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Abstract

Objective. Bioluminescence tomography (BLT) is a promising non-invasive optical medical imaging
technique, which can visualize and quantitatively analyze the distribution of tumor cells in living
tissues. However, due to the influence of photon scattering effect and ill-conditioned inverse problem,
the reconstruction result is unsatisfactory. The purpose of this study is to improve the reconstruction
performance of BLT. Approach. An alternating Bregman proximity operators (ABPO) method based
on TVSCAD regularization is proposed for BLT reconstruction. TVSCAD combines the anisotropic
total variation (TV) regularization constraints and the non-convex smoothly clipped absolute
deviation (SCAD) penalty constraints, to make a trade-off between the sparsity and edge preservation
of the source. ABPO approach is used to solve the TVSCAD model (ABPO-TVSCAD for short). In
addition, to accelerate the convergence speed of the ABPO, we adapt the strategy of shrinking the
permission source region, which further improves the performance of ABPO-TVSCAD. Main results.
The results of numerical simulations and in vivo xenograft mouse experiment show that our proposed
method achieved superior accuracy in spatial localization and morphological reconstruction of
bioluminescent source. Significance. ABPO-TVSCAD is an effective and robust reconstruction
method for BLT, and we hope that this method can promote the development of optical molecular
tomography.

1. Introduction

Bioluminescence imaging (BLI) is a highly sensitive, non-invasive, non-ionizing optical molecular imaging
method, which has played an increasingly important role in preclinical research of small animals. By utilizing an
ultra-sensitive CCD camera to detect the visible and near-infrared light emitted by luminous imaging probes in
living cells, BLI allows researchers to monitor cell growth and localize tumors in small animals (Massoud and
Gambhir 2003, Ntziachristos 2010, Wu et al 2013). Up to now, BLI has been widely used in medical fields such as
early tumor detection, drug development, and surgical guidance (Wenxiang et al 2005, Ma et al 2011, Xu et al
2021). However, due to the serious scattering effect of light in biological tissue, BLI image cannot provide the
depth information of the bioluminescence source in tissue (Feng et al 2011). Therefore, bioluminescence
tomography (BLT) was proposed to address the problem of insufficient depth resolution (Yin et al 2021).
Specifically, BLT can recover the spatial information of the bioluminescent sources through complex
reconstruction algorithms, which makes the positioning of internal bioluminescent sources and quantitative
analysis of bioluminescent density more accurate (Wang et al 2004, Klose et al 2010, Darne et al 2013). BLT
employs the forward photon propagation model, and combined with the optimization algorithm, the
bioluminescent flux on the surface of the organism is used to model-based inverse reconstruct the source
distribution (Dehghani et al 2018). However, the light scattering and the limitation of detected photons result in
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the high ill-posedness of the BLT, so it is extremely challenging to reconstruct the source distribution (Qin et al
2014, Fengetal 2018, Guo et al 2018). Therefore, it is necessary to design effective and robust reconstruction
methods to alleviate the ill-posed problem.

In the past decade, researchers have designed effective solutions and used different effective prior
information to reduce ill-posedness and stabilize the solution. Wang et al first theoretically proved that the ill-
posedness can be alleviated by incorporating sufficient prior information, and the solution can be obtained
uniquely and accurately (Wang et al 2004). Some regularization methods have also been proposed and applied to
BLT reconstruction, such as L,-norm regularization. However, the method based on L,-norm will cause
excessive smoothing and artifacts in the reconstructed image (Han et al 2006, Gong et al 2018). Based on
compressed sensing theory (Baraniuk et al 2010), a variety of sparse algorithms have been proposed to solve the
problem of optical tomography (e.g. Ly and L;) (Naser and Patterson 2010, Qin et al 2011), including
incomplete variables truncated conjugate gradient method (He et al 2010), stagewise fast LASSO (Yu et al2010),
sparse Bayesian approach (Yin et al 2019), and so forth. These sparse regularization algorithms can overcome the
over-smoothing defect of L, norm, but reduce the reconstruction accuracy and shape recovery ability of BLT
(Guo et al 2020).

Inrecent years, deep learning has attracted attention in various fields, and some researchers have tried to
apply deep learning to optical tomography reconstruction. In 2018, Gao et al designed an inverse problem
simulations based on multilayer perceptrons to perform high-resolution BLT (Gao et al 2018). Subsequently,
Guo et al proposed a reconstruction scheme based on 3D Encoder (Guo et al 2019), Huang et al proposed a
recurrent neural network solution (Huang et al 2019), and Li et al proposed an end-to-end BLT reconstruction
strategy based on convolution neural network (Li et al 2021). Because the deep learning methods train on the
large dataset and establish the mapping from input to output, it can avoid the inaccuracy of the forward photon
propagation modeling and ill-posed inverse problem (Li et al 2020). However, its generalization ability is weak,
so the trained artificial neural network can only be applied to specific imaging objects (Cao et al 2019).

For image-guided surgery of BLT, the boundaries of the tumor and other tissues are of paramount
importance. For this reason, the preservation of boundary information and morphological features is also
necessary for BLT reconstruction (Guo et al 2022). Total variation (TV) regularization has been applied to
various medical image reconstructions, and it can preserve image edge information well (Hintermiiller et al
2018), but some authors have shown that TV regularization can produce some blocking artifacts in medical
image reconstruction (Ring 2000, Herman and Davidi 2008). To address these limitations of TV regularization,
the smoothly clipped absolute deviation (SCAD) (Fan and Li 2001) penalty has been proposed by Fan and Li.
SCAD has become quite popular in the statistical community and has shown some desirable properties such as
continuity, asymptotic unbiasedness, and sparsity (Wang et al 2015). However, there are few applications of
SCAD in medical image reconstruction.

In this work, an alternating Bregman proximity operators (ABPO) method based on TVSCAD
regularization was proposed for BLT reconstruction. The SCAD penalty of non-convex TV regularization is
utilized as the regularization term, to balance sparsity and edge preservation of bioluminescent sources. The
bioluminescent source distribution is non-negativity, so a non-negativity constraint is added to the TVSCAD
model. Inspired by the split Bregman algorithm (Wang et al 2012), we design the ABPO algorithm, which splits
the non-differentiable term and the data fidelity term to iteratively solve the TVSCAD model. Meanwhile, to
reduce the ill-posed problem and improve the accuracy of the reconstructed source, a shrinking permission
source region strategy (PSR) (Yang et al 2018) is used. We performed numerical simulations and in vivo
xenograft mouse experiment to evaluate the performance of ABPO-TVSCAD. The results revealed that ABPO-
TVSCAD not only achieves superior position and shape recovery accuracy, but also has strong robustness.

The rest of this paper is structured as follows: The specific details of ABPO-TVSCAD are demonstrated in
section 2. Section 3 introduces the conditions of the simulations experiments and xenotransplantation
experiments, and compares and validates the experimental results of different methods. We provide some
discussion and summary of this paper in section 4.

2. Methods

The radiative transfer equation (RTE), also known as the linear Boltzmann equation, is used to describe the
propagation of photons in tissue (Klose and Larsen 2006). But it is nearly impossible to find the solution of RTE.
So, the diffusion equation has been developed to overcome the difficulties of solving RTE. It is a simplified first-
order approximation of the RTE, which has been used to simulate light propagation in biological tissue (Cong
and Wang 2006, Leng and Tian 2015). It is defined as:
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—V(D(NVo() + p,(Ne(r) = S(r), r e, 1)

where 7 is the position vector, D, (r) is the diffusion coefficient of position vector r, u, is the absorption
coefficient, ¢ (r) is the photon flux density of position vector r, S(r) is the internal source distribution of position
vector r, and {2 is the region of the biological tissue. D, is calculated as follows:
. 1
3(ua + (L= @)p)

where g represents the anisotropy parameter, and 1 is scattering coefficient. Diffusion equation combined with
the Robin boundary condition (Jianghong et al 2011, Wu et al 2012), expressed as follows:

O(r) + 2Fp,(r;n, n)D.(r)(v(r) V ¢(r)) =0, re 0, 3)

where Fj,, is the boundary mismatch factor between the biological tissues and the surrounding medium, # is the
refractive indices within 992, #’ is the refractive indices of the surrounding medium, 92 denotes the boundary
of biological tissue, and v is the unit outward normal on 0f2.

The outgoing photon density on the biological tissue boundary €2 is expressed as follows:

o(r)
2Fp (13 1, 1)

(2)

I'(r) = —-D.(nN(v(n)Veo(r) = , 7€ O 4)

The finite element method is applied to the photon diffusion model, and the linear relationship between the
measured photon flux B and the unknown source density X is established as follows:

AX = B, (5)

where A € RV*N is the system matrix, and N is the number of the discretized nodes.

2.1. TVSCAD model

The inverse problem of equation (5) is a well-known ill-posed problem, and only meaningless solutions can be
obtained by standard numerical methods. Therefore, we propose a TVSCAD model to reduce its ill-posedness
and obtain a sparse and meaningful solution. Here, the traditional BLT objective function based on TVSCAD
model can be expressed as:

. 1
min E(X) = — |AX — B3 + A || X [lrvscap (6)
XeR 2
where E (X) denotes the objective function, \ is the positive regularization parameter, || -|| 3 denotes L,-norm,

and || X ||rvscap is TVSCAD regularization. The TVSCAD term in equation (6) will be mathematically derived in
detail as follows.

Using finite difference operation, we can discretize TV into different forms. The isotropic discretization
TVjs, and anisotropic discretization TV,,;; of TV are given by the following formula:

TVio(X) = || DX and TVi(X) = DX @

where D is the finite difference operator, and ||-|| denotes L;-norm. In this work, we have chosen anisotropic
discretization of TV according to Wang et al (2017). In practice, anisotropic TV is slightly easier to process than
isotropic TV (Gu et al 2017).

The SCAD function was originally introduced in literature Fan and Li (2001) as a penalty function for sparse
variable selection, and it is defined as follows:

] lx| < m
2lx| — x* =i
—> < |lx| <
oy (x) = 22 —m) e ", ®)
+
I x| >

where @, (x) is the SCAD function, -, and +, are the threshold parameters and satisfy v, > , > 0. Let
v: =(» Yp)>and , = av,(a = 3.7) (Fanand Li 2001). The graph of ®, (x) is shown in figure 1(a).
According to the definition of the SCAD function, we define another function 1/ (x) as following:

0, lx| < m
x2 + 32 = 2ylx|
_— < |x| <
b = Ixl = 2@ =1 20—y M= ©)
Jr
el = B2 el >
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Figure 1. (a) Shows the SCAD function, (b) shows the decomposition of the SCAD.

The graph of ¢ (x) is illustrated in figure 1(b). Apparently, the function 1) (x) is convex, differentiable, and
satisfied 0 < ¥ (x) < |x|.
For BLT reconstruction, we define corresponding multivariate functions ©,as follows:

N
D (V) =)@ (), VeRN (10)
i=1
The component-wise extension function 1), is given by:
N
T(V) =D (),  VeRY, amn
i=1

here, forallthe V € RN, W,(V)) = ||V || — ®,(V). Then, let the gradient DX replace v in the above-mentioned
equation. The definition of TVSCAD penalty is as follows:

[Xllrvscap = @,(DX) = |[DX]| — ¥,(DX), (12)

where D € RN~1*N is the first-order difference matrix.
Therefore, the objective function equation (6) can be reformulated as the following:

. 1 1
minE(X) = = [[AX = BJl; + A®,(DX) = — |AX = BJ}; + A(|DX| — ¥,(DX). (13)

This formula is TVSCAD model.

2.2. ABPO-TVSCAD algorithm

Itis obvious that @, is non-convex and non-smooth, so the TVSCAD model is non-convex and non-smooth.
The use of non-convex and non-smooth functions in image reconstruction usually leads to better contrast and
clearer edges (Gu et al 2017). Inspired by the split Bregman algorithm, to solve the TVSCAD model, a new
auxiliary variable Z = DX is introduced, so equation (13) can be expressed as a constrained optimization
problem:

min E(X) = % IAX — BIE + A®,(Z), subject to Z = DX, (14)
X,z
where ®,(Z) = ||Z|| — ¥,(Z). The unconstrained optimization problem corresponding to equation (14) can
be expressed as:
. 1
min E(X) = = ||[AX — B|Z + A\0,(2) + 2 |z — DX}, (15)
Xz 2 2
where 77 > 0 is the penalty parameter. We group the first two function terms together:
.1
min — [|AX — B| + A®,(2) + L |z — DXL (16)
Xz 2 2
H(X,2)
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Simplified iteration to subproblem is given by the following formula:

(Xk+1, Zk+1) =argminH (X, Z) + n ||Z — DX — Yk||%
(X,2) 2 ) a7)
Yk+1 = Yk + (ka+1 _ Zk+1)

where k is the number of iterations. Equation (17) can be iteratively solved by splitting it into the minimizations
of X and Z, respectively. In this paper, the ABPO-TVSCAD algorithm is divide into three simple alternating
Bregman operators steps:

X*1 = argmin 3 |AX — B|j + 2 |2 — DX — Y¥|3
X

7M1 = argmin B, (Z) + 2 || Z — DX* - YRR (18)
Z

Yk+1 — Yk-H + (ka+1 _ Zk-H)

When solving the X -minimization step, we found that it is a quadratic optimization problem, and can be
solved via its variational equation:

(D™D + ATA)X**1 = ATB + n(D'Z — DTYh). (19)

When solving the Z-minimization step, the function @, is non-differentiable, and we cannot get the optimal
solution directly. Therefore, here we consider the corresponding proximity operator of ¢, as follows:

Sign(t)max(ltl - 7> 0): |t| < 271
E(x = (a — 1)t — asign(t)m
2 a—?2

t, [t] = 7

prox, 5(t) = arg ming, (x) + , o 2m < |t] € 7 (20)
X

where (3 is penalty parameter, and prox,, (-) denotes the Bregman proximity operator. For more details, you can
see in Bauschke and Combettes (2011). For the Z-minimization step:

Zk+1 = arg min A®,(Z) + g |Z — DX*1 — Y| = arg min &, (2)
zZ V4

+% 1Z — (DX} + YRR, @21

Through combining equation (20) with equation (21), the following iterative process is generated:
Tk = pxk+1 + Yk
" oo (22)
ZK = proxg. ,(T*)

where p = 2,

In our proposed algorithm, we also introduce a strategy of shrinking the PSR to accelerate the convergence of
alternating iterations. Details on shrinking the PSR can be seen in Shi et al (2014), Guo et al (2021). In general,
each node of the vector generated by each iteration evaluates their corresponding probability P in the PSR
region, and the PSR of the next iteration is divided according to the probability distribution. The calculation
method of correlation probability is as follows:

__/lax s
S (1/]|AX — B|3)
V= XD (23)
|AX ||, - ||B]2
pP— PEd '2|_ Pcas

where Py, is the result of the normalization of the reciprocal of the Euclidean distance, Pg, is the result of the
normalization of the reciprocal of the Cosine distance, and P is the result of each reconstruction source
distribution corresponding probability weight.

Here, algorithm 1 shows the detailed pseudo code of our proposed ABPO algorithm for solving the TVSCAD
model.
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Algorithm 1. ABPO-TVSCAD.

Input: system matrix A, measured surface flux photon B.
Initialization: bioluminescent source distribution X, the regularization parameter A = 0.01, the penalty parameters 1 = 0.5, set the
parameters -y, = 0.03, v, = a7;, a = 3.7, and iterator index k = 0.
While 1 do
(1): Compute first-order difference matrix.
(2): Alternating Bregman proximity operators.
X1 = D™D + ATA)Y"Y(ATB + n(DTZF — DTYk))
ZKL = proxg, ,(DX*L 4 Y¥)
Yk+1 — Yk+1 + (ka+1 _ Zk+1)
(3): Calculate corresponding probability weight according to equation (23).
(4): Judge whether the termination conditions are met.
if|AX¥ — B3 < |AX**! — B|j or Y (AX* - B) > > (AX**!. B) then
End while
(5): Dynamically shrink the PSR according to corresponding probability weight.
(6): Increase iteration index.
k=k+1.
Output: X* = X+~ 1,

3. Experiments and results

In this section, numerical simulations and in vivo xenograft mouse experiment were designed to evaluate the
performance of ABPO-TVSCAD in BLT reconstruction. The proposed method was compared with the three
existing algorithms: conjugated gradient based Tikhonov regularization approach (CG-Tikhonov) (Changging
etal2010), L1-based iterative shrinkage (IS- L1) (Han et al 2010), L1-based variable splitting scheme and
alternating direction scheme (VSAD- L1) (Ye et al 2018). The values of the parameters in ABPO-TVSCAD are
according to algorithm 1, and the optimal parameter selection details of the other three comparison algorithms
are provided in the references (Changgqing et al 2010, Han et al 2010, Ye et al 2018). All programs were run on a
desktop computer with an Intel(R) Core (TM) i9-12900KF CPU (3.20 GHZ) and 128 GB RAM.

3.1. Experimental process

3.1.1. Numerical simulations

In the numerical simulations, we designed a cylinder model with a radius of 10 mm and height of 30 mm to
simulate the body of the organism. Our geometric model was mainly composed of five kinds of organs: heart,
bone, liver, lungs, and muscle, as shown in figure 2(a). The optical parameters of each organ at a wavelength of
650 nm were detailed in Cao et al (2020). The molecular optical simulations environment (MOSE) (Ren et al
2010) based on Monte Carlo method was used to simulate the bioluminescence distribution on tissue surface,
and homogeneous density of 1 nw mm ™3 was used in each source, as shown in figure 2(e). The geometric model
was discretized into a uniform tetrahedral mesh by Comsol Multiphysics (Yang et al 2015) platform, which
included 4626 nodes and 25 840 tetrahedral elements in the reconstruction process, as shown in figure 2(d).

To comprehensively assess the performance of ABPO-SCAD in BLT reconstruction, we designed three
groups of numerical simulations. Firstly, a cylindrical source with a radius of 1 mm, a height of 2 mm, and a
center coordinate of (6, 3, 24) mm was used to assess the shape recovery ability of ABPO-TVSCAD. The
cylindrical source was displayed with red color in 3D view as shown in figure 2(b). Secondly, to evaluate the dual-
source reconstruction capability and location accuracy, a dual-source reconstruction simulation was conducted.
Two spherical sources with a radius of 1 mm and the central coordinates of the two sources were (0, 0, 19) mm
and (0, 0, 25) mm, respectively. Two spherical sources (S1 and S2) were displayed with red color in 3D view as
shown in figure 2(c). Thirdly, to evaluate the robustness of our proposed method, we designed an anti-noise
simulation. Specifically, 5%, 10%, 15%, 20%, 25% Gaussian noise was added to the surface measurement of a
single spherical source with central coordinates (—2, 4, 17) mm. All the source settings in the numerical
simulations were listed in table 1.

3.1.2. In vivo xenograft mouse experiment

To verify the feasibility of our method in vivo, spherical luminescent bead with a radius of 1 mm was implanted
into experimental adult nude mouse (about 6-8 weeks old/female). All experimental procedures were approved
by the animal ethics committee of the Fourth Military Medical University of China. All animal procedures were
performed under isoflurane gas anesthesia (3% isoflurane-air mixture) to minimize suffering to mice. Before

in vivo BLT reconstruction, the following three steps were implemented.
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VAN

Figure 2. Numerical simulations settings. (a) showed the geometric model for numerical simulations. (b) A cylindrical single source in
the geometric model was displayed. (c) Two spherical sources (S1 and S2) in the geometric model were displayed. (d) showed the
uniform tetrahedral mesh used in reconstruction. (e) showed the surface bioluminescence distribution (spherical source, cylindrical
source, dual-source) with Monte Carlo method.

Table 1. Bioluminescence source setting in numerical simulations.

Simulation Source shape Center (mm) Intensity
Cylindrical Cylindrical (6,3,24) 1
Anti-noise Spherical (—2,4,17) 1
Dual-source Spherical $1:(0,0,19) 1
S2:(0,0,25) 1

Firstly, data collection was carried out. We utilized the dual-mode imaging tomography system to image
adult nude mouse, which is composed of luminescence acquisition system (EMCCD camera (iXon Ultra 888),
cooled to —80 °C, exposure time of 1 s, no gain value, equipped with Semrock FF01650,/10-25 optical filters)
and a micro-CT system (tube voltage of 60kvp, x-ray power of 40w). Its schematic illustration was showed in
figure 3(a). Consequently, the angle-dependent BLI and micro-CT images of mouse were obtained. Secondly,
after the data collection, we proceeded with the data processing. The main organs of the mouse were segmented,
including muscle, lung, heart, stomach, liver, and kidney, and then integrated into the mouse trunk model.
Thirdly, we matched and registered the bioluminescence image to the surface of the mouse torso model. The
structure of in vivo experimental data processing was shown in figure 3(b). The coordinate of the implanted real
source was (17.5,21.5, 13.5) mm. The optical parameters of different organs used in the in vivo xenograft mouse
experiment were from the literature Yi et al (2013), as shown in table 2.

3.1.3. Evaluation metrics

To quantitatively analyze the performance of BLT reconstruction, several evaluation metrics were used. The
location error (LE) was used to evaluate the localization accuracy. LE is the Euclidean distance between the
reconstructed source center and the real source center. The definition is as follows:

LE = ||Lrec - LrealH%: (24)

where L,,. denotes the central coordinates of the reconstructed source and L,,,; denotes the central coordinates
of the real source. The closer the LE is to 0, the higher the localization accuracy. Dice coefficient was used to
assess the similarity between the reconstructed source region and the real source region. The dice is calculated as
follows:
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Figure 3. (a) The schematic illustration of the dual-mode imaging tomography system. (b) The structure of in vivo xenograft mouse
experimental data processing.

Table 2. Optical coefficients used in vivo xenograft
mouse experiment.

Tissues , (mm™Y) p,(mm~Y) g

Muscle 0.016 0.510 0.90
Heart 0.011 1.053 0.86
Stomach 0.002 1.525 0.90
Liver 0.065 0.723 0.90
Kidney 0.012 2.472 0.90
Lung 0.036 2.246 0.90

. Riee MR
Dice = M, (25)
|Rrec| + IRreall

where R, denotes the reconstructed source region and R, denotes the real source region. The closer the dice
isto 1, the higher the similarity between the reconstructed source region and the real source region. The relative
intensity error (RIE) is used to evaluate the relative intensity deviation between the reconstruction source
intensity and the real source intensity. The RIE is calculated as follows:

RIE = |Ireal — Irecl , (26)

rec
where I, denotes the mean intensity of the reconstruction source and I,,,;; denotes the mean intensity of the real
source. If the RIE is closer to 0, the intensity recovery of the reconstructed source is better.

3.2.Results

3.2.1. Cylindrical single-source simulation reconstruction

To measure the shape recovery ability of our proposed method, we compared the reconstruction performance of
ABPO-TVSCAD with other methods using cylindrical single source. The 3D mesh of the reconstructed source
obtained by these methods was shown in figure 4(a). The results showed that the source shape reconstructed by
ABPO-TVSCAD is more accurate than other methods and more similar to the shape of the real source. CG-
Tikhonov produces over-smooth source boundaries, while IS- L1 generates over-convergent source boundaries.
Although the results obtained by VASAD- L1 are satisfactory, our method produced fewer artifacts and exhibited
asuperior overlap with the real source mesh, with dice of 0.894. In addition, the LE and RIE obtained by our
method were smallest (figure 4(b)), which demonstrated that our method showed best location accuracy and
source intensity recovery. The quantitative analysis of the cylindrical single-source simulation reconstruction
was shown in table 3.

3.2.2. Spherical dual-source simulation reconstruction

To assess the localization accuracy and dual-source reconstruction ability of ABPO-TVSCAD, we compared the
reconstruction performance of ABPO-TVSCAD with other methods mentioned above. The reconstruction
results obtained by dual-source simulation using different methods were shown in figure 5. The representation
of real and reconstructed sources in 3D views and in the slice views were similar to that of cylindrical source
simulation. By observing the shapes of 3D view, axial view, coronal view, and sagittal view, it was obvious that
our method was effective and accurate. Compared with other methods, the position of the reconstructed sources
by ABPO-TVSCAD approach were closer to the real sources center. The performance of the reconstructed
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Figure 4. Results of cylindrical single-source simulation reconstruction. (a) The 3D view and axial view of bioluminescent source were
reconstructed by four different methods. The real source was depicted with a red cylinder and the reconstructed region was shown
with the black meshes under 3D view. The white circles on the plane view indicate the real source under the axial view. (b) The results
of the evaluation indicators of the four methods.

Table 3. Quantitative comparison in cylindrical source reconstruction.

Method Real central position (mm) Reconstructed central position (mm) LE (mm) Dice RIE
CG-Tikhonov (6,3,24) (5.21, 3.64,23.90) 1.02 0.56 0.67
IS-L1 (6,3,24) (5.33,2.60,24.23) 0.81 0.48 0.55
VASAD-L1 (6,3,24) (5.60,2.65,23.64) 0.64 0.60 0.60
ABPO-TVSCAD (6,3,24) (6.18,2.90,23.83) 0.27 0.89 0.20

localization of CG-Tikhonov and IS- L1 was unsatisfactory. The reconstruction results of VSAD- L1 were better
than those of the two methods. In addition, the quantitative analysis results shown in table 4 showed that ABPO-
TVSCAD performed best. The results showed that compared with the other three methods, the ABPO-TVSCAD
method successfully improved the dual-source reconstruction capability and location accuracy.

3.2.3. Anti-noise ability test

To test the robustness of the ABPO-TVSCAD method, we added 5%, 10%, 15%, 20%, 25% Gaussian noise to
the measured surface luminous flux of the spherical single-source with a radius of I mm. The evaluation metrics
results of ABPO-TVSCAD for the reconstruction of sources with different ratio of Gaussian noise was shown in
figure 6. It was observed that when the ratio of Gaussian noise changed, the variation range of the evaluation
metrics were relatively stable. The results showed that the robustness of APBO-TVSCAD method was superb.

3.2.4. Reconstruction of the in vivo xenograft mouse

To evaluate the practicability of our method in vivo imaging, we performed in vivo xenograft mouse experiment.
It should be noted here that the evaluation index RIE cannot be obtained because the grayscale image and
internal source of the surface detection are not calibrated with the actual number of photons. The 3D view and
axial slice view of reconstruction results verified the effectiveness of different methods, as shown in figure 7(c).
The white circles in the slice view represent the location and shape of the implanted bioluminescent bead. The
performance of the four BLT reconstruction approaches was relatively consistent with those obtained by
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Figure 5. Reconstruction results of different methods for dual-source. The real sources were depicted with red spheres under 3D view
and the white circles on the plane view indicate the real source location and shape.

Table 4. Quantitative comparison in cylindrical source reconstruction.

Method Real central position (mm) Reconstructed central position (mm) LE(mm) TotalLE(mm) Dice RIE
CG-Tikhonov (0,0,19) (0.25,0.96, 18.43) 1.14 2.12 0.41 0.58
(0,0,25) (0.39, —0.64,25.81) 0.98 043 053
IS-L1 (0,0,19) (—0.96, —0.56, 19.38) 1.18 2.35 0.44 0.49
(0,0,25) (0.44,0.71,24.18) 1.17 037 042
VASAD-L1 (0,0,19) (—0.49, —0.04, 18.28) 0.87 1.86 0.51 0.42
(0,0,25) (—0.85,0.50,25.04) 0.99 0.62 0.58
ABPO-TVSCAD (0,0,19) (—0.28,—0.05,18.74) 0.39 0.81 0.84 0.20
(0,0,25) (=0.06, —0.38, 25.17) 0.42 074  0.13

numerical simulations. As shown in table 5, compared with the other three methods, ABPO-TVSCAD method
showed the minimum LE value and the maximum dice value. These results indicated that ABPO-TVSCAD

method possessed the most superior practicality in vivo xenograft mouse experiment.

4, Discussion and conclusion

BLT is a promising three-dimensional imaging method, which can solve the problem of insufficient depth

resolution of BLI by reconstructing three-dimensional bioluminescence distribution. However, the severe ill-
conditioned inverse problem restricts the performance of reconstruction. In this study, ABPO-TVSCAD
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Figure 7. In vivo xenograft mouse experiment of single light source. (a) The 3D view of real source in the mouse. Real light sources
were represented by red spheres. (b) The surface photon distribution. (c) The reconstructions by different methods under the 3D view
(apartial body in (b)) and the axial view results. The white outline denoted the location and shape of the real source.

Table 5. Quantitative comparison for reconstruction of the in vivo xenograft mouse.

Method Real central position (mm) Reconstructed central position (mm) LE (mm) Dice
CG-Tikhonov (17.5,21.5,13.5) (16.63,21.21,13.76) 0.95 0.45
IS-L1 (17.5,21.5,13.5) (17.89,21.74,14.29) 0.92 0.57
VASAD-L1 (17.5,21.5,13.5) (17.00,21.44,13.88) 0.67 0.72
ABPO-TVSCAD (17.5,21.5,13.5) (17.61,21.52,13.70) 0.23 0.91

reconstructed method was proposed to alleviate the ill-posedness and improve the performance of BLT
reconstruction. Firstly, TVSCAD regularization is proposed to balance the sparsity and edge preservation of the
source, and the objective optimization function is constructed based on TVSCAD regularization. Secondly,
since our objective function is non-differentiable, inspired by split Bregman algorithm, the objective function is
decomposed into a differentiable operator and a Bregman proximal operator for alternate solution. Then, we
add non-negative constraints to the alternate solution process to reduce the error. Finally, in order to accelerate
the convergence of the solution, we utilize the strategy of shrinking PSR.
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Three groups of numerical simulations and one group of in vivo xenograft mouse experiment were
performed to verify the performance of ABPO-TVSCAD, and quantitative comparisons were made with CG-
Tikhonov, IS-L1, and VSAD- L1. The results of experiments were shown as follows. Firstly, the cylindrical single
source simulation revealed that ABPO-TVSCAD possessed superior source recovery capability compared with
other methods mentioned above. Secondly, dual-source simulation indicated that ABPO-TVSCAD had
excellent dual-source reconstruction capability and high spatial positioning accuracy. Thirdly, the anti-noise
test proved the robustness of our proposed method. Finally, in vivo xenograft mouse experiment demonstrated
the practicability of ABPO-TVSCAD for luminescence detection in living animals and its potential for BLT
reconstruction in preclinical studies.

Regardless of ABPO-TVSCAD strategy has superior performance in BLT reconstruction, the method still
has some drawbacks. Firstly, when determining the objective function, the regularization parameters used are
selected according to experience, and the optimal parameters cannot be determined automatically. The further
study is needed on how to determine parameters automatically. Furthermore, as with most of BLT
reconstruction of traditional numerical methods, our system matrix A still has some bias. An adaptive method
to determine the system matrix need to be developed in the future. In addition, the performance of ABPO-
TVSCAD requires further validation in preclinical application for other optical tomography techniques.

In conclusion, we propose an ABPO-TVSCAD method to improve the performance of BLT. The algorithm
combines the advantages of TV regularization and SCAD regularization, and balances the sparsity and
morphological reservation of reconstructed BLT reconstruction. The algorithm was verified by a series of
numerical simulations and in vivo xenograft mouse experiment. Compared with several conventional numerical
methods, ABPO-TVSCAD method performed superior in spatial localization accuracy, shape recovery
capability, dual-source reconstructed capability. We believe that this approach can contribute to the study of
various preclinical applications of BLT and promote theoretical research in optical molecular imaging.
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