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Abstract
Optical molecular tomography (OMT) is an imaging modality which uses an 
optical signal, especially near-infrared light, to reconstruct the three-dimensional 
information of the light source in biological tissue. With the advantages of being 
low-cost, noninvasive and having high sensitivity, OMT has been applied in 
preclinical and clinical research. However, due to its serious ill-posedness and ill-
condition, the solution of OMT requires heavy data analysis and the 
reconstruction quality is limited. Recently, the artificial intelligence (commonly 
known as AI)-based methods have been proposed to provide a different tool to 
solve the OMT problem. In this paper, we review the progress on OMT 
algorithms, from conventional methods to AI-based methods, and we also give a 
prospective towards future developments in this domain.

Key Words: Optical molecular tomography; Deep learning; Artificial intelligence; Light 
propagation based algorithm; Tomographic reconstruction
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Core Tip: Most of the existing review articles about optical molecular tomography (OMT) 
focus on the traditional light propagation model-based algorithm, which possesses ill-
posedness and ill-condition and the reconstruction result is unsatisfactory. The emergence 
of deep learning has brought OMT into the era of artificial intelligence, which can obtain a 
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highly accurate reconstruction result. This article systematically reviews the development 
of tomographic reconstruction for OMT, which involves the light propagation model-
based OMT algorithm and machine learning-based OMT algorithm. The challenges and 
perspectives of these machine learning-based algorithms are given at the end of the article.

Citation: Cao X, Li K, Xu XL, Deneen KMV, Geng GH, Chen XL. Development of 
tomographic reconstruction for three-dimensional optical imaging: From the inversion of light 
propagation to artificial intelligence. Artif Intell Med Imaging 2020; 1(2): 78-86
URL: https://www.wjgnet.com/2644-3260/full/v1/i2/78.htm
DOI: https://dx.doi.org/10.35711/aimi.v1.i2.78

INTRODUCTION
Optical molecular imaging (OMI) is the technology of using optical imaging 
instruments to detect biological tissues in organisms. In the time since Roger Yonchien 
Tsien reported that the tumor of a mouse could be resected under the guidance of 
fluorescence microscopy, winning the Nobel Prize in 2008, OMI has achieved rapid 
development, especially in recent years. With the advantages of high imaging 
sensitivity, tissue specificity, relatively short acquisition time and low cost, OMI has 
been successfully applied to many research fields, including - but not limited to - gene 
expression, tumor detection, drug development, and therapy evaluation[1-12]. However, 
OMI can only provide a two-dimensional image, which lacks deeper information and 
cannot describe the 3D distribution of the optical signal in an imaging object. Thus, 
researchers have proposed a series of 3D imaging methods, which can be named as 
optical molecular tomography (OMT).

In fact, OMT can be further divided into several subtypes, such as bioluminescence 
tomography, Cerenkov luminescence tomography (CLT), fluorescence molecular 
tomography (FMT), diffuse optical tomography, X-ray luminescence computed 
tomography (commonly referred to as XLCT), and so on[13-18]. The main difference 
between them is the means of producing the optical signal. For example, in CLT, the 
optical signal is emitted during the decay of a radionuclide probe, and in XLCT, high 
energy X-ray photons are used to excite X-ray excitable nanophosphors which emit the 
optical signal. Although the way of producing light signal varies, the reconstruction 
methods for these modalities can be concluded as one unified framework, as shown in 
Figure 1. It should be noted that anatomical information is essential for OMT, and in 
most cases, it is provided by X-ray computed tomography or magnetic resonance 
imaging[19-21]. Finally, the 3D distribution of the optical signal in the imaging object can 
be obtained, and the light source can then be located based on the reconstruction 
result. It is obvious that the core component of the framework is the OMT algorithm, 
which can determine the quality of the final reconstruction result.

In this review, we summarize recent progress on the OMT algorithm in two aspects: 
the traditional light propagation model-based way and machine learning-based way. 
Subsequently, we will provide a prospect towards future developments in a machine 
learning-based way for OMT.

LIGHT PROPAGATION MODEL-BASED OMT ALGORITHM
The accuracy of the traditional OMT algorithm is dependent on the description of 
photon propagation in biological tissue. The most popular light transfer model for 
OMT is the radiative transfer equation (RTE) from Maxwell’s equations[22-25]. Although 
RTE can accurately depict photon propagation in diffusive media, it is a complicated 
integro-differential equation, and the computational time and memory requirements 
are extremely expensive. As a result, RTE is commonly simplified as the diffusion 
equation (DE, the lower-order approximation of the RTE)[26-28] and Nrd order is a 
simplified spherical harmonics function (SP3, the high-order approximation of RTE, 
and in most cases, N equals 3)[29-31]. After introducing the boundary condition, the 
simplified RTE can be solved using the finite element method[32-34] and the OMT 
problem can be linearized as the following weight matrix equation[28,25-37]: AX = Φmeasure, 
where X ≥ 0 (Eq. 1) "where A" denotes the optical transport system matrix, X is the 
unknown distribution of the optical source and Φmeasure represents the luminous flux of 
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Figure 1  Main flowchart of optical molecular tomography. 3D: Three-dimensional; MRI: Magnetic resonance imaging; OMT: Optical molecular 
tomography; XCT: X-ray computed tomography.

the vertices. As Φmeasure can only be collected on the surface of an imaging object, the 
goal of OMT can be regarded as the determination of the 3D luminescence source 
distribution X from boundary measurements Φmeasure based on the formulation of Eq. 1, 
and this is a typically inverse problem. It should be noted that the number of 
measurements is often substantially less than the number of unknowns, making the 
inverse reconstruction an ill-conditioned problem.

Up until now, many methods have been developed to address the limitation 
mentioned above to make the OMT algorithm strong and robust. These methods can 
be roughly divided into two categories. The first one is the priori information-based 
method. In these methods, a priori information is first inferred according to the surface 
light power distribution and the heterogeneous structure of the imaging object, and 
then is used as the permissible source region. The aim of using a priori information is 
to constrain the unknown sources in the region where the sources may exist, resulting 
in the reduction of the amount of unknown source locations. Many numerical and in 
vivo experiments have been conducted, and the results indicate that the size of the 
permissible source region can significantly affect the reconstruction quality[37-46]. It is 
obvious that the smaller the permissible source region, the more stable the 
reconstruction results. The main obstacle of the priori information-based methods is 
that the prior information about the permissible source region cannot always be 
obtained in advance, especially for the early diseased tissue which cannot be 
distinguished from anatomical information. Figure 2 shows the reconstruction results 
with a priori information[47].

The second one is the posteriori information-based method. In these methods, the 
whole object is used as the initial permissible source region, and the permissible region 
is updated by selecting the elements where the reconstructed energy is relatively 
higher than others[48-53]. As the posteriori information-based method avoids the 
segmentation of the permissible source region from anatomical information, it has 
superior generalization performance than the priori information-based method, and 
most of the recent studies are focused on optimizing it[54-58]. Besides the above methods 
for OMT, the reconstruction accuracy can also be improved by increasing the number 
of detectable measurements[46,59-66]. For example, in FMT, the quality of the 
reconstructed results can be improved with the increasing number of measurement 
data. In CLT, multispectral images can be acquired using a group of filters and the 
result can be improved significantly. The drawback of this method is that the more 
optical signal data are acquired, the more time is consumed. However, these 
traditional light propagation model-based methods are still limited to their 
reconstruction accuracy, and the main reason is that the simplified RTE cannot 
accurately describe the process of photon propagation. Thus, more effective methods 
to improve the reconstruction quality of OMT are still required. Figure 3 shows the 
reconstruction results with posteriori information[62,67].

MACHINE LEARNING-BASED OMT ALGORITHM
With the development of artificial intelligence (AI), machine learning algorithms, 
especially deep learning-based technologies, have gained stunning successes at solving 
difficult and previously unsolved computational problems in many fields, such as 
computer vision, natural language processing, speech recognition, and so on[68-71]. The 
great success of AI has also attracted the attention of researchers in the field of OMT. 
Based on multilayer perceptrons (commonly known as MLPs), Gao et al[72] proposed a 
data-driven-based strategy for OMT. As the machine learning-based method requires 
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Figure 2  Reconstruction results with a priori information. A and B: The axial and sagittal views of single photon emission computed 
tomography/computed tomography imaging, and an implanted light source is inserted into a mouse; C: The axial-view result of the reconstructed source. These 
images are reproduced from[47].

Figure 3  Reconstruction results with posteriori information. A: The luminescence distribution in the body; B and C: The three-dimensional results and 
the results of the local enlarged image in the local area of the liver; C: The images of the capillary acquired using six filters; D, E: The trans-axial multispectral-
Cerenkov luminescence tomography reconstructed image of the capillary filled with 32P-ATP at a 9 mm depth. A and B are reproduced from[67], while C and D are 
reproduced from[62].

large amounts of data to train the network, Molecular Optical Simulation Environment 
software[73] is adopted to produce the simulation data. The experimental results 
showed the proposed method can greatly improve the reconstruction quality 
compared with conventional approaches. Subsequently, based on the convolutional 
neural network and recurrent neural network, Guo et al[74] proposed a framework for 
FMT reconstruction. The input of this method is two-dimensional fluorescent images, 
which can avoid errors caused by mesh registration in conventional methods. Zhang 
et al[75] used MLPs to solve the CLT problem, and the complex relationship between the 
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surface optical signal and the true photon source has been learned by the network. 
Meng et al[76] constructed a K-nearest neighbor-based locally connected network (KNN-
LCN) for FMT. In their work, KNN-LCN cascades a fully connected (referred to as FC) 
sub-network with a locally connected (referred to as LC) sub-network, where the FC 
part provides a coarse reconstruction result and the LC part fine-tunes the 
morphological quality of the reconstructed result. Compared to the traditional light 
propagation model-based methods, the biggest advantage of the machine learning-
based method is that it can directly fit the nonlinear relationship between an object 
surface optical density and its internal luminescence source. Figure 4 shows the 
structure of the networks used in OMT reconstruction[72,74-76].

CONCLUSION
Although the machine learning-based OMT algorithm can obtain a more accurate 
reconstruction result than the traditional light propagation model-based algorithm, 
further application is still limited and requires more theoretical research. One reason is 
that the network trained for one object cannot be used for others, and if the object is 
changed, another network with different parameters should be built and its training 
will cost a lot of time. Another reason is that there is no ideal method that can explain 
the mechanism of such a neural network. The solution to the above two limitations is 
the development direction for future research. In addition, there are many 
environmental, dietary, and other factors that influence the microbiome, immune 
system, and pathogenic mechanisms. The recent studies on molecular pathological 
epidemiology have provided a powerful tool which can pathologically, 
epidemiologically investigate those factors in relation to molecular pathologies, 
immunity, and clinical outcomes[77], and it is believed that the molecular pathological 
epidemiology research can be a promising direction and in which OMT can take a big 
role.
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Figure 4  Structure of the networks used in optical molecular tomography reconstruction. A: Multilayer perceptron-based bioluminescence 
tomography reconstruction network reproduced from[72]; B: Convolutional neural network-recurrent neural network-based fluorescence molecular tomography (FMT) 
reconstruction framework reproduced from[74]; C: Multilayer fully-connected neural network based on Cerenkov luminescence tomography reproduced from[75]; D: K-
nearest neighbor-based locally connected network based on FMT reproduced from[76].
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