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Abstract

Objectives To evaluate the value of deep learning (DL) combining multimodal radiomics and clinical and imaging features for
differentiating ocular adnexal lymphoma (OAL) from idiopathic orbital inflammation (IOI).

Methods Eighty-nine patients with histopathologically confirmed OAL (n = 39) and 101 (n = 50) were divided into training and
validation groups. Convolutional neural networks and multimodal fusion layers were used to extract multimodal radiomics
features from the T1-weighted image (T1WI), T2-weighted image, and contrast-enhanced T1WI. These multimodal radiomics
features were then combined with clinical and imaging features and used together to differentiate between OAL and IOI. The area
under the curve (AUC) was used to evaluate DL models with different features under five-fold cross-validation. The Student t-
test, chi-squared, or Fisher exact test was used for comparison of different groups.

Results In the validation group, the diagnostic AUC ofthe DL model using combined features was 0.953 (95% CI, 0.895-1.000),
higher than that of the DL model using multimodal radiomics features (0.843, 95% CI, 0.786-0.898, p < 0.01) or clinical and
imaging features only (0.882, 95% CI, 0.782-0.982, p = 0.13). The DL model built on multimodal radiomics features
outperformed those built on most bimodalities and unimodalities (p < 0.05). In addition, the DL-based analysis with the orbital
cone area (covering both the orbital mass and surrounding tissues) was superior to that with the region of interest (ROI) covering
only the mass area, although the difference was not significant (p = 0.33).

Conclusions DL-based analysis that combines multimodal radiomics features with clinical and imaging features may help to
differentiate between OAL and IOL.

Key Points

* It is difficult to differentiate OAL from IOI due to the overlap in clinical and imaging manifestations.

* Radiomics has shown potential for noninvasive diagnosis of different orbital lymphoproliferative disorders.

* DL-based analysis combining radiomics and imaging and clinical features may help the differentiation between OAL and 101
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Introduction

Ocular adnexal lymphoma (OAL) and idiopathic orbital in-
flammation (IOI) are two typical orbital lymphoproliferative
disorders (OLPDs) [1, 2]. OAL is the most common primary
orbital malignant tumor [3—6], accounting for about 1-2% of
all non-Hodgkin’s lymphomas [7, 8] and 8% of extranodal
lymphomas [9-11]. IOI, also termed as orbital inflammatory
pseudotumor, is the third most common disease of orbital
inflammation [12—14], accounting for about 10% of all orbital
masses [15-17]. OAL and I0OI have considerable overlap in
clinical and imaging manifestations [2, 14, 18], but the treat-
ment options and prognosis are very different. The first-line
treatment for OAL is low-dose radiation therapy [19, 20],
while IOl is sensitive to corticosteroid therapy [21-23].
Pathological diagnosis with biopsy is the gold standard for
differentiating between OAL and IOI, but it is invasive and
may cause many complications, such as pain, bleeding, infec-
tion, and tumor spread [23-25]. In addition, biopsy relies on
accurate localization of lesions, which is often troublesome for
those lesions in the orbital apex and around the optic nerve
[25, 26].

Magnetic resonance imaging (MRI) provides an option for
non-invasive diagnosis of OLPDs [27, 28]. Some studies re-
ported imaging findings including homogeneity [2, 27], signal
intensity of T;-weighted image (T1WI) and T,-weighted im-
age (T2WI) [2, 27, 29], tumor boundary [27, 30, 31], the “flow
void sign” [30, 32], and pattern of enhancement [27], may be
useful for assessing the manifestation of orbital diseases. The
diffusion and perfusion parameters derived from intravoxel
incoherent motion diffusion-weighted imaging (IVIM-DWI)
further improved the diagnostic performance between differ-
ent OLPDs [33]. Moreover, some clinical characteristics, such
as age [34, 35], laterality [31], tumor shape [27, 29], and
sinusitis [30], were also considered helpful to describe the
differences between OAL and 1OI. However, conclusions ob-
tained from these findings are not completely consistent and
are sometimes even contradictory to each other. For example,
some studies demonstrated that IOl has a higher signal inten-
sity in TIWI and T2WI [29, 31], more regular in shape [29],
and more bilateral compared with OAL [31], while other stud-
ies reported that there are no significant differences in signal
intensity [32], tumor shape [27, 32, 36], and laterality [30, 32]
between OAL and 1OI.

Radiomics, an image-based computer-aided diagnostic
technique, shifts the visual assessment of radiologists to the
high-throughput mining of quantitative features from medical
images by machines and has demonstrated great potential in
diagnosis, prognosis, and prediction of a wide range of dis-
eases [24, 37, 38]. To date, radiomics features including first-
order statistics (or intensity histograms), shape features, tex-
ture features [31, 34, 39], and bag-of-features (BOF)-based
features [35] have been used to distinguish benign from
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malignant OLPDs, with results superior to or comparable with
experienced radiologists’ visual assessment [34, 35]. In addi-
tion, most radiomics features were extracted from multiple
MR sequences, including TIWI, T2WI, and contrast-
enhanced TIWI (T1WI + C) with [39] or without diffusion-
weighted imaging (DWI) [31, 34, 35], which preliminary
proved the prospect of multimodality in improving the accu-
racy of OLPD diagnosis. However, these radiomics studies
required complex analysis steps, including handcrafted feature
extraction, feature selection, and predictive model building,
increasing the inconsistency of results across studies due to
the stochastic nature of each step. Moreover, they only treated
features from different MR sequences as added features and
performed features selection by linear or simple algorithms,
without investigating the complex nonlinear relationships be-
tween features from different modalities.

Deep learning (DL) has the capacity to learn effective rep-
resentation directly from medical images and to couple feature
extraction, feature selection, and predictive model building
into one neural network model through end-to-end learning,
thus greatly simplifying the process of radiomics analysis
[40]. Currently, DL models have shown expert-level perfor-
mances in various medical image-based diagnostic tasks, such
as the differentiation of benign and malignant renal tumors
[41], grading of non-small cell lung cancer [42], and predic-
tion of lymph node metastasis in breast cancer [43]. However,
to the best of our knowledge, the performance of DL models
has not been evaluated in the differential diagnosis of OLPDs.
In addition, current DL-based analysis mainly focuses on
unimodal images, and further study is needed to take full
advantage of the diverse features from different modalities.

In this study, we developed a DL model combining multi-
modal radiomics and clinical and imaging features for the
differentiation of OAL and IOI. First, multimodal radiomics
features were extracted from three MR sequences. Then, the
multimodal radiomics features were combined with clinical
and imaging features to differentiate OAL from IOI. The pur-
pose of our study was to evaluate whether the DL model that
employed the combined features could accurately differentiate
benign from malignant OLPDs.

Materials and methods
Patients

This retrospective study was approved by our institutional
review board and written informed consent from patients
was waived. Personal information of all patient data was de-
identified prior to analysis. From July 2014 and October 2020,
a total of 105 consecutive patients with OLPDs were collected
from the Radiology Department of Xi’an Fourth Hospital. The
inclusion criteria for the study were (1) histopathologically
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confirmed primary OAL or IOl by biopsy or surgery; (2)
performing MRI examination less than 14 days before the
surgical biopsy; (3) complete multimodal MRI data (i.e.,
T1WI, T2WI, and TIWI+C); (4) adequate quality of the im-
ages for analysis (without motion or artifacts). Finally, a total
of 89 patients (39 OALs and 50 IOIs) were included in this
study. Other details of patient inclusion and exclusion are
shown in Fig. S1.

Imaging data acquisition

All patients underwent MRI examination with a 3.0-T MR
scanner (Signa HDxt, GE Healthcare) equipped with an
eight-channel high-resolution head coil. Fast spin-echo
(FSE) TIWI, T2WI, and T1WI+C with fat saturation in axial,
parasagittal (parallel to the optic nerve), and coronal planes
were acquired. TIWI+C was performed after an intravenous
bolus injection of 0.2 ml/kg gadolinium-DTPA (Magnevist).
The MRI parameters are detailed in Table S1.

Analysis workflow

The multimodal MR images of 89 patients with OLPDs were
randomly divided into two independent groups in a ratio of
approximately 4:1 to obtain a training group (71 patients, 31
OALs and 40 IOIs) and a validation group (18 patients, 8
OALs and 10 IOIs) for the development and validation of
the DL model, respectively. The workflow of the study
consisted of region of interest (ROI) segmentation, multimod-
al radiomics feature extraction, clinical and imaging feature
extraction, and the differentiation of OLPDs with the com-
bined features (Fig. 1).

Region of interest segmentation

ROIs used for radiomics analysis were manually segment-
ed from the axial MRI by two radiologists who were
blinded to the histopathological results. A radiologist with
8 years of head and neck radiology experience checked
the TIWI+C data on the Medical Imaging Interaction
Toolkit (MITK) software (v.2015.5.0), and delineated
both the OLPD mass and the entire orbital cone area
(covering both the OLPD mass and surrounding tissues)
(Fig. 2). Corresponding ROIs on TIWI and T2WI were
mapped from the segmentation results on TIWI+C. A
senior radiologist with 14 years of radiology experience
checked and revised the segmented results. In patients
with bilateral involvement, only the largest mass was seg-
mented and used for subsequent analysis.

Multimodal radiomics feature extraction

The convolutional neural network (CNN) model was used
to extract radiomics features from the ROI of each MR
sequence with the following architecture: two convolution
layers, two pooling layers, and one fully connected layer.
Using three CNN models, radiomics features were ex-
tracted from three different MR sequences (T1WI,
T2WI, and TIWI+C) and then fused by the MFL [44]
module (Figs. 1 and S2) to generate the multimodal
radiomics features. Theoretically, the MFL integrates the
radiomics features of multiple MRIs in a probabilistic
manner based on multinomial sampling; therefore, it can
prevent over-learning of the features of a particular mo-
dality. In this way, we first randomly selected the
radiomics features of each MRI, and then obtained multi-
modal radiomics features by summing the radiomics
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Fig. 1 Workflow of the DL model for differentiating IOl and OAL, where CNN, MFL, and MLP represent convolutional neural network, multimodality

fusion layer, and multilayer perceptron, respectively
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Fig. 2 Two different regions of interest (ROIs), including the orbital cone area (covering both the OLPD mass and surrounding tissues) and the OLPD

mass arca

features of multiple MR sequences. Other details of the
CNN model and fusion process were summarized in
Supplementary Methods.

To validate the performance of the MFL in the radiomics
model, other multimodality fusion strategies including feature
concatenation and decision fusion were also conducted.
Feature concatenation stringed together the radiomics features
extracted from each MR sequence to obtain the fused multi-
modality features, while decision fusion was performed by
voting the predictive results acquired by the radiomics fea-
tures on each MR sequence.

Clinical and imaging feature extraction

Clinical characteristics of each patient were first collected
including age, gender, and laterality that might contribute
to the differentiation of OLPDs. Then, imaging character-
istics for routine diagnosis were also recorded.
Specifically, two radiologists (same as the two in the
ROI segmentation) independently evaluated the multi-
modal MR images of each patient from the following
aspects: involved quadrants, involvement of the orbital
area, shape, and borders of the lesions, the signal intensity
on TIWI and T2WI, enhancement pattern on TIWI+C
and homogeneity (Table 1). Considering that the clinical
and imaging characteristics may not be directly relevant
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for differentiating OLPDs, a multilayer perceptron (MLP)
was used to generate the high-level representation of these
characteristics, which consists of three fully connected
layers with 64, 32, and 16 hidden units, respectively.

Differentiation of OLPDs with different features

In the diagnosis part of the DL model (Fig. 1), the extracted
multimodal radiomics features were firstly concatenated with
the clinical and imaging features, and then the combined fea-
tures were passed through a fully connected layer and an out-
put layer with the softmax activation function to finalize the
distinction between OAL and IOI. To validate the perfor-
mance of the DL model with the combined features (DL-
both), DL models with only multimodal radiomics features
(DL-rad) or clinical and imaging features (DL-clin) were also
used to distinguish between OAL and IOI.

It is worth noting that the DL-both and DL-rad models
were trained on MR slices of all patients in the training
group, which actually increased the sample size of DL
models (from 71 to 541) and alleviated the issue of
overfitting. In the inference phase, the prediction results
were firstly acquired by applying the DL model on all
slices in the validation group, and then the diagnostic result
of each patient was obtained by majority voting the predic-
tion results on all the slices of this patient.
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Table 1 Clinical and imaging

characteristics of OAL and IOI Parameters Characters I0I(n=50) OAL®=39) pvalue
patients

Age, mean (SD) 51.3 (16.9) 63.4 (13.4) < 0.001

Gender Female 27 15 0.14
Male 23 24

Laterality Unilateral 41 38 0.022
Bilateral 9 1

Involved quadrants Upper inner eye 26 18 0.49
Lower inner eye 28 13
Upper outer eye 24 21
Lower outer eye 21 11

Involvement of the orbital area Anterior orbit preseptal space 27 25 0.81
Intramuscular cone 17 12
Extraconal space 18 20
Lacrimal area 8 6

Shape Irregular 46 33 0.27
Regular

Border Well defined 0.16
11l defined 45 31

Signal intensity on TIWI Low 2 091
Iso 45 34
High 3 3

Signal intensity on T2WI Low 3 1 0.21
Iso 10 14
High 37 24

Enhancement pattern on TIWI+C ~ Mild 12 14 < 0.001
Moderate 3 17
Significant 35 8

Homogeneity Homogeneous 17 38 < 0.001
Heterogeneous 33 1

The signal intensity on TIWI and T2WI was compared with that of extraocular muscle

Performance evaluation and statistical analysis

Using fivefold cross-validation, the performance of each
DL model was evaluated by averaging the results over
five times. The receiver operating characteristic (ROC)
curve and the area under the curve (AUC) were used to
compare the DL models with different features, ROls, and
multimodality fusion strategies. Other metrics including
the accuracy (ACC), sensitivity (SEN), specificity (SPE),
positive predictive value (PPV), and negative predictive
value (NPV) were also calculated with the cut-off value
determined by the maximum Youden index.

Statistical analysis was performed using SPSS software
(version 25.0). Student t-test was applied for comparison
of continuous variables and different models, and Pearson
chi-squared test or Fisher exact test was used for compar-
ison of categorical variables. In all the analyses, p values
less than 0.05 were considered statistically significant.

Results
Clinical and imaging characteristics

The clinical and imaging characteristics of the 89 patients enrolled
in this study were summarized in Table 1. Compared with 10I,
OAL was more likely to occur in elderly patients (p < 0.001) and
tended to develop unilaterally (p = 0.022). Most OAL patients
have moderate or mild degree of enhancement in T1WI+C, while
most IOl patients have significant or mild degree of enhancement
(p < 0.001). In addition, the MR images of OAL were more
homogeneous in texture compared with those of 101 (p < 0.001).

Evaluation of different ROIls in MRI

The results in Tables 2 and S2 showed that the performance of
the DL-rad model with the two ROIs was similar in the
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Table 2 Diagnostic performance

of different ROIs in the training ROI Group AUC (95% CI) ACC SEN SPE NPV PPV
and validation groups
Mass Training 0.978 (0.924, 1.000) 96.0% 98.0% 94.5% 98.2% 93.8%
Validation 0.801 (0.714, 0.889) 78.8% 70.0% 86.0% 79.3% 82.8%
Cone Training 0.966 (0.935, 0.997) 94.1% 92.9% 95.0% 94.7% 94.0%
Validation 0.843 (0.786, 0.898) 84.4% 85.0% 84.0% 89.4% 83.4%

Mass and cone represent the OLPD mass area and the entire orbital cone area, respectively

training group, but the diagnostic AUC of the cone area was
better than that of the mass area (0.843 vs. 0.801 for patients,
and 0.696 vs. 0.679 for slices) in the validation group. Other
metrics including ACC, SEN, NPV, and PPV of the orbital
cone area were also higher than those of OLPD mass area.
Therefore, the orbital cone area was selected as the preferred
ROI for multimodal radiomics analysis even though there was
no significant difference in AUC between the two ROIs (p =
0.33 for patients, and p = 0.63 for slices).

Evaluation of different multimodality fusion
strategies

In the validation group, the MFL strategy was able to achieve
better performance on all metrics compared to the other two
fusion methods (Table 3). At the slice level, all metrics of the
MFL except for SPE were higher than those of feature con-
catenation and decision fusion (Table S3). In addition, rela-
tively large differences caused by overfitting between the
training and validation groups in the other fusion strategies
were mitigated by the MFL strategy. Therefore, we used
MFL to fuse the radiomics features of three MR sequences,
even though the AUC was not significantly different.

Evaluation of multimodal radiomics features

The optimal result of the DL-rad model was achieved with the
multimodal radiomics features incorporating TIWI, TIWI+C,
and T2WI (Table 4 and Fig. 3), with significantly better AUC
values than those of bimodalities (T1C-T2, T1-T2) and

unimodalities (TIWI and T2WI) (p < 0.05). The slice-level
AUC of multimodality was also significantly better than T1-
T2, TIWIL, TIWI+C, and T2WI (p < 0.05) (Table S4 and Fig.
S3). Meanwhile, the diagnostic AUC of bimodal radiomics
features was also better than that of corresponding unimodal
radiomics features, except for the T1C-T2 bimodality, which
had a slightly lower performance than the T1WI+C modality.
Most remaining metrics for multimodality were superior to
those for bimodalities and unimodalities in both patient and
slice levels.

Differentiation of OAL and 10l with different features

The diagnostic results of DL models with the combined fea-
tures (DL-both), multimodal radionics features (DL-rad), and
clinical and imaging features (DL-clin) are given in Tables 5
and S5 and Figs. 4 and S4. In the validation group, the patient-
and slice-level AUCs of the DL-both/DL-rad model were
0.953 (95% CI, 0.895-1.000)/0.843 (95% CI, 0.786—0.898),
and 0.909 (95% CI, 0.805-1.000)/0.696 (95% CI, 0.662—
0.730), respectively. This indicated that the combined features
significantly improved the differentiation performance (p <
0.01 for patients, and p < 0.001 for slices). Superiority of the
DL-both over DL-rad model was also found in other metrics,
such as the slice-level ACC, NPV, and PPV (p < 0.05). In
addition, all the metrics of the DL-both model were also
higher than those of the DL-clin model in the patient level
(although there was no significant difference), which validat-
ed the effectiveness of the DL-both model with the combined
features.

Table 3 Diagnostic performance

of different fusion strategies in the Strategy Group AUC (95% CI) ACC SEN SPE NPV PPV
training and validation groups
MFL (ours) Training 0.966 (0.935, 0.997) 94.1% 92.9% 95.0% 94.7% 94.0%
Validation 0.843 (0.786, 0.898) 84.4% 85.0% 84.0% 89.4% 83.4%
Concat Training 0.987 (0.973, 1.000) 96.1% 94.8% 97.0% 96.1% 96.0%
Validation 0.810 (0.722, 0.898) 80.2% 80.0% 78.0% 84.9% 77.3%
Decision Training 1.000 (1.000,1.000) 100% 100% 100% 100% 100%
Validation 0.809 (0.714, 0.905) 80.6% 81.2% 80.0% 85.1% 77.7%
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MFL, concat and decision represent the multimodal fusion layer, feature concatenation, and decision fusion,

respectively
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Table 4 Diagnostic performance

of different modalities in the Modality AUC (95% CI) ACC SEN SPE NPV PPV

validation group
Tl 0.722 (0.618, 0.826) 74.4% 70.0% 78.0% 77.9% 72.5%
T2 0.710 (0.563, 0.857) 72.2% 80.0% 66.0% 81.1% 65.9%
T1C 0.787 (0.685, 0.889) 78.9% 81.2% 82.0% 84.8% 82.6%
T1-T2 0.732 (0.628, 0.836) 76.7% 75.0% 78.0% 81.9% 77.3%
TI-TI1C 0.795 (0.702, 0.887) 78.9% 82.5% 76.0% 86.1% 73.7%
TIC-T2 0.773 (0.717, 0.827) 78.8% 67.5% 88.0% 77.7% 83.8%
T1-T1C-T2 0.843 (0.786, 0.898) 84.4% 85.0% 84.0% 89.4% 83.4%

T1, T2, and T1C represent TIWI, T2WI, and T1WI+C, respectively

Discussion

We built a DL model trained by both the multimodal
radiomics features and clinical and imaging features for the
differentiation of OAL and IOI, which performed well in both
the training and testing groups, outperforming models trained
by multimodal radiomics features or clinical and imaging fea-
tures. This suggested that both the radiomics features and
clinical and imaging information were associated with the
types of OLPDs. In addition, the relatively high sensitivity
(SEN = 92.5%) and negative predictive value (NPV =
94.1%) in the validation group indicated that the false-
negative rate of the differentiation has been greatly depressed.
This is particularly beneficial for OAL patients, as most of
them can be precisely identified by MRI and will receive early
follow-up treatment.

To investigate the diagnostic performance of different DL
models, we counted the number of correctly and incorrectly
predicted patients in the fold with median AUC (Fig. 5). There
are three, three and one incorrectly predicted patients for the

0.9+

0.8 1

AUC 0.71

0.6

0.5

Fig. 3 Diagnostic AUC of the DL-rad model in the validation group with
different modalities, where T1, T2, and T1C represent TIWI, T2WI, and
TIWI+C, respectively

DL-clin, DL-rad, and DL-both models, respectively. The case
in Fig. 6a was small in size and irregular in shape, leading to
the failure of the DL-clin model. The case in Fig. 6b belonged
to a diffuse IOl lesion, which was less common and the chang-
es in the surrounding orbital structures were very similar to
OAL, resulting in the mistake of the DL-rad model. The case
in Fig. 6¢ had homogenous intensity in TIWI+C and T2WI
and clear boundary in TIWI+C, so the predicted results of the
DL-clin and DL-rad models were more biased toward OAL,
but the DL-both model was able to correctly identify it as IO
The case in Fig. 6d was an atypical lymphoid tissue hyperpla-
sia with the potential to transform into OAL at a later stage,
which may be the reason for the misclassification of DL-both
model.

This is the first study to deploy DL-based analysis to dis-
tinguish between different OLPDs, which can simplify
radiomics analysis by extracting features directly from MR
images through end-to-end learning. To roughly assess the
DL-based analysis, we compared the results of the DL model
with those of radiomics analyses. Specifically, Guo et al used
T2WI and TIWI+C to train a radiomics model for predicting
OLPDs and obtained an AUC of 0.73 (95% CI, 0.65-0.88)
[34], while our DL-rad model, also built on T2WTI and T1WI+
C (Table 4), elevated the AUC value to 0.773 (95% CI, 0.717—
0.827). The results of our DL-rad model on TIWI+C se-
quence were comparable to those of the BOF-based radiomics
analysis [35], with the AUC of 0.787 (95% ClI, 0.685-0.889)
and 0.803 (95% CI, 0.725-0.880), respectively. Furthermore,
DL-based analysis showed that the TIWI+C was the most
valuable modality to distinguish OAL from 101, which was
consistent with previous radiomics analyses [34, 35].

Radiomics analyses have shown the advantages of multi-
modality over unimodality in the differentiation of OLPDs,
and the performance became even better with increasing MR
sequences. For example, the AUCs obtained by radiomics
analysis on T2-T1C [34], T1-T2-T1C [31], and T1-T2-T1C-
DWI [39] were 0.73, 0.78, and 0.87, respectively. In our
study, the DL model built on multimodalities also performed
better than the models built on bimodalities and unimodalities
(Table 4 and Fig. 3). In addition, the MFL-based multimodal
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Table 5 Diagnostic performance

of different models in the training Model Group AUC (95% CI) ACC SEN SPE NPV PPV
and validation groups
DL-both Training 0.998 (0.993, 1.000) 99.2% 99.4% 99.0% 99.5% 98.7%
Validation 0.953 (0.895, 1.000) 91.1% 92.5% 90.0% 94.1% 88.3%
DL-rad Training 0.966 (0.935, 0.997) 94.1% 92.9% 95.0% 94.7% 94.0%
Validation 0.843 (0.786, 0.898) 84.4% 85.0% 84.0% 89.4% 83.4%
DL-clin Training 0.966 (0.938, 0.995) 91.8% 89.0% 94.0% 92.0% 92.0%
Validation 0.882 (0.782, 0.982) 87.7% 90.0% 86.0% 92.1% 84.7%
Fl.g. 4 Dlagnostlg ROC curves of a Training b Validation
different models in the training . - ; . . . .
group (a) and the validation group 1t o ~ 1t ~
(b), where the DL-both, DL-rad, :..l.l.'!" 7 J e
and DL-clin represent the DL 08l e 1 R4
models built with the combined : ! % 081 .. LI ’
. . . 7/ : 1 /
features, multimodal radiomics —~ 1 , —~ ' ’
features and clinical and imaging E 061 % 0.6 - 7
features, respectively N 7 v e
& / Zo. %
a 047 / & 0.4 7
= K ~ L
02 7 —DL-both ool 7 —DL-both
: S DL-rad : S e DL-rad
/7 - ==DL-clin /7 = ==DL-clin
0 02 04 06 08 1 0 02 04 06 08 1
FPR(1-SPE) FPR(1-SPE)

fusion effectively considered the correlation between different
modalities and discarded redundant features during the train-
ing process, similar to the dropout operation used to prevent
overfitting [44]. Therefore, the MFL strategy achieved better
performance than the feature concatenation and decision fu-
sion, even though there were no significant differences.
DL-based analysis with the orbital cone ROI covering both
the OLPD mass and surrounding tissues performed better than
the ROI covering only the OLPD mass (Table 2). This may be
reasonable because different types of OLPDs have different
patterns of invasion into surrounding orbital tissues.
Specifically, OAL usually surrounds orbital structures, such

Fig. 5 Diagnostic performance of

different DL models in the DL-Clin
validation group with 18 patients.
Symbols x and V indicate that the N
predictive results were wrong and
correct, respectively <

N,

X

N,
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as eyeball walls, extraocular muscles, and optic nerves, but
does not cause the deformation of these structures [2, 36,
45]. However, IOI often invades lacrimal glands, causing
thickening of eye rings and extraocular muscles [14, 15, 23].
Therefore, the orbital cone area provides more diagnostically
relevant information than the ROI covering only the mass
area. Similar conclusions can also be found in the radiomics
analysis of other tumors [46, 47].

There are some limitations to this study. First, the sample
size was relatively limited because of the small number of
patients with pathologically confirmed OAL or IOl and the
absence of some MR sequences. How to use incomplete

DL-Rad DL-both Count
J J 12
J V 2
x v 2
x V 1
J X 1
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TIWI+C

Fig. 6 Four typical cases of misclassification. a A 60-year-old woman
with IOl was correctly predicted by DL-both and DL-rad models, but the
DL-clin model failed. b An 82-year-old woman with IOl was correctly
predicted by DL-both and DL-clin models, but the DL-rad model failed. ¢

multimodal data for radiomics analysis of OLPDs is the focus
of our future research. Second, due to the limited amount of
samples, we only divided the data into independent training
and validation groups to build and validate the DL-based

A 61-year-old man with I0I was correctly predicted by the DL-both
model, but the DL-clin and DL-rad models failed. d A 54-year-old man
with IOl was correctly predicted by DL-clin and DL-rad models, but the
DL-both model failed

model, respectively. Nevertheless, external validation is help-
ful to further validate the developed model and will be per-
formed in the future as more samples are collected. Third,
similar to most radiomics studies [31, 34, 35], the DL-based

@ Springer



European Radiology

analysis was only performed on routinely used MR sequences,
such as the TIWI, T2WI, and TIWI+C. We recently noticed
the potential of DWI with apparent diffusion coefficient
(ADC) and dynamic contrast-enhanced MRI (DCE-MRI) in
providing additional functional information on orbital lesions
[48, 49]. Therefore, the addition of DWI and DCE-MRI may
further improve diagnostic accuracy if these functional imag-
ings are routinely performed in the future.

In conclusion, we proposed a DL-based model for OLPD
diagnosis, which extracted radiomics features from multimod-
al MRIs by CNNs and fused these features with the MFL
module. The obtained multimodal radiomics features were
then combined with the clinical and imaging features extract-
ed by the MLP and used together to differentiate between
different OLPDs. The promising results suggest that the de-
veloped DL-based analysis, combining multimodal radiomics
and clinical and imaging features, may be used as a differential
diagnostic tool for OAL and IOL
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