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With the development of laser scanners and machine learning, point cloud semantic segmentation 
plays a significant role in autonomous driving, scene reconstruction, human-computer interaction, and 
other fields. In recent years, point cloud semantic segmentation based on deep learning has become 
one of the key research directions in point cloud processing. Due to the limited ability to exploit 
geometric details and contextual information in point clouds, most methods that adopt encoder-
decoder architecture lose local structural information easily, especially detailed features, and extract 
features insufficiently. To address this issue, the edge-preserving inception DenseGCN U-Net (entitled 
as EIDU-Net) is proposed. EIDU-Net makes full use of the complementation between geometric details 
in the original point cloud and high-level features. The edge-preserved graph pooling (EGP) layer, 
the key module of the EIDU-Net, is designed to retain additional edge feature information from the 
original point cloud during pooling operations. Accordingly, the edge-preserved graph unpooling (EGU) 
layer can restore the feature graph more efficiently based on the additionally retained edge features. 
Extensive experiments demonstrate that our proposed EIDU-Net has remarkable improvements on 
semantic segmentation tasks under whatever S3DIS or Terracotta Warrior fragments. Our code is 
publicly available at https://github.com/caoxin918/EIDU-Net.

With the development of 3D point cloud processing technology, 3D point cloud segmentation is playing a 
significant role in many areas, such as scene reconstruction1–3, autonomous driving4, and other fields. It is vital 
for these industries to learn the semantic information of point clouds accurately.

3D data have rich geometry, shape, and scale information, which can be represented in different ways, 
including voxels, meshes, and point clouds. Among them, point clouds are the most convenient for deep 
learning processing. Different from regular 2D images, 3D point clouds are unstructured, which makes the 2D 
CNN framework not applicable to point cloud semantic segmentation directly.

Early semantic segmentation methods like support vector machines(SVM), random forests, and decision 
trees5–7 showed good performance on small amounts of point cloud data but could not satisfy the big one. It is 
challenging for semantic segmentation in different complex scenes. To address this issue, deep learning-based 
methods have been proposed, such as voxel-based methods8–10, projection-based methods11–15, and point-based 
methods16–30.

Voxel-based point cloud segmentation methods organized irregular point cloud data by dividing them into 
multiple regular voxel grids. These methods had good scalability but cost a large amount of memory and had low 
computational efficiency. Projection-based point cloud segmentation methods projected 3D point cloud into 2D 
images through various views, such as multi-view, spherical projection, etc., and then processed images by using 
the 2D frameworks. These methods could utilize the existing advanced 2D image processing algorithms directly 
but were prone to projection distortion and not suitable for complex scenes.

Point-based methods could operate the points directly, and preserve spatial information better than others. 
PointNet16, the classic point-wise MLP method, utilized shared multi-layer perceptions to acquire feature 
information of each point. It solved the problem of point cloud permutation invariance but lacked local feature 
extraction. PointNet++ 17 overcame the shortcomings of PointNet in local feature extraction, but due to the 
feature extraction layer by layer, its computational complexity was relatively high and required more computing 
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resources, making it unsuitable for applications that required fast processing of large amounts of point cloud 
data. PointWeb18 introduced the Adaptive Feature Adjustment (AFA) module for finding interactions between 
points to extract contextual features from local neighborhoods. It was still not able to handle information about 
relationships between point clouds and tasks with local features. PointNeXt23 was an extension of the PointNet++. 
It aimed to improve the performance of point cloud processing by improving the training strategy and the 
model extension strategy but did not explore deeply on architectural innovations. Point-M2AE24 designed a 
multi-scale masking strategy to preserve local geometric integrity at different scales. Due to the multi-scale 
processing, Point-M2AE required high computational resources, and the performance of the model relied to 
some extent on the choice of masking strategy, and experiments were needed to determine the optimal masking 
ratio. By using cross-attention transformer, CASSPR25 combined point-based and voxel-based approaches to 
fully utilize multi-scale spatial context to achieve fine matching of subtle geometric features. Due to the fusion, 
the computational complexity could be high, especially on large-scale point clouds, and the performance may 
degrade when the information in a single scan was limited to a small area. SOE-Net26 demonstrated good 
advantages in point cloud-based location recognition tasks by combining self-attention and direction encoding 
mechanisms, but also faces challenges such as increased computational complexity and increased difficulty in 
model training. OPOCA27 proposed an innovative annotation method with significant advantages, such as high 
annotation efficiency and high segmentation accuracy. However, this method also had some disadvantages, such 
as dependence on the selection of annotation points, limited performance in handling complex scenes, and 
its generality and applicability to be verified. SegTrans28 showed significant benefits in the MLS point cloud 
semantic segmentation through transfer learning techniques and was a promising approach, but also faced 
challenges such as for some categories, the performance may still be not as good as expected.

Due to the correspondence between the graph structure and the point cloud data, graph-based methods were 
widely emerged recently to promote the development of point cloud processing. They converted point cloud 
data into the graph to preserve the geometric features between nodes and edges of the point cloud, and graph 
convolutional networks could be used for feature extraction. DGCNN29 dynamically constructed point cloud 
structural information using KNN, and DeepGCNs30 solved the problem that GCNs could not iterate multiple 
layers, making huge contributions to the subsequent development of GCNs. Graph U-Nets31 was an encoder-
decoder model for graph data representation learning that introduced the gPool and gUnpool layers for pooling 
and unpooling graphs, respectively. These operations make it possible to implement U-Net-like structures on 
graph data, but they are depth-limited.

This paper proposes a novel segmentation network EIDU-Net. It makes full use of the complementation 
between geometric details in the original point cloud and high-level features to ensure learning effectiveness 
while reducing information loss. The edge-preserved graph pooling (EGP) layer, the key module of the EIDU-
Net, is designed to retain additional edge feature information from the original point cloud during pooling 
operations. Accordingly, the edge-preserved graph unpooling (EGU) layer can restore the feature graph more 
efficiently based on the additionally retained edge features.

Our contributions are as follows:

• We propose a novel encoder-decoder network (EIDU-Net), which integrates Inception DenseGCN to ensure 
features can be learned at multiple levels and scales.

• We propose edge-preserved graph pooling(EGP) operation and edge-preserved graph unpooling(EGU) op-
eration, which improve the traditional graph pooling and unpooling layer to maximize retention of spatial 
position feature information during the iteration process.

• We build the Terracotta Warrior dataset to challenge the proposed EIDU-Net on point cloud semantic seg-
mentation task. The final results demonstrate that the proposed EIDU-Net achieves significant improvements 
in self-built datasets and public datasets.

Experiment and results
In this section, we test the proposed EIDU-Net on both Area 5 and 6-fold of S3DIS32. We compare our network 
with previous models on point cloud semantic segmentation. The experiments demonstrate that our EIDU-Net 
achieves good results in point cloud semantic segmentation. Some ablation studies are conducted to examine the 
contribution of different parameter settings in the model to performance improvement.

Datasets and evaluation metrics
We perform experiments on the SIDIS dataset to evaluate the robustness of the EIDU-Net model. The momentum 
and initial learning rate are 0.9 and 0.001. Each input point is represented with a 9-dim vector. The models 
are trained with 100 epochs and batch size 12. The S3DIS dataset contains rich indoor structural information, 
covering point clouds of over 610 rooms, about 2.73 million points. The point clouds are annotated by semantic 
categories, including 13 object categories, such as walls, windows, doors, tables, chairs, and a clutter category. 
Evaluating semantic segmentation performance on this dataset can reflect the algorithm’s generalization ability 
for complex indoor scenes.

To normatively evaluate the segmentation performance of the EIDU-Net, the OA, mIoU, and mAcc are used 
in this article. They are defined as follows:

 
OA =

∑k
i=0 cii∑k

i=0

∑k
j=0 cij

 (1)
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1

k + 1

k∑
i=0

cii∑k
j=0 cij

 (2)

 
mIoU =

1

k + 1
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i=0

pii∑k
i=0 pij +

∑k
i=0 pji − pii

 (3)

where k means the dataset has k categories. cij is the number of points from ground truth i and predicted as class 
j.

Evaluation on the S3DIS dataset
The quantitative results of our network are compared with previous methods, including PointNet16, DGCNN29, 
SegCloud33, PointCNN19, SPGraph34, HPEIN35, MinkowskiNet36, PAG37, PointWeb18, PCT38, SegGCN39, 
KPConv40, RandLA-Net41, DPFA-Net42, and JSNet + + 43. The results of these methods are mostly taken from 
existing literature. Our experimental results are shown in Tables  1 and 2, which demonstrate our method 
achieves improvements over both baselines. Overall, compared with other methods, our method achieves better 
accuracy on the S3DIS dataset.

As shown in Fig. 1, EIDU-Net achieves good performance on indoor scene segmentation. EIDU-Net can 
effectively segment complex indoor structures. We attribute this decent result to the EGP and EGU, as they help 
the model better aggregate local information in the data, leading to better-detailed segmentation results.

Table 3 demonstrates the experimental results for specific categories in semantic segmentation on the S3DIS 
dataset. It is worth noting that our method attains better accuracy on the wall and sofa classes. The results 
indicate that our EIDU-Net is adequate for the large-scale point cloud semantic segmentation task.

Method Input OA mAcc mIoU

PointNet Point 78.5 66.2 47.6

DGCNN Point 84.1 - 56.1

PointCNN Point 88.1 - 65.4

SPGraph Point 86.4 75.6 62.1

PAG Point 88.1 - 65.9

PointWeb Point 87.3 76.2 66.7

KPConv Point - 79.1 70.6

RandLA-Net Point 88.0 82.0 70.0

DPFA-Net Point 89.2 - 61.6

JSNet++ Point 88.7 72.8 62.4

Ours Point 88.6 75.8 63.1

Table 2. Results on S3DIS 6-fold dataset for semantic segmentation. Significant values are in bold.

 

Method Input OA mAcc mIoU

PointNet Point - 49.0 41.1

SegCloud Point - 57.4 48.9

PointCNN Point 85.9 63.9 57.3

SPGraph Point 86.4 66.5 58.0

HPEIN Point 87.2 68.3 61.9

MinkowskiNet Voxel - 71.7 65.4

PAG Point 86.8 - 59.3

PointWeb Point 87.0 66.6 60.3

PCT Point - 70.8 60.1

SegGCN Point 88.2 70.4 63.6

KPConv Point - 72.8 67.1

RandLA-Ne Point 87.2 71.4 62.4

DPFA-Net Point 88.0 - 55.2

JSNet++ Point 89.1 64.7 58.0

Ours Point 87.7 73.8 60.0

Table 1. Results on S3DIS Area-5 dataset for semantic segmentation. Significant values are in bold.
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Different components
To verify the effect of different modules in the model, we conduct ablation experiments on Area 5 of S3DIS. The 
result is presented in Table 4. When replacing the EGP and EGU modules with the Graph Pooling and the Graph 
UnPooling of Graph U-Nets31, the OA and the mACC values decreased to 86.9 and 74.4. Similarly, lacking either 
of these two modules alone also leads to a decrease in OA and mACC. Based on the analysis of the results, it 
can be seen that aggregating feature details during pooling and unpooling helps reduce feature loss and improve 
final segmentation performance. Therefore, It is credible that optimizing pooling operations and unpooling 
operations for 3D data is effective and meaningful.

The influences of different numbers of DenseGCN layers
Although DeepGCNs solved the problem that GCNs could not iterate deeply, considering EIDG is just a basic 
module in the dual-nested structure, the appropriate number of iteration layers inside the DenseGcn needs to be 
evaluated through experiments. We conduct experiments with the number of layers set to 2–5.

As shown in Fig.  2, when the number of layers reaches 3, the segmentation effect no longer improves 
significantly and even shows a downward trend. The results show that 3 layers of DenseGCN are already 
sufficient. Due to the overfitting, further increasing the number of iteration layers will reduce the efficiency.

The influences of different numbers of EIDU-Net layers
In this section, the reason for conducting the ablation study is also to consider that too many iterations will affect 
the final segmentation effect. We set the number of layers of EIDU-Net from 1 to 5 for experiments. Figure 3 

Fig. 1. Visualization results on S3DIS.
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shows the number of layers of EIDU-Net has a significant impact and 3 seems to be the most suitable number 
of layers.

Application on virtual restoration of real-world terracotta warriors
In recent years, point cloud processing for cultural heritage digitization can effectively avoid secondary damage 
to artifacts, which is of great significance for cultural relic protection and restoration. Among them, point cloud 
semantic segmentation can help researchers restore cultural relics more efficiently and accurately by semantically 
segmenting the digitized cultural relic models. As one of the focal points of our laboratory research is the virtual 
restoration of ceramic cultural relics, the Terracotta Warriors are the most notable ceramic cultural relics in our 
research, which are considered as one of the world’s eighth wonders. In order to further confirm the effectiveness 
of the proposed EIDU-Net, we apply it to the challenged real-world datasets, i.e. Terracotta Warrior models.

Generally, 3D laser scanners can only scan partial point clouds of an object. In order to reconstruct the 
complete object, it is necessary to scan point clouds from different viewpoints and calculate view transformations 
based on point correspondences between point clouds. Then it is necessary to align point clouds from individual 
viewpoints to the same coordinate system and merge them into a complete 3D model. By following the steps 
above, we collect 200 complete Terracotta Warrior models by 3D object scanner, each composed of about 500,000 
points, including xyz data, vertical normals, and RGB data. 160 models are utilized for training and 40 aside for 
testing. As shown in Fig. 4(a), we eliminate the vertical normals and RGB data, remaining xyz coordinates as 
input.

In traditional studies of point cloud semantic segmentation on the Terracotta Warriors datasets, the Terracotta 
Warriors 3D models are generally divided into six parts: head, body, left hand, right hand, left leg, and right leg. 
To better facilitate the cultural relic restoration and test the performance of our EIDU-Net, we separate the hands 

Fig. 2. Ablation Study on different numbers of DenseGCN layers.

 

EGP EGU OA mACC

✘ ✘ 86.9 72.4

✔ ✘ 87.2 73.0

✘ ✔ 87.1 73.1

✔ ✔ 87.7 73.8

Table 4. Ablation results on S3DIS area-5 dataset.
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and arms of the original Terracotta Warriors models, dividing them into eight parts: head, body, left hand, left 
arm, right hand, right arm, left leg, and right leg.

Our experimental results in Table 5 show that the OA can reach the best effect of 89.7%, the mIoU can reach 
70.3% and the mAcc can reach 84.2%. From Fig. 4(b), we can see the eight parts of the Terracotta Warriors are 
segmented well, but the segmentation boundaries of some contacting parts are not clear enough (as shown in 
the red circles). The reason for this problem is that the unique manufacturing process of the Terracotta Warriors 
causes some parts to stick together, which leads to the incompletation of the Terracotta Warriors models. For 
example, the inner arm parts and body parts of some Terracotta Warriors models are adherent, which affects 
the final training results. Subsequently, we consider optimising the point cloud segmentation model jointly with 
the point cloud completion method. For example, ASFM-Net44 achieves high-quality point cloud completion 
through an asymmetric twin feature matching mechanism and a multi-scale feature extraction module, providing 
richer geometric and semantic information for the subsequent segmentation task.

Overall, under conditions of segmenting models into more categories and with incomplete parts in 
some models across the dataset, our method achieves good performance on semantic segmentation, which 
demonstrates the robustness and efficacy of EIDU-Net.

Discussion
The proposed EIDU-Net model is used for supervised learning of point cloud segmentation and achieves good 
results on the S3DIS and the Terracotta Warriors dataset. As graph structures can better represent irregular data 
such as point clouds, this paper solves the problem that traditional GCN cannot iterate multiple layers by using 
DenseGCN, and learns multi-scale features through different dilation scales to obtain more detailed and deeper 
semantic feature information, so that GCNs can process large-scale and more complex graph data; the EGP and 
EGU proposed in this paper aggregate the feature information of edge points in the original point cloud to global 
features, reduce the loss of feature information in pooling and unpooling operations, and solve the problem 
of being unable to continue GCN; U-shaped structure is designed to fuse low-level and high-level features, 
and the performance and accuracy of the model are improved in segmentation tasks. Ablation studies prove 
that although increasing the number of network layers can improve feature learning to some extent, too many 
layers will lead to a gradual decline in performance due to overfitting. Therefore, while deepening the model 
architecture, we should also find ways to optimize the effectiveness of each individual feature extraction module.

Methods
This section introduces the proposed Edge-preserved Inception DenseGCN U-Net (EIDU-Net), which is 
designed as an encoder-decoder structure. Inception DenseGCN is set as the feature extraction module and 
some adjustments are made. In particular, two kinds of skip connections that work with the feature extraction 
module are utilized to ensure the learning of multi-scale and hierarchical features of 3D points. To adapt to 

Fig. 3. Ablation Study on different numbers of EIDU-Net layers.
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the encoder-decoder structure and reduce the loss of feature information, the feature aggregation modules are 
designed as Edge-preserved Graph Pooling (EGP) and Edge-preserved Graph Unpooling (EGU). EGP is on the 
basis of the graph pooling layer and adds the operation of aggregating edge features of central nodes and neighbor 
nodes during the pooling operation. In subsequent operations, it reduces the loss of feature information due to 
pooling operations with skip connections. Similarly, in the EGU operation process, unpooling is performed 
better based on the previously saved information. EIDU-Net propagates feature information at different levels 

Fig. 4. Visualization results on Terracotta Warriors. (a) Input point clouds. (b) Ours.
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to the end through two different skip connections, ensuring the aggregation effect of local geometric details and 
high-level features.

Edge-preserved graph pooling
Pooling operation was first widely used in convolutional neural networks (mainly including max pooling and 
average pooling), and was later gradually implemented in graph convolutions. The difference is that the pooling 
operations of the CNN framework cannot be applied to graph convolution networks, which would destroy the 
spatial structure of the feature graph. The proposal of Graph U-net31 presented a classic pooling method suitable 
for graph convolution. The graph pooling layer incorporated a top-k scoring mechanism into the pooling process 
to ensure important feature nodes not lost.

Unlike CNN pooling operations, graph convolution pooling operations did not lose spatial information. In 
the Inception DenseGCN module45, the original framework only had one layer of the feature extraction module. 
It directly adopted the multi-branch structure similar to CNN to integrate the feature information learned. 
Finally, the max pooling layer and two MLP layers were performed to obtain a fixed-length global feature for the 
classification and segmentation task.

The reasons for optimizing the pooling layer are: (1) to further deepen the network hierarchy of the encoder-
decoder structure. The features after max pooling layer in the original method lose a lot of spatial information 
and cannot continue the next GCN operation; (2) because classical pooling operations for graph convolutions, 
such as Graph Pooling operation, also lose some feature information during the normal convolution process. We 
hope to optimize this step to reduce the loss of feature information.

As shown in Fig. 5, the left figure shows traditional graph pooling based on the top-k algorithm {t1,t2,t3}. 
The right figure shows our EGP. Compared with the traditional method, after selecting k nodes by top-k, EGP 
constructs local neighborhood graphs for these k nodes from the original point cloud data, and selects their 
neighbors by random downsampling {t5,t6,t7,t8,t10,t11}. In this way, our model can better preserve local geometric 
information.

To solve this problem, we propose an optimized graph pooling method Edge-preserved Graph Pooling 
(EGP), which can more effectively capture local geometric details. EGP adds a novel process operation on the 
basis of original graph pooling to aggregate the features of high-scoring central nodes and their edge nodes. We 
place the EGP module after two DenseGCN layers with different dilation scales. In this layer, we first divide and 
select nodes in the feature graph through the top-k algorithm of graph pooling, and obtain k top-scoring nodes 
in descending order of scores, as illustrated in Fig. 6. We set these k nodes as central nodes, and construct their 
local neighborhood graphs respectively with the original point cloud data. Then the density of edge nodes in 
local neighborhood graphs is reduced by random downsampling, as shown in Fig. 6(a). Finally, the features of 

Fig. 5. Illustration of the EGP modules.

 

Method Input OA mAcc mIoU

PointNet Point 80.4 75.7 59.2

JSNet++ Point 87.9 81.1 68.7

Ours Point 89.7 84.2 70.3

Table 5. Results on the terracotta warrior dataset. Significant values are in bold.
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the central nodes and the remaining edge nodes are aggregated. In this way, the feature of top-k key nodes can 
be better retained, and their local structure information can be better aggregated.

Through EGP, the central node and its edge nodes are combined into an enhanced node and the local feature 
information of each central node can be retained better. Our EGP module is designed as:

 





Score = XℓPℓ/
Pℓ


idx = rank (Score, k)
X′

p = Xp ⊕ h
�
X1

j , . . . ,X
i
j


S̃core = sigmoid (y (idx))
X̃ℓ = Xℓ (idx, :)
Xℓ+1 = X̃ℓ ⊙


S̃core1T

C


 (4)

where k is the number of nodes that are selected by top-k arithmetic. The idx and X↕ (idx, :) are the indices and 
feature matrices of the selected points, respectively, which are used to construct the new graph structure. Xp is 
the feature of the selected node and Xi

j is the feature of its selected neighbors by random downsampling.

Fig. 6. Illustration of the EGP module. (a) The flow of the encoder module. The circular graph indicates that in 
the EGP process. (b) Illustration of the downsampling module for point cloud segmentation. d is the dilation 
rate and r is the random downsampling rate of EGP.
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Edge-preserved Graph UnPooling
In the encoder-decoder structure, the low-layer 3D point features need to be restored to the corresponding feature 
density. Corresponding to the improvement of EGP pooling, Edge-preserved Graph Unpooling (EGU) also sets 
the nodes in the feature graph as central nodes during the graph unpooling operation, and also constructs their 
local neighborhood graphs with the original point cloud data. After randomly reducing the edge nodes in the 
neighborhood graphs through random downsampling, the feature information of the central nodes and the 
remaining edge nodes are aggregated. In the process of gradual upsampling, the central nodes and edge nodes 
are concatenated to enhance the features through locally detailed features, which improves the expressive ability 
of the model. Our EGU module is designed as:

 
X′

q = Xf
q ⊕ ω

(
Xq

1
j , . . . ,X

i
qj

)
 (5)

where Xf
q is the feature from corresponding layers of the encoder by skip connection and ω ( ) is the inverse 

distance weighted average operation.

Edge-preserved Inception DenseGcn U-Net
Inspired by the encoder–decoder structure, our model contains downsampling part as encoder and an upsampling 
part as decoder. As shown in Fig. 7, the encoder-decoder structure combining EGP and EGU is the outer nested 
structure in EIDU-Net. The encoder part consists of three layers, which gradually extract point features while 
performing pooling operations through EGP. Correspondingly, the decoder part consists of similar structure. 
Each layer of the decoder part can better aggregate local feature information through skip connections with the 
corresponding encoding layer. In addition, the black line shows that the three modules of the encoder separately 
recover feature density layer-by-layer through the EGU module and aggregate information at the end. The red 
lines indicate that the original point cloud data provides neighborhood graph information of the selected central 
points to the EGP module and EGU module.

Conclusion
The EIDU-Net model proposed in this paper plays an important role in promoting the research of point cloud 
segmentation that I know of, and provides new ideas for point cloud segmentation methods. By using deepGCN 
to extract the topological feature of points, it not only obtains the information of individual points and the 
relationship between points, but also expresses the feature information of point clouds more accurately and 
meticulously; in each pooling(EGP) and unpooling(EGU) operation, the top-k strategy is used to obtain k center 
points and random neighborhood information aggregation, which not only ensures the learning efficiency of the 
model, but also reduces the loss of geometric information; the U-shaped structure is utilized to fuse low-level and 
high-level features to further improve the segmentation accuracy. The experimental results verify the superiority 
and rationality of the proposed model. In the future, we can try to utilize the U2Net model to further enhance 

Fig. 7. Illustration of the EIDU-Net modules.
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the accuracy of the segmentation results and apply the optimized model to more fields, such as the field of 
autonomous driving. In addition, we can also explore joint training methods for point cloud completion(ASFM-
Net for instance) and segmentation tasks, so that the completion and segmentation processes can promote each 
other and improve the overall performance for the more common scenes with occlusion. For example, a joint 
loss function can be designed to optimize both the completion and segmentation tasks, achieving more efficient 
model training.

Data availability
The datasets analyzed during the current study available from the corresponding authors on reasonable request.
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