 

module. (d) Prediction module. 

Table 1 

Number of histological images in different datasets. 

Class # Images in training dataset # Images in validation dataset # Images in external validation # Total images per class 

NE (PE, SE) 2153 (1540, 614) 539 (385, 153) 525 (372, 153) 3217 (2297, 920) 

HwA (SH, CH) 1244 (314, 931) 312 (78, 233) 465 (164, 301) 2021 (556, 1465) 

EIN 2851 713 641 4205 

Total: 6248 1564 1631 9443 

PE: proliferative endometrium, SE: secretory endometrium, SH: simple hyperplasia, CH: complex hyperplasia. 
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ndometrial pathology experience) labeled all H&E slides and di- 

ided them into three classes: i.e. NE ( n = 185, including 120 pro-

iferative endometria and 65 secretory endometria), HwA ( n = 177, 

ncluding 54 simple hyperplasia and 123 complex hyperplasia) and 

IN ( n = 240). Specifically, the pathologists first outlined all tissues 

n the H&E slide with a marker to prevent missing the field of 

iew during microscopic observation and to eliminate areas with 

ubbles and dry pieces. Then, the slide was fixed on the carrier 

able and each field of view was observed with a low magnifica- 

ion lens (4X objective). If suspicious or difficult-to-identify areas 

ere found, they switched to medium magnification lens (10X) 

nd high magnification lens (40X) for closer observation to con- 

rm the diagnosis. Notably, labeling of each slide was performed 

nly with the agreement of the two pathologists, and controversial 

ases required further discussion and labeling after consensus was 

eached. 

.4. Digital imaging 

We scanned the marked area of each H&E slide with a Mo- 

icEasyScan 60 scanner (I. Miller Microscopes, PA) at 400 × magni- 

cation into high-resolution digital images and saved them in Joint 

hotographic Experts Group (JPEG) format, which facilitated the 

ubsequent analysis using DL-based CAD. All marked areas of H&E 

lides were imaged sequentially, generating 10–20 non-overlapping 

igital images, with an average of approximately 16 per slide. The 

abels of these digital images were copied from the corresponding 

&E slide, and the digital images that did not belong to this cate- 

ory were removed to ensure a match between images and labels. 

onsidering the possible bias in tissue specimen preparation at dif- 

erent times and by different physicians, we did not preprocess the 

igital images before performing DL-based diagnosis. In this way, 

ll endometrial H&E slides were converted into digital images of 

he same size of 1816 × 1519 pixels, obtaining 3217 images with 
3 
E (2297 proliferative endometria and 920 secretory endometria), 

021 images with HwA (556 simple hyperplasia and 1465 complex 

yperplasia) and 4205 images with EIN ( Table 1 ), respectively. 

.5. Dataset partitioning 

This study used 467 specimens from 350 patients collected 

rom January 2016 to December 2019 as the primary cohort, in- 

luding 7812 digital images (2692 NE, 1556 HwA and 3564 EIN). 

emaining 135 specimens from 102 patients collected from Jan- 

ary 2020 to December 2020 were used as the secondary cohort. 

s shown in Table 1 , we randomly selected 80 and 20% of the data

n the primary cohort to train and validate the proposed model un- 

er five-fold cross-validation, obtaining 6248 (2153 NE, 1244 HwA 

nd 2851 EIN) and 1564 images (539 NE, 312 HwA and 713 EIN) on 

ach fold as the training and validation datasets, respectively. The 

econdary cohort was used as an external validation dataset con- 

isting of 1631 images (525 NE, 465 HwA and 641 EIN) to further 

alidate the robustness and generality of our model. 

. Methods 

.1. Global-to-local multi-scale convolutional neural network 

G2LNet) 

We propose a global-to-local multi-scale convolutional neural 

etwork (G2LNet) to perform the diagnosis of different endome- 

rial lesions in H&E stained histological images. As shown in Fig. 1 , 

he G2LNet consists of four modules, namely, a global feature ex- 

ractor, a local feature extractor, a fusion and attention module and 

 prediction module. The backbone of the global and local feature 

xtractors is DenseNet [40] , a CNN-based network that mitigates 

he gradient vanishing issue in training by creating dense connec- 

ions between all the preceding and following layers, thus enabling 
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he construction of deeper networks and improving classification 

erformance. 

Specifically, we partition each histological image of size 

816 × 1519 pixels into four image patches of the same size of 

08 × 759 pixels. The large image is fed into the global feature ex- 

ractor to learn the contextual features of endometrium tissues via 

upervised learning ( Fig. 1 (a)). Corresponding four image patches 

re fed into the local feature extractor to learn textural features 

ia multi-instance learning ( Fig. 1 (b)), with each patch as one in- 

tance and four patches as one bag. Each bag is assigned the label 

f the large image, even though there may be several instances in 

his bag fall into other classes. For example, the large image la- 

eled as EIN may contain regions of NE, leading to several of four 

atches belonging to NE rather than EIN, but the bag composed of 

hese four patches is still labeled as EIN in multi-instance learning. 

To fuse the contextual and textural features, we upsample the 

eatures of the global extractor and splice the four sets of fea- 

ures of the local extractor according to the relative position of the 

our patches, both of which generate the feature maps of the same 

ize of 14 × 14 × 1024. Feature fusion is performed by element- 

ise max-pooling, which compares each pair of contextual (global) 

nd textural (local) features in the feature space and selects the 

arger feature into the fused feature map. Then, a lightweight con- 

olutional block attention module (CBAM) [38] is used to reweight 

he fused feature map from both the channel and spatial perspec- 

ives ( Fig. 1 (c), which has proven useful in enhancing important 

eatures and eliminating irrelevant ones elsewhere [41] . The chan- 

el attention uses max- and average-pooling to aggregate the spa- 

ial information and employs a multi-layer perceptron (MLP) to 

erform nonlinear feature mapping; element-wise summation and 

igmoid activation are then performed to generate the channel at- 

ention that highlights the important channels of the fused feature 

ap. The spatial attention module conducts channel-wise max- 

nd average-pooling on the channel-weighted features and gener- 

te two feature maps; then we perform convolutional operations 

n them after dimensional concatenation, and use the sigmoid ac- 

ivation function to obtain spatial attention that pays more atten- 

ion to the spatially important features for subsequent diagnosis. 

f note, the CBAM does not change the feature dimension and the 

ttention-weighted feature maps is still of size 14 × 14 × 1024. 

The prediction module performs global average-pooling (GAP) 

n the weighted feature map and generates a 1 × 1 × 1024 fea- 

ure vector ( Fig. 1 (d)), which is fed into three fully connected (FC)

ayers with 128, 256 and 512 neurons, respectively. The number 

f FC layers and the neurons per layer are determined empirically 

nd experimentally. For the diagnosis of EH, the prediction module 

ses a softmax function that produces three outputs corresponding 

o the probabilities of NE, HwA and EIN, while for the screening of 

IN, a sigmoid function is used as the activation function and the 

utputs are the binary probabilities of EIN and non-EIN (NE and 

wA). 

.2. Manual diagnosis by pathologists 

To compare the similarities and differences between the DL 

odel (G2LNet) and humans in assessing endometrial morphology, 

hree pathologists with different experience from the Department 

f Pathology of Northwest Women’s and Children’s Hospital par- 

icipated in the manual pathological diagnosis, including a senior 

athologist (Pathol_1, H.Y.D.), a mid-level pathologist (Pathol_2, 

.S.) and a junior pathologist (Pathol_3, Y.N.G.) with fifteen, six 

nd two years of pathological experience, respectively. Their diag- 

ostic criteria were given as follows: (1) EIN was dominated by 

ytologic changes, including enlarged, rounded and irregular nu- 

lei, distinct nucleoli, large amounts of eosinophilic cytoplasm, and 

esions > 1 mm in size and usually consisting of at least 5–10 
4 
lands; (2) HwA exhibited excessive hyperplasia of glands with ir- 

egular size and morphology and a gland-to-stroma ratio exceed- 

ng that of normal proliferating endometrium without cytologic 

typia; (3) Endometrium without the above-mentioned EIN and 

wA characteristics was NE. All three pathologists were blinded to 

he pathological labels of digital images during the manually diag- 

ostic process. 

.3. Performance evaluation 

Under five-fold cross-validation, we evaluated the diagnostic 

erformance of the G2LNet and state-of-the-arts for different EH 

n the validation dataset in terms of accuracy, precision, recall and 

1-score, and visualized the results using confusion matrix, where 

ach column represents the predicted class (NE, HwA or EIN) and 

ach row represents the ground truth label, so that detailed mis- 

lassification can be easily analyzed. For the screening of EIN, the 

eceiver operating characteristic (ROC) curve and the area under 

he curve (AUC), as well as the sensitivity and specificity with the 

hreshold determined by the maximum Yuden index were used to 

alidate the performance of different models in the binary classifi- 

ation of EIN from non-EIN. 

We further compared our model with three pathologists for the 

H diagnosis on the external validation dataset using accuracy, pre- 

ision, recall, F1-score and confusion matrix. In addition, we calcu- 

ated Kappa values between our model and each pathologist and 

etween different pathologists to investigate the consistency of the 

rediction results between two subjects. 

.4. Image feature visualization 

To provide more reliable and intuitive explanation to patholo- 

ists and help them understand the mechanism of the G2LNet, we 

sed the gradient-weighted class activation mapping (Grad-CAM) 

roposed in [42] to visualize the regions noticed by the model dur- 

ng the diagnosis. The Grad-CAM can highlight the regions that 

ssociated with a given class by generating corresponding heap 

aps. In this study, we showed the salient regions of the G2LNet 

n both the global image and four local image patches, and com- 

ared these regions with those of human interest to see how the 

odel performs in the case of correct and incorrect predictions. 

. Experiments and results 

.1. Experiment settings 

We compared the proposed G2LNet to two state-of-the-art 

ethods that were previously used for the diagnosis of endome- 

rial or other lesions in histological images. The first one is the 

IENet [24] , a VGG-16-based CNN model with both position at- 

ention and channel attention, and the second one used a SVM 

lassifier after extracting bottleneck features by a DenseNet-based 

NN model (denoted as SVM CNN ) [43] . Moreover, to demonstrate 

he feasibility of the double pathways of the G2LNet ( Fig. 1 ), we

lso constructed a GlobalNet and a LocalNet that extracted fea- 

ures by the global and local feature extractors, respectively, and 

hen employed the same prediction module as the G2LNet to per- 

orm the diagnosis. In this way, the GlobalNet was a typical super- 

ised learning method, while the LocalNet belonged to the weak- 

upervised multi-instance learning. The hyper- parameters of our 

2LNet and other CNN models in comparative methods are given 

n Table 2 . 

Each H&E image was resized to 224 × 224 pixels to meet 

he size requirement of our G2LNet and other methods (HIENet, 

VM CNN , GlobalNet and LocalNet). The standard score, also known 

s z-score, was used to normalize the input image. The learning 
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Fig. 2. Confusion matrices of diagnosis EH using different methods. 

Table 2 

Hyper-parameter settings for all models. 

Hyper-parameter CNN models in all methods 

Learning rate 0.005 

Loss function Categorical/binary cross-entropy (patience = 30) 

Optimizer Adam ( β1 = 0.9, β2 = 0.999) 

Batch size 8 
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ate was initially set to 0.005 and was annealed to 0.2 times when 

he performance stopped improving after 2 consecutive epochs. We 

re-trained the backbone CNN models of all methods where ap- 

ropriate using ImageNet dataset and fine-tuned their parameters 

weights and biases) on our endometrial images until convergence. 

or the SVM CNN , the extracted features were reduced to 50 using 

rincipal component analysis (PCA), and a SVM classifier with the 

adial basis function (RBF) kernel was used to perform the classi- 

cation, where the parameters γ and C were set to 0.0078 and 2, 

espectively. 

.2. Results and comparison to state-of-the-arts 

The results of diagnosing different EH using the five meth- 

ds under five-fold cross-validation are given in Table 3 . Our 

2LNet achieved the best performance with a diagnostic accuracy 

f 97.01 ± 0.91%, significantly higher than the other four methods 

ith the p -values being 0.0160, 0.0019, 0.0011 and 0.0067 compar- 

ng to HIENet, SVMC NN , GlobalNet and LocalNet, respectively. The 

uperiority of our G2LNet over the other four methods can also be 

emonstrated by its higher precision, recall and F1-score, which 

re 97.07 ± 0.87%, 97.01 ± 0.91% and 96.98 ± 0.93%, respectively. 

ig. 2 shows the confusion matrix corresponding to the fold with 

edian accuracy of each method. It can be seen that our G2LNet 

mong the five methods achieved the best performance in the clas- 

ification of all endometrial lesions including NE, HwA and EIN. 

n particular, when identifying EIN, the G2LNet did not misclassify 

ny images of NE or HwA as EIN, nor did it misclassify any im- 

ges of EIN as NE or HwA. Even on the fold with the lowest accu-

acy, the G2LNet was still better than or comparable to other four 
5

ethods. Although the GlobalNet and LocalNet did not misclassify 

mages of EIN as other types of EH, they did not performed well 

n identifying NE, which resulted in the overall performance being 

nferior to our G2LNet that combined the feature extractors of the 

lobalNet and LocalNet. The SVM CNN performed worst among the 

ve methods, which may be due to its two-stage learning process 

ather than end-to-end learning like other methods, and thus ex- 

racted features may less relevant to subsequent EH diagnosis. 

For the task of EIN screening, binary classification of EIN and 

on-EIN (including NE and HwA) was performed and the re- 

ults under five-fold cross-validation are given in Table 4 . Ap- 

arently, the G2LNet has the best performance with an AUC of 

.9902 ± 0.0057, significantly higher than the HIENet, SVMCNN, 

lobalNet and LocalNet with the p -values of 0.0332, 0.0 0 01, 0.0276 

nd 0.0013, respectively. The accuracy, sensitivity and specificity 

f our G2LNet with the threshold at the maximum Yuden index 

lso surpass the four comparative methods, exception the Local- 

et, which achieves the highest sensitivity of 99.71 ± 0.31%, al- 

hough other metrics (such as accuracy and specificity) are not 

he case. The ROC curve corresponding to the median AUC ( Fig. 3 )
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Table 3 

Results of EH diagnosis using different methods (mean ± s.d.). 

Method Accuracy (%) Precision (%) Recall (%) F1-score (%) P -value (accuracy) 

HIENet 93.46 ± 1.13 93.67 ± 0.94 93.46 ± 1.12 93.43 ± 1.09 0.0160 

SVM CNN 89.06 ± 3.38 89.20 ± 3.37 89.20 ± 3.37 89.20 ± 3.37 0.0019 

GlobalNet 92.52 ± 1.59 93.22 ± 1.42 92.52 ± 1.58 92.41 ± 1.63 0.0011 

LocalNet 92.81 ± 2.13 93.04 ± 1.90 92.81 ± 2.13 92.77 ± 2.03 0.0067 

G2LNet 97.01 ± 0.91 97.07 ± 0.87 97.01 ± 0.91 96.98 ± 0.93 –

Table 4 

Results of EIN screening using different methods (mean ± s.d.). 

Methods AUC Accuracy (%) Sensitivity (%) Specificity (%) P -value (AUC) 

HIENet 0.9682 ± 0.0162 96.41 ± 1.09 94.61 ± 1.37 98.37 ± 1.80 0.0332 

SVM CNN 0.9120 ± 0.0110 94.87 ± 0.62 97.52 ± 0.32 84.88 ± 1.96 0.0001 

GlobalNet 0.9687 ± 0.0149 94.77 ± 2.24 94.60 ± 4.16 95.44 ± 1.71 0.0276 

LocalNet 0.9307 ± 0.0240 95.94 ± 1.51 91.38 ± 3.20 99.71 ± 0.31 0.0013 

G2LNet 0.9902 ± 0.0057 99.07 ± 0.55 98.54 ± 0.92 99.51 ± 0.61 –

Table 5 

Comparison between G2LNet and pathologists in external validation dataset (mean and 95% confidence 

interval). 

Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Pathol_1 85.04 

(83.31, 86.77) 

85.70 

(84.00, 87.40) 

85.04 

(83.31, 86.77) 

85.01 

(83.28, 86.74) 

Pathol_2 95.71 

(94.73, 96.69) 

9577 

(94.79, 96.75) 

95.48 

(94.47, 96.49) 

95.60 

(94.60, 96.60) 

Pathol_3 98.65 

(98.09, 99.21) 

98.66 

(98.10, 99.22) 

98.52 

(97.93, 99.11) 

98.59 

(98.02, 99.16) 

G2LNet 95.34 

(94.32, 96.36) 

95.67 

(94.32, 96.36) 

95.34 

(94.32, 96.36) 

95.31 

(94.28, 96.34) 

s

w

w

d

4

s

s

9

p

p

C

g

f

(

o

o

t

p

t

e

N

G

w

I

a

0

T

w

h

b

d

Fig. 4. Confusion matrices of the G2LNet and three pathologists for EH diagnosis in 

external validation dataset. 

Table 6 

Kappa values between G2LNet and pathologists in external validation 

dataset (mean and 95% confidence interval). 

G2LNet Pathol_1 Pathol_2 

Pathol_1 0.7168 

(0.6949, 

0.7387) 

–

Pathol_2 0.8939 

(0.8790, 

0.9088) 

0.7968 

(0.7773, 

0.8163) 

–

Pathol_3 0.9312 

(0.9189, 

0.9435) 

0.7775 

(0.7573, 

0.7977) 

0.9732 

(0.9654, 

0.9810) 
hows that the classification performance ranks from the best to 

orst is the G2LNet, GlobalNet, HIENet, LocalNet and SVM CNN , 

hich is slightly different from the ranks in the task of EH 

iagnosis. 

.3. Comparison between G2LNet and human diagnosis 

The comparison between the DL model and human diagno- 

is was performed on the external validation dataset and the re- 

ults are given in Table 5 . The G2LNet achieved an accuracy of 

5.34% (95% CI: 94.32-96.36%), which exceeded that of the junior 

athologist (Pathol_1, 85.04%, 95% CI: 83.31-86.77%) and was com- 

arable to that of the mid-level pathologist (Pathol_2, 95.71%, 95% 

I: 94.73-96.69%), but not as good as that of the senior patholo- 

ist (Pathol_3, 98.71%, 95% CI: 98.09-99.21%). Furthermore, we note 

rom the confusion matrix corresponding to the median accuracy 

 Fig. 4 ) that the G2LNet performs best in identifying EIN, with 

nly one image of NE being misclassified as EIN and no images 

f EIN being misclassified as other types of EH. This demonstrates 

he superiority of the DL model over human experts in diagnosing 

remalignant lesions. In contrast, human experts performed bet- 

er than the G2LNet in identifying images with NE and HwA. For 

xample, the mid-level pathologist (Pathol_2) misclassifies only 14 

E images as HwA, compared with 66 misclassifications for the 

2LNet. 

The kappa values between the DL model and human experts as 

ell those between different human experts are given in Table 6 . 

t is observed that the diagnosis among different pathologists 

chieved good repeatability with the kappa values ranging from 

.7775 (95% CI: 0.7573-0.7977) to 0.9732 (95% CI: 0.9654-0.9810). 

he agreement between the G2LNet and pathologists increases 

ith the practicing experience of these pathologists, with the 

ighest Kappa value of 0.9312 (95% CI: 0.9189-0.9435) achieved 

etween the G2LNet and the senior pathologist (Pathol_3). This 

emonstrates that the consistencies between the DL model and 
6 
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Fig. 5. Results of ablation study. (a) Results of three single-pathway CNN classifiers. (b) Results of different feature fusion strategies. (c) Results of G2LNet with and without 

CBAM. (d) Results of G2LNet with different combinations of backbone CNNs. 
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uman experts are basically on par with those between different 

uman experts. 

.4. Ablation study 

To verify the effectiveness of each component of our G2LNet, 

e performed the following ablation studies: (a) three CNN classi- 

ers including InceptionV3 [44] , ResNet50 [45] and DenseNet121 

40] were compared to select the optimal backbone CNN used 

or the construction of the G2LNet; (b) four fusion strategies in- 

luding concatenation, adding, element-wise average- and max- 

ooling were used to fuse the contextual and textural features ex- 

racted by the global and local feature extractors, respectively; (c) 

he G2LNet with and without CBAM were compared to investigate 

he effect of the attention mechanism; (d) different combinations 

f backbone CNNs in double pathways were compared to validate 

he usefulness of the global-to-local structure of the G2LNet, in- 

luding G2LNet Inception ×2 , G2LNet ResNet ×2 , G2LNet DenseNet + ResNet and 

2LNet DenseNet ×2 , respectively. 

As shown in Fig. 5 (a), among three single-pathway CNNs that 

re used to diagnose between different EH (NE, HwA and EIN), 

he DenseNet121 achieved an accuracy of 92.52 ± 1.59%, outper- 

orming the InceptionV3 ( p = 0.0086) and ResNet50 ( p = 0.1901), 

hich is why we used the DenseNet121 as the backbone of our 

2LNet. As for the fusion of contextual and textural features 

 Fig. 5 (b)), the element-wise max-pooling obtained a higher accu- 

acy of 96.19 ± 2.11% compared to other fusion strategies, although 

he difference was not significant ( p > 0.05). The addition of CBAM 

n the fusion and attention module ( Fig. 1 (c)) further elevated the 

iagnostic accuracy to 97.01 ± 0.91% compared against the G2LNet 

ithout the attention mechanism ( Fig. 5 (c)). 
7 
Fig. 5 (d) shows that the G2LNet DenseNet ×2 using DenseNet121 

s the backbone in both the global and local feature extrac- 

ors obtains an accuracy of 97.07 ± 0.91%, better than the 

2LNet Inception ×2 , G2LNet ResNet ×2 and G2LNet DenseNet + ResNet with 

he p -values of 0.0587, 0.2655, and 0.0286, respectively. Be- 

ond our expectations, the lowest accuracy was obtained for 

2LNet DenseNet + ResNet employing the DenseNet121 and ResNet50 

s the backbone in the global and local feature extractors, re- 

pectively, which may be caused by the semantic mismatch of 

hese two CNNs and the sub-optimal hyper-parameters. Neverthe- 

ess, each G2LNet with the global-to-local architecture with dou- 

le pathways surpasses the single-pathway CNNs. For example, the 

iagnostic performance of the G2LNet DenseNet + ResNet is still higher 

han that of the DenseNet121 and ResNet50, with an accuracy im- 

rovement of 0.95% and 4.10%, respectively. 

. Discussion and conclusion 

To relieve the burden of pathologists, we developed a DL-based 

ndometrial diagnostic model (G2LNet) that fully exploits the con- 

extual and textual features of histological images by the unique 

lobal-to-local double-pathway architecture. The G2LNet performs 

etter on 7812 H&E images for both the EH diagnosis and EIN 

creening, compared to state-of-the-arts (HIENet and SVMCNN) 

nd single-pathway networks (GlobalNet and LocalNet). In external 

alidation of 1631 H&E images, the G2LNet is superior or compara- 

le to the junior and mid-level pathologists with two and six years 

f pathological experience, respectively. In particular, the G2LNet 

utperforms comparative methods and pathologists in identifying 

IN lesions in both the cross-validation and external validation, in- 

icating that the proposed DL-based CAD has great potential for 

he automatic diagnosis of precancerous endometrial lesions. 
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Fig. 6. Three histological images with correct predictions and three images with misclassifications from the external validation dataset. Cases #1–3 are correctly predicted 

as NE, HwA and EIN, respectively. Cases #4–6 are misclassified as HwA, EIN, and NE, respectively, while the ground truth labels for these cases are EN, HwA, and EIN, 

respectively. In the heat map of the Grad-CAM, the red, orange and blue colors indicate the model (or G2LNet) pays high, moderate and low attention to corresponding 

regions during endometrial diagnosis, respectively. 

Table 7 

Comparison between G2LNet’s attention and human assessment on correctly and incorrectly predicted cases. 

Ground 

truth label 

Predicted 

result 

Characteristics of visual 

assessment by human 

Attention of G2LNet on 

global and local images Analysis of the attentional regions 

#1 NE NE Less than 50% gland-to-stroma ratio, 

no atypia in glandular epithelial cells 

(long oval, sunken, regularly arranged 

and well polarized nuclei) 

Global: continuous "bead-like" 

structure in glandular cross-section 

and part of stromal regions; Local: 

multiple stromal regions and normal 

glandular epithelial cells 

Capturing critical features of NE in 

both the global and local images that 

are noticed by humans 

#2 HwA HwA Slightly dilated, irregular & densely 

arranged glands, over 50% 

gland-to-stroma ratio but without 

atypia in glandular cells 

Global: part of the stromal region, 

“back-to-back” densely arranged 

glands; Local: irregular dilatation of 

glandular lumens and details on 

multiple typical glandular structures 

Identified more details on glandular 

architecture in four local images as a 

complement to the global image 

#3 EIN EIN Closely arranged glands, disappearing 

stromata for most glands and atypical 

glandular epithelial cells (disorderly 

arranged and unpolarized cells, and 

enlarged, rounded and faded nuclei) 

Global: central glands in the global 

image and disappeared stroma and a 

blood vessel region; Local: multiple 

glandular and stromal regions 

covering both the structural and 

cellular atypia 

Small disturbance by the blood vessel 

in the global image was eliminated by 

the atypical features in the local 

images 

#4 NE HwA Small and consistent glandular 

lumens, two uniformly distributed 

straight glands, far less than 50% 

gland-to-stroma ratio and no atypical 

glandular epithelial cells 

Global: few stromal region in the 

upper left of the global image; Local: 

more stromal regions and a few 

incomplete glandular regions 

Failure cause by secretory response in 

stroma and different view of glandular 

lumens from typical cross-sectional 

view 

#5 HwA EIN Marked cystic dilatation in some 

glandular lumens, no atypical 

appearance in glandular epithelial 

cells 

Global: part of glands with cystic 

dilation; Local: multiple glandular and 

stromal regions including the glands 

with cystic expansion 

Failure caused by unclear cellular 

hierarchy and disorderly arrangement 

due to the thick specimen 

#6 EIN NE Disappearing stromata, broken, 

incomplete but densely arranged 

glands, atypical appearance of some 

glandular epithelial cells and marked 

hemorrhagic background 

Global: disappearing stromal regions 

and fragmented glandular regions of 

the left part of the global image; 

Local: more detailed fragmented 

glandular regions over all four local 

images 

Failure to identify key glandular 

features due to the interference from 

fragmented glands on both the global 

and local images 
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To investigate the interpretability of the G2LNet model in EH di- 

gnosis, we visualized the salient regions on both the global image 

nd four local images (patches) by performing Grad-CAM to the 

odel. Specifically, we randomly selected three histological images 

ith correct predictions and three images with misclassifications 

rom the external validation dataset as examples ( Fig. 6 ). Detailed 

ompassion between the G2LNet’s attention and human expert vi- 

ual assessment is given in Table 7 . Overall, Grad-CAM focuses on 

oth the stromal and glandular areas in the diagnosis of NE, HwA 
8 
nd EIN (e.g., cases #1–5). In addition to the increased gland-to- 

troma ratio in case #2, the model captures atypical glandular ep- 

thelial cells in case #3, which is crucial for identifying EIN. For 

ases #1 and #4, Grad-CAM focus more on the stromal area, which 

ay be caused by these NE cases having large stromal areas or 

mall gland-to-stromal ratios. 

For correctly predicted cases (#1–3), the G2LNet either captured 

ey features of different EH in both the global and local images 

hat are consistent with human visual assessment (case #1), or 
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dentified more important structural details in local images as a 

omplement to the global image (cases #2 and #3). The G2LNet 

an even eliminate small vessel disturbance in the global image by 

ocusing more on atypical features in the local images (case #3). 

imilar to the ablation study in Fig. 5 (d), these corrected predicted 

ases demonstrate that image features extracted from the global 

nd local images benefit from each in our G2LNet, thus improving 

he accuracy of diagnosing endometrial lesions. 

For those misclassified cases (#4–6), the G2LNet noticed only a 

art of the salient regions in the global image but captured most 

ritical regions in the local images. However, the model is still un- 

ble to accurately identify the type of these cases due to their ab- 

ormal appearance compared to the common histological images. 

pecifically, case #4 has a secretory response in stroma and the 

landular lumen in the longitudinal view differs greatly from that 

n the typical cross-sectional view. Case #5 exhibits a poorly lay- 

red and disordered cellular arrangement caused by an overly thick 

pecimen. The glands in case #6 are fragmented, which disrupts 

he identification of atypical features of glandular epithelial cells. 

bviously, failures on these cases are more or less related to inad- 

quate preparation of histological specimens. However, this is un- 

voidable due to the excessive demand for histological examination 

n routine clinical diagnosis. Therefore, we will collect more ab- 

ormal histological images in the future and improve the G2LNet’s 

wareness for these images in order to correctly diagnose different 

ndometrial tissues in cases of inadequate specimen preparation. 

Clinically, there are two commonly used histological classifica- 

ions, WHO and EIN systems, where the former assesses glandu- 

ar/stromal architecture and the cytological atypia, while the latter 

erforms the combined morphometric analysis of nuclear and ar- 

hitectural features [6] . Based on the EIN system, an objective like- 

ihood metric called D -score was developed by integrating volume 

ercentage of stroma, outer surface density of the glands, and the 

tandard deviation of the shortest glandular nuclear axis [ 17 , 18 ].

lthough both focus on the gland-stroma ratio in endometrial tis- 

ues, studies suggest that the two systems are complementary to 

ome extent, and the EIN system with the D -score may be more 

eliable than the WHO system in predicting the risk of EH pro- 

ression to EC [ 46 , 47 ]. Therefore, the assessment experience in the

HO and EIN systems or direct combination of the D -score into 

ur DL-based CAD system might further improve the performance 

f the model as well as the interpretability of the diagnostic re- 

ults. 

Furthermore, molecular classification based on The Cancer 

enome ATLAS (TCGA) has been used to stratify EC as four 

ubtypes with distinct clinical course and progression-free sur- 

ival [ 4 8 , 4 9 ]. In particular, high expression of tumor protein p53

 50 , 51 ] and β-catenin [ 52 , 53 ], and low expression of phosphatase

nd tensin homologue (PTEN) [ 54 , 55 ], AT-rich interactive domain- 

ontaining protein 1 A (ARID1A) [ 56 , 57 ], DNA mismatch repair 

MMR) (including MLH1, MSH2 and MSH6) [ 58 , 59 ] and B-cell lym-

homa 2 (Bcl-2) [ 6 , 60 ] may predict the progression from NE/HwA,

hough EIN, to EC. Despite sometimes encountering inconsistent 

r even conflicting results, future integration of these molecular 

iomarkers into the DL-based histological analysis may benefit the 

verall diagnostic performance. 

There are also limitations in our study. First, we focus on the 

lassification between NE, HwA and EIN in EH diagnosis, or the 

istinction between EIN and non-EIN in EIN screening, thus ne- 

lecting the differentiation between benign lesions and EC. How to 

erform the classification between NE, HwA, EIN and EC or the dis- 

inction between EIN and EC needs further investigation in the fu- 

ure. Second, we performed the diagnosis on digital images rather 

han on whole slide images (WSIs) because (1) localized regions 

an better capture the morphological features of EIN such as the 

typical glandular cells, and (2) the WSI consisting of ∼16 digital 
9 
mages (each 1816 × 1519 pixels in size) would be too large, mak- 

ng the subsequent diagnosis challenging due to expensive storage 

nd time consumption. In the following study, we may extend the 

odel to WSIs by first performing the diagnosis on the digital im- 

ges using the G2LNet, and then conducting the decision-level fu- 

ion on multiple digital images to obtain the diagnostic result on 

orresponding WSI. 

In conclusion, we have proposed a DL model called G2LNet to 

iagnose different types of endometrial tissues in H&E stained his- 

ological images. The model extracted contextual and texture fea- 

ures from global and local feature extractors, respectively, which 

ere then fused together by a CBAM model and used for predict- 

ng different EH and screening EIN. For EH diagnosis, the accuracy 

f the G2LNet was significantly better than the HIENet, SVM CNN , 

lobalNet and LocalNet ( p < 0.05). In particular, the G2LNet did 

ot misclassify NE or HwA as EIN, nor did it misclassify any EIN 

s NE or HwA. For EIN screening, the AUC of the G2LNet also out- 

erformed the four comparative methods ( p < 0.05). In external 

alidation, the G2LNet exhibited complementarity with patholo- 

ists. The G2LNet performed better in identifying EIN, while hu- 

an experts were skilled in identifying NE and HwA. The devel- 

ped G2LNet may help pathologists diagnose endometrial lesions 

n clinical practices, especially to improve the accuracy and effi- 

iency of screening for precancerous lesions. 
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