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Purpose: To assess the significance of mutation mutual exclusion information in the
optimization of radiomics algorithms for predicting gene mutation.

Methods: We retrospectively analyzed 258 non-small cell lung cancer (NSCLC)
patients. Patients were randomly divided into training (n = 180) and validation (n =
78) cohorts. Based on radiomics features, radiomics score (RS) models were
developed for predicting KRAS proto-oncogene mutations. Furthermore, a
composite model combining mixedRS and epidermal growth factor receptor (EGFR)
mutation status was developed.

Results: Compared with CT model, the PET/CT radiomics score model exhibited
higher AUC for predicting KRAS mutations (0.834 vs. 0.770). By integrating EGFR
mutation information into the PET/CT RS model, the AUC, sensitivity, specificity, and
accuracy for predicting KRAS mutations were all elevated in the validation cohort
(0.921, 0.949, 0.872, 0.910 vs. 0.834, 0.923, 0.641, 0.782). By adding EGFR exclusive
mutation information, the composite model corrected 64.3% false positive cases
produced by the PET/CT RS model in the validation cohort.

Conclusion: Integrating EGFR mutation status has potential utility for the optimization
of radiomics models for prediction of KRAS gene mutations. This method may be used
when repeated biopsies would carry unacceptable risks for the patient.
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INTRODUCTION

Lung cancer is the leading cause of cancer death globally in 2022 (Sung et al., 2021; Siegel et al.,
2022). Non-small cell lung cancer (NSCLC) accounts for about 85% of total lung cancer cases
(Molina et al., 2008). Tyrosine kinase inhibitors (TKI) have clinical utility as the standard first-
line therapy drugs for NSCLC patients with mutations in genes encoding epidermal growth
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factor receptor (EGFR), anaplastic lymphoma kinase (ALK) or
ROS proto-oncogene 1 (ROS1) (Drusbosky et al., 2021;
Nagasaka et al., 2021; Popat et al., 2021). Therefore,
determination of genetic status is a prerequisite for
targeting therapy and avoiding treatments with little clinical
benefit (NCCN, 2022).

In NSCLC, over 80% of total gene mutations are accounted
for by EGFR (50%) and KRAS proto-oncogene (30%) (Hirsch
and Bunn, 2009; Skoulidis et al., 2021). EGFR-targeted TKIs
(EGFR-TKI), such as gefitinib, afatinib and osimertinib have
been widely used in the clinic. More recently, KRAS mutation-
targeting drugs, such as sotorasib (AMG510) and Adagrasib
(MRTX849), have been shown to elicit a 37.1–45% overall
response rate in clinical trials (Palma et al., 2021).
International guidelines have recommended testing for the
conventional mutations, EGFR, B-Raf, ALK and ROS1(Kerr
et al., 2021), in advanced NSCLC with KRAS only being
included in June 2021 (NCCN NSCLC guidelines). Current
ASCO, ESMO and CSCO guidelines do not include KRAS in
the list of testing recommendations. Whereas some patients
may have been tested for KRAS mutations to predict
responsiveness to EGFR-TKI therapy, many will only
receive mutation testing according to ESMO and ASCO
guidelines. For the latter group, knowledge of the KRAS
mutation status is particularly important to inform the
choice of newly developed KRAS mutation-targeting agents.
Repeated biopsies are invasive and next-generation sequencing
(NGS) is expensive (Santos et al., 2019; Kerr et al., 2021;
Mantilla et al., 2021). The non-invasive approach of
radiomics may provide a solution to prediction of KRAS
mutation status.

With recent advances in artificial intelligence, radiomics
has been widely used in the prediction of gene mutations (Mu
et al., 2020; Zhang et al., 2020), and the performance of these
radiomics models has been subject to continuous optimization
(Wu et al., 2021). To improve the accuracy in predicting gene
mutations, previous studies integrated various clinical
information, including smoking history, radiographic
features, and serum tumor markers into radiomics models
(Zhang et al., 2020; Chang et al., 2021; Ren et al., 2021; Weng
et al., 2021). However, because of the weak theoretical
connection between the above clinical information and
genetic mutations, a better optimization method may be
potentially achieved by integrating more directly relevant
genetic information.

Previous work has shown the mutual exclusivity of multiple
gene mutations, including EGFR and KRAS, a phenomenon
referred to as gene mutation mutual exclusion (Shigematsu
and Gazdar, 2006; Kim et al., 2015; Mok et al., 2016).
Therefore, in theory, EGFR mutation status should be
related to KRAS mutation status, an observation which
could be exploited in optimizing the accuracy of KRAS
radiomics models. The current study aims to verify whether
knowledge of EGFR mutation status could be used to improve
the accuracy of the radiomics model for predicting KRAS
mutation status based on 18F-FDG PET/CT multimodality
imaging data.

MATERIALS AND METHODS

Patients
We retrospectively analyzed the PET/CT images of NSCLC
patients diagnosed pathologically in Xijing Hospital from 2016
to 2020. A total of 258 NSCLC patients were screened, all of
which received EGFR and KRAS genetic testing at the primary
site of lung cancer. It should be noted that since KRAS is not a
conventional recommended target for testing in ESMO, CAP/
IASLC/AMP, and Pan-Asian guidelines, patients undergoing
additional sequencing are rare in current clinical practice
(Kerr et al., 2021). Inclusion criteria were: 1) confirmation
of NSCLC by pathology or cytology; 2) having undergone
18F-FDG PET/CT imaging; 3) primary lesion diameter > 1cm;
4) no history of other malignant tumors. Exclusion
criteria were: 1) having received radiotherapy or
chemotherapy before PET/CT examination; 2) poor PET/CT
image quality. This retrospective study was approved by the
Medical Ethics Committee of Xijing Hospital (Approval No.
KY20173008-1).

All cases were randomly assigned in a 7:3 ratio to the training
cohort (n = 180) or validation cohort (n = 78). All cases in the
training cohort were used to train the predictive model, while
cases in the validation cohort were used to independently evaluate
the model’s performance.

18F-FDG PET/CT Imaging
All patients received 18F-FDG PET/CT scans on the same
equipment (Biograph 40, Siemens), following a standard
clinical protocol (Delbeke et al., 2006). Briefly, patients were
required to fast for >6 h before the scan and exhibit blood glucose
control within 7.8 mmol/L. CT parameters were 100 kV,
110 mAs, 0.5 s rotation time, 3 mm slice thickness, 700 mm
field of view, and 512 × 512 matrix. For PET scanning,
4.44–5.55 MBq/kg of 18F-FDG was injected. Scanning was
initiated 60 min after tracer administration, with 3 min scans
per bed position. PET and CT images were reconstructed using an
ordered-subsets expectation-maximization algorithm with four
iterations and eight subsets (Kang et al., 2016; Kang et al., 2019;
Kang et al., 2020).

Tumor Segmentation, Feature Extraction,
and Selection
All regions of interest (ROI) were defined for PET/CT images by
two experienced nuclear medicine physicians using MITK
(Medical Imaging Interaction Toolkit v2018.04.2) software, as
described previously (Chang et al., 2021; Han et al., 2021; Wu
et al., 2021; Zhou H. et al., 2021). ROIs identified by CT were
manually outlined slice-by-slice by nuclear medicine physicians
in the lung window (WW: 1500HU, WL: −500HU). ROIs
identified from PET images were segmented by semi-
automatic outlining using the “region growing 3D tools” in
MITK software, referencing the 3D-ROI with a standard
uptake value (SUV) threshold of 40%. For lesion boundaries
close to the heart or chest wall, PET image ROIs were outlined
manually with reference to the CT image.
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SUVs of PET images were converted prior to feature
extraction. Radiomics features (including first order
features, texture features and shape features) were extracted
using the Pyradiomics software package (Koyasu et al., 2020;
Yu et al., 2021; Zhang et al., 2021; Zhou Y. et al., 2021). Nine
image filters (wavelet, lbp2D, lbp3D, Laplacian of Gaussian,
square root, square, gradient, logarithm, exponential) were
used to analyze high-dimensional image features. Sigma
parameters were 1.0, 2.0, 3.0, 4.0, 5.0 when using the
Laplacian of Gaussian filter. A bin width of 25 (CT) and 0.1
(PET) voxel and an array shift of 1000 (CT) and 0 (PET) were
used for feature extraction. All data were subjected to
standardized data preprocessing.

Feature selection was performed using univariate and
multivariate analyses with a stepwise selection method. To
avoid overfitting of the model, Spearman analysis was used to
determine the correlation between radiomics features and
KRAS gene mutations. The threshold for Spearman
correlation analysis was 0.3. Mann–Whitney U tests were
performed to identify features with a statistical threshold of
p < 0.05. Least absolute shrinkage and selection operator
(LASSO) was used to select optimal features (Zhang et al.,
2020).

Model Establishment, Comparison, and
Evaluation
CT radiomics score (RS) and mixed PET/CT RS (mixedRS)
were calculated for each patient based on the optimal feature
subsets screened by LASSO. A CT RS model and PET/CT RS
model were built by logistic regression. RS was then optimized
by incorporating EGFR mutation information to develop the
composite model by logistic regression. A nomogram was
constructed based on the composite model. Calibration
curves were plotted to evaluate the goodness of fit of the
prediction model and the three models were compared in
training and validation cohorts. Performance parameters
included the AUC, accuracy, sensitivity, specificity, false
positive rate (FPR), false negative rate (FNR) and Youden
index (YI). AUCs of the three models were compared by
Delong test. Decision curve analysis was performed to
compare the clinical benefit of the three models and data
balanced using the synthetic minority oversampling
technique (SMOTE). SMOTE is a powerful over-sampling
method that has shown a great deal of successes in class
imbalanced problems (Fotouhi et al., 2019). The minority
class is over-sampled by taking each sample and
introducing synthetic examples along the line segments
joining any/all of the nearest neighbors of the k minority
class (Chawla et al., 2002).

Statistical Analysis
All statistical analyses were performed using R software version
3.5.1 and Python software version 3.5.6. T-tests and
Mann–Whitney U tests were used to compare continuous
variables, while Chi-squared tests were used to compare

differences in categorical variables. A p-value <0.05 indicated
statistical significance.

RESULTS

Patient Characteristics
Clinical characteristics of the 258 patients in training and
validation cohorts are shown in Table 1. Chi-square testing
revealed that EGFR mutation was a significant predictor of
KRAS mutation in both the training and the validation cohorts
(both p < 0.001).

Feature Selection and RS Establishment
The scheme for establishment of the radiomics model is
presented in Figure 1. A total of 4306 features were
extracted in accordance with the image biomarker
standardization initiative (IBSI) (Zwanenburg et al., 2017).
After univariate analysis and LASSO screening, four features
were included in the CT RS model and 12 features in the PET/
CT RS model (4 CT plus 8 PET features; Figure 2;
Supplementary Material). The RS was calculated using the
Supplementary Formulae of RS. The CT RS and mixedRS was
significantly different between patients with KRAS mutations
and those with wild type KRAS in both the training and the
validation cohorts (both p < 0.001). See Supplementary Table
S1 for detailed information.

Comparison of the Three Models and the
Establishment of the Nomogram
In the validation cohort, the AUC, sensitivity, specificity,
accuracy and YI of the PET/CT RS model were superior to
the CT RS model (AUC: 0.834 vs. 0.770, sensitivity: 0.923 vs.
0.872, specificity: 0.641 vs. 0.615, accuracy: 0.782 vs. 0.744, YI:
0.564 vs. 0.487; Figure 3). Therefore, we established composite
model combining mixedRS and EGFR mutation information.
The composite model performed better than the PET/CT RS
model in both cohorts of the study, with an AUC of 0.928 (95%
CI [0.890, 0.965]) in the training cohort and 0.921 (95% CI
[0.856, 0.986]) in the validation cohort. The Delong test
revealed a significant difference between the AUC of the
PET/CT RS model and the composite model in both the
training and the validation cohorts (p < 0.001 and p =
0.012, respectively). Data used for comparison of the three
models are shown in Table 2. A PET RS model was constructed
in a similar manner (data shown in Table 2) for comparative
purposes, although PET examination alone is rarely used in
clinical practice.

The FPR of the composite model (12.8%) was significantly
decreased compared to the PET/CT RS model (35.9%) in
validation cohort, and no additional false negative error was
generated. In the validation cohort, the composite model
corrected 64.3% false positive errors generated by the PET/
CT RS model. The nomogram that integrates mixedRS and
EGFR was created for further clinical use in predicting KRAS
mutation status (Figure 4A). The nomogram calibration
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curves are presented in Figures 4B,C, which indicated good
consistency between the predicted and actual values.

Decision Curve Analysis
To evaluate the clinical usefulness of the established radiomics
models, decision curves were drawn (Figure 5). The composite
model had higher net benefit than CT RS model and PET/CT RS
model when the threshold probability reached <90%.

DISCUSSION

Two findings of the current study may be highlighted. Firstly,
three radiomics prediction models for KRAS mutations were

established: CT RS model, PET/CT RS model and composite
model combining mixedRS and EGFR. Addition of PET
information improved the accuracy of KRAS prediction.
Secondly, EGFR information was found to be of benefit in
establishing a radiomics model to predict KRAS mutation
status, a finding that has clinical significance for patients who
would otherwise have to suffer repeated biopsies. Relative to the
PET/CT RSmodel, the composite mixedRS and EGFR gene status
model showed improved accuracy and AUC for predicting KRAS
mutations without a significant effect on sensitivity.

Analysis of the RS formulae developed during the current
study revealed a link between radiomics features and gene
mutations. CT_wavelet-HHL_firstorder_Skewness, associated
with the asymmetry of value distribution about the mean, and

TABLE 1 | Characteristics of patients in predicting KRAS mutations.

Characteristic Training cohort (n = 180) Validation cohort (n = 78)

KRAS wild type
(n = 90)

KRAS mutant (n = 90) KRAS wild type
(n = 39)

KRAS mutant (n = 39)

Age, years (mean ± SD) 61.13 ± 11.26 64.76 ± 10.48 59.33 ± 10.76 64.18 ± 11.15
Gender
Male 61 (67.78%) 67 (66.67%) 21 (53.85%) 31 (79.49%)
Female 29 (32.22%) 23 (25.56%) 18 (46.15%) 8 (20.51%)

Smoking
Yes 52 (57.78%) 64 (71.11%) 20 (51.28%) 30 (76.92%)
No 38 (42.22%) 26 (28.89%) 19 (48.72%) 9 (23.08%)

CEA (ng/ml) 5.97 (3.20, 20.44) 4.57 (2.99, 6.52) 5.13 (2,65, 18.28) 4.60 (3.14, 10.35)
EGFR
Wild type 46 (51.11%) 90 (100.00%) 21 (53.85%) 39 (100.00%)
Mutant 44 (48.89%) 0 (0.00%) 18 (46.15%) 0 (0.00%)

SUVmax 9.85 (6.70, 13.07) 7.79 (5.14, 11.54) 9.48 (7.65, 13.79) 10.37 (6.85, 12.42)
MTV 30.50 (17.34, 98.34) 31.95 (19.02, 100.55) 24.11 (13.81, 64.65) 27.56 (18.94, 138.08)

Note: CEA, carcinoembryonic antigen; SUV, standard uptake value; MTV, metabolic tumor volume.

FIGURE 1 | Study workflow.
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CT_wavelet-LHH_gldm_DNUN, associated with the similarity
of dependence throughout the image, were both positively
correlated with KRAS mutations in both the CT RS model
and the PET/CT RS model. Furthermore, PET_lbp-
2D_gldm_GLV, associated with the variance in grey level, and

PET_lbp-2D_firstorder_Variance, associated with the squared
distances of each intensity value from the mean value, were
both negatively correlated with KRAS mutations.
Interpretation of the features of radiomics remains difficult
which limits the clinical applications. More research is

FIGURE 2 | The LASSO and 10-fold cross-validation were used to select the optimal radiomics features. 12 features corresponding to the optimal lambda values
were selected. (A) Mean square error path. (B) LASSO coefficient profiles of radiomics features.

FIGURE 3 | ROC curves of the three models for predicting KRAS mutations. (A) The ROC curve of the training cohort. (B) The ROC curve of the validation cohort.

TABLE 2 | Diagnostic performance of models for predicting KRAS mutations.

Model Training cohort Validation cohort

AUC (95%CI) Sen Spe Acc FPR(%) FNR
(%)

YI AUC (95%CI) Sen Spe Acc FPR(%) FNR
(%)

YI

CT RS model 0.813 (0.752,
0.873)

0.756 0.744 0.756 25.6 24.4 0.500 0.770 (0.664,
0.876)

0.872 0.615 0.744 38.5 12.8 0.487

PET RS model 0.840 (0.748,
0.932)

0.833 0.767 0.800 23.3 20.0 0.600 0.777 (0.705,
0.849)

0.615 0.897 0.756 10.3 38.5 0.512

PET/CT RS
model

0.858 (0.804,
0.912)

0.922 0.656 0.789 34.4 7.8 0.578 0.834 (0.742,
0.925)

0.923 0.641 0.782 35.9 7.7 0.564

Composite
model

0.928 (0.890,
0.965)

0.956 0.811 0.883 18.9 4.4 0.767 0.921 (0.856,
0.986)

0.949 0.872 0.910 12.8 5.1 0.821

Note: Sen: Sensitivity; Spe: Specificity; Acc: Accuracy; FPR: false positive rate; FNR: false negative rate; YI: Youden index; CI: confidence interval.

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 8625815

Wang et al. Radiomics for KRAS Mutation Prediction

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


required to verify the theoretical link between radiomic features
and clinical outcome.

Radiomics has been widely used in the prediction of genetic
mutations since 2012 with much effort being expended in
optimization of the approach. Zhang et al. combined clinical
information, such as smoking and gender, with a radiomics
model to improve the prediction of EGFR mutations in lung

cancer compared with a radiomics model alone (Zhang et al.,
2020). Although non-smoking women have been shown to be
more likely to have EGFR mutations (Lynch et al., 2004; Dogan
et al., 2012), there is still no direct correlation between this
clinical information and gene mutation status.

Expert consensus, represented by the latest NCCN
guidelines, affirms the existence of the mutually exclusive
phenomenon among genetic mutations, especially between
EGFR and KRAS genes (Marchetti et al., 2005; Amado
et al., 2008; Roosan et al., 2021; NCCN, 2022). Although
the mechanism is not fully understood, it may be that
tumors with KRAS mutations have already activated further
downstream effectors and removing the requirement for EGFR
mutations (NCCN, 2022). Therefore, the mutually exclusive
genetic phenomenon is more directly correlated to gene
mutation status than other clinical information. The current
study confirms that clinical information regarding EGFR can
be used to optimize radiomics algorithms for prediction of
KRAS gene mutations.

Hitherto, most patients have only been tested for mutations
in a limited number of genes, such as EGFR. With the advent of
KRAS-targeted drugs, including sotorasib, and RET-targeted,
pralsetinib (Thein et al., 2021), version 5.2021 of the NCCN
guidelines for NSCLC has been amended to indicate the need
for KRAS genetic testing. Puncture biopsy is risky with
potential outcomes such as pneumothorax, hemoptysis and
even death. However, the current findings demonstrate a non-
invasive method to predict KRAS status based on pre-existing
results of mutation testing. This method not only has
the potential to avoid secondary biopsies for patients at risk
but also to guide patient selection for new KRAS-
targeted drugs.

We acknowledge some limitations to the current study.
Firstly, as a single center retrospective study, few KRAS

FIGURE 4 | Development and performance of a nomogram. (A)
Nomogram establishment by integrating mixedRS and EGFR. Nomogram
calibration curves in the training (B) and validation (C) cohorts. The diagonal
dashed line represents a predicted value equal to the true value, and the
solid line is the model’s prediction of KRAS mutation. The closer the two lines
are, the better the performance.

FIGURE 5 | Decision curves of the three models. The green line
represents the composite model incorporating mixedRS and EGFR. The blue
and red lines represent CT RSmodel and PET/CT RSmodel, respectively. The
grey line indicates the assumption that all patients possess the gene
mutation, while the black line indicates the assumption that all patients
possess the wild type gene.
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mutation cases were included since KRAS was not routinely
tested. This limitation could be overcome by further validation
in multi-center studies with expanded sample sizes. Secondly,
only EGFR and KRAS mutations were investigated with other
mutations, such as ALK and ROS1, not included. The
prevalence of ALK and ROS1 mutations in NSCLC patients
is 2–7% and 1–2%, respectively, with the mutations only
occurring in 1.2% of patients enrolled in the current study.
More research is needed to confirm the value of ALK and ROS1
mutations in optimizing the radiomics model. Thirdly, the
current results were obtained from imaging data and samples
of primary lesions. Tumors are highly heterogeneous and
mutation status may differ between the primary and
metastatic lesions or even within a single lesion. Further
studies are warranted to address more complex issues
related to the heterogeneity of mutations. In conclusion,
although radiomics features are difficult to interpret, the
current approach may have utility as a complementary
method in the clinic, particularly among patients for whom
repeated biopsies carry unacceptable risks.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of Xijing Hospital. The ethics

committee waived the requirement of written informed consent
for participation.

AUTHOR CONTRIBUTIONS

JyW drafted the manuscript. JyW, XL, WH and SW collected the
data. ZQ, GL, YW, ZX, YY, XL and WM participated in the
design and coordination of the study. JyW and WH assisted with
data statistics and interpretation. WY, XC, FK and JW conceived
the presented idea. FK proofed the paper. All authors have read
and approved the final version of the manuscript.

FUNDING

This study was supported by the National Natural Science
Foundation of China (Grant Nos 91959208, 82122033,
81971646, 81871379) and the Natural Science Basic Research
Program of Shaanxi Province (No. 2021JQ-352).

ACKNOWLEDGMENTS

The authors would like to thank Zhoushe Zhao for his technical
assistance.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2022.862581/
full#supplementary-material

REFERENCES

Amado, R. G., Wolf, M., Peeters, M., Van Cutsem, E., Siena, S., Freeman, D. J., et al.
(2008). Wild-type KRAS Is Required for Panitumumab Efficacy in Patients with
Metastatic Colorectal Cancer. J. Clin. Oncol. 26 (10), 1626–1634. doi:10.1200/
jco.2007.14.7116

Chang, C., Zhou, S., Yu, H., Zhao, W., Ge, Y., Duan, S., et al. (2021). A Clinically
Practical Radiomics-Clinical Combined Model Based on PET/CT Data and
Nomogram Predicts EGFR Mutation in Lung Adenocarcinoma. Eur. Radiol. 31
(8), 6259–6268. doi:10.1007/s00330-020-07676-x

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE:
Synthetic Minority Over-sampling Technique. jair 16 (0), 321–357. doi:10.
1613/jair.953

Delbeke, D., Coleman, R. E., Guiberteau, M. J., Brown, M. L., Royal, H. D., Siegel, B.
A., et al. (2006). Procedure Guideline for Tumor Imaging with 18F-FDG PET/
CT 1.0. J. Nucl. Med. 47 (5), 885–895.

Dogan, S., Shen, R., Ang, D. C., Johnson, M. L., D’Angelo, S. P., Paik, P. K., et al.
(2012). Molecular Epidemiology of EGFR and KRAS Mutations in 3,026 Lung
Adenocarcinomas: Higher Susceptibility of Women to Smoking-Related
KRAS-Mutant Cancers. Clin. Cancer Res. 18 (22), 6169–6177. doi:10.1158/
1078-0432.Ccr-11-3265

Drusbosky, L. M., Dawar, R., Rodriguez, E., and Ikpeazu, C. V. (2021). Therapeutic
Strategies in METex14 Skipping Mutated Non-small Cell Lung Cancer.
J. Hematol. Oncol. 14 (1), 129. doi:10.1186/s13045-021-01138-7

Fotouhi, S., Asadi, S., and Kattan, M. W. (2019). A Comprehensive Data Level
Analysis for Cancer Diagnosis on Imbalanced Data. J. Biomed. Inform. 90,
103089. doi:10.1016/j.jbi.2018.12.003

Han, Y., Ma, Y., Wu, Z., Zhang, F., Zheng, D., Liu, X., et al. (2021). Histologic
Subtype Classification of Non-small Cell Lung Cancer Using PET/CT Images.
Eur. J. Nucl. Med. Mol. Imaging 48 (2), 350–360. doi:10.1007/s00259-020-
04771-5

Hirsch, F. R., and Bunn, P. A., Jr. (2009). EGFR Testing in Lung Cancer Is Ready for
Prime Time. Lancet Oncol. 10 (5), 432–433. doi:10.1016/s1470-2045(09)70110-x

Kang, F., Han, Q., Zhou, X., Zheng, Z., Wang, S., Ma,W., et al. (2020). Performance
of the PET Vascular Activity Score (PETVAS) for Qualitative and Quantitative
Assessment of Inflammatory Activity in Takayasu’s Arteritis Patients. Eur.
J. Nucl. Med. Mol. Imaging 47 (13), 3107–3117. doi:10.1007/s00259-020-
04871-2

Kang, F., Mu, W., Gong, J., Wang, S., Li, G., Li, G., et al. (2019). Integrating Manual
Diagnosis into Radiomics for Reducing the False Positive Rate of 18F-FDG
PET/CT Diagnosis in Patients with Suspected Lung Cancer. Eur. J. Nucl. Med.
Mol. Imaging 46 (13), 2770–2779. doi:10.1007/s00259-019-04418-0

Kang, F., Wang, S., Tian, F., Zhao, M., Zhang, M., Wang, Z., et al. (2016).
Comparing the Diagnostic Potential of 68Ga-Alfatide II and 18F-FDG in
Differentiating between Non-small Cell Lung Cancer and Tuberculosis.
J. Nucl. Med. 57 (5), 672–677. doi:10.2967/jnumed.115.167924

Kerr, K. M., Bibeau, F., Thunnissen, E., Botling, J., Ryška, A., Wolf, J., et al. (2021).
The Evolving Landscape of Biomarker Testing for Non-small Cell Lung Cancer
in Europe. Lung Cancer 154, 161–175. doi:10.1016/j.lungcan.2021.02.026

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 8625817

Wang et al. Radiomics for KRAS Mutation Prediction

https://www.frontiersin.org/articles/10.3389/fphar.2022.862581/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2022.862581/full#supplementary-material
https://doi.org/10.1200/jco.2007.14.7116
https://doi.org/10.1200/jco.2007.14.7116
https://doi.org/10.1007/s00330-020-07676-x
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1158/1078-0432.Ccr-11-3265
https://doi.org/10.1158/1078-0432.Ccr-11-3265
https://doi.org/10.1186/s13045-021-01138-7
https://doi.org/10.1016/j.jbi.2018.12.003
https://doi.org/10.1007/s00259-020-04771-5
https://doi.org/10.1007/s00259-020-04771-5
https://doi.org/10.1016/s1470-2045(09)70110-x
https://doi.org/10.1007/s00259-020-04871-2
https://doi.org/10.1007/s00259-020-04871-2
https://doi.org/10.1007/s00259-019-04418-0
https://doi.org/10.2967/jnumed.115.167924
https://doi.org/10.1016/j.lungcan.2021.02.026
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Kim, J. O., Lee, J., Shin, J. Y., Oh, J. E., Jung, C. K., Park, J. K., et al. (2015). KIF5B-RET
Fusion Gene May Coincide Oncogenic Mutations of EGFR or KRAS Gene in Lung
Adenocarcinomas. Diagn. Pathol. 10, 143. doi:10.1186/s13000-015-0368-z

Koyasu, S., Nishio, M., Isoda, H., Nakamoto, Y., and Togashi, K. (2020). Usefulness
of Gradient Tree Boosting for Predicting Histological Subtype and EGFR
Mutation Status of Non-small Cell Lung Cancer on 18F FDG-PET/CT.
Ann. Nucl. Med. 34 (1), 49–57. doi:10.1007/s12149-019-01414-0

Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A.,
Brannigan, B. W., et al. (2004). Activating Mutations in the Epidermal
Growth Factor Receptor Underlying Responsiveness of Non-small-cell Lung
Cancer to Gefitinib. N. Engl. J. Med. 350 (21), 2129–2139. doi:10.1056/
NEJMoa040938

Mantilla, W. A., Sanabria-Salas, M. C., Baldion, A. M., Sua, L. F., Gonzalez, D. M.,
and Lema, M. (2021). NGS in Lung, Breast, and Unknown Primary Cancer in
Colombia: A Multidisciplinary Consensus on Challenges and Opportunities.
JCO Glob. Oncol. 7, 1012–1023. doi:10.1200/go.21.00046

Marchetti, A., Martella, C., Felicioni, L., Barassi, F., Salvatore, S., Chella, A., et al.
(2005). EGFR Mutations in Non-small-cell Lung Cancer: Analysis of a Large
Series of Cases and Development of a Rapid and Sensitive Method for
Diagnostic Screening with Potential Implications on Pharmacologic
Treatment. J. Clin. Oncol. 23 (4), 857–865. doi:10.1200/jco.2005.08.043

Mok, T., Ladrera, G., Srimuninnimit, V., Sriuranpong, V., Yu, C. J., Thongprasert,
S., et al. (2016). Tumor Marker Analyses from the Phase III, Placebo-
Controlled, FASTACT-2 Study of Intercalated Erlotinib with Gemcitabine/
platinum in the First-Line Treatment of Advanced Non-small-cell Lung
Cancer. Lung Cancer 98, 1–8. doi:10.1016/j.lungcan.2016.04.023

Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E., and Adjei, A. A. (2008). Non-
small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and
Survivorship. Mayo Clin. Proc. 83 (5), 584–594. doi:10.4065/83.5.584

Mu,W., Jiang, L., Zhang, J., Shi, Y., Gray, J. E., Tunali, I., et al. (2020). Non-Invasive
Decision Support for NSCLC Treatment Using PET/CT Radiomics. Nat.
Commun. 11 (1), 5228. doi:10.1038/s41467-020-19116-x

Nagasaka, M., Zhu, V. W., Lim, S. M., Greco, M., Wu, F., and Ou, S. I. (2021).
Beyond Osimertinib: The Development of Third-Generation EGFR Tyrosine
Kinase Inhibitors for Advanced EGFR+ NSCLC. J. Thorac. Oncol. 16 (5),
740–763. doi:10.1016/j.jtho.2020.11.028

NCCN (2022). Login. Available at: https://www.nccn.org/professionals/physician_
gls/pdf/nscl.pdf (Accessed January 25, 2022).

Palma, G., Khurshid, F., Lu, K., Woodward, B., and Husain, H. (2021). Selective
KRAS G12C Inhibitors in Non-small Cell Lung Cancer: Chemistry, Concurrent
Pathway Alterations, and Clinical Outcomes.NPJ Precis Oncol. 5 (1), 98. doi:10.
1038/s41698-021-00237-5

Popat, S., Jung, H. A., Lee, S. Y., Hochmair, M. J., Lee, S. H., Escriu, C., et al. (2021).
Sequential Afatinib and Osimertinib in Patients with EGFR Mutation-Positive
NSCLC and Acquired T790M: A Global Non-interventional Study (UpSwinG).
Lung Cancer 162, 9–15. doi:10.1016/j.lungcan.2021.09.009

Ren, M., Yang, H., Lai, Q., Shi, D., Liu, G., Shuang, X., et al. (2021). MRI-based
Radiomics Analysis for Predicting the EGFR Mutation Based on Thoracic
Spinal Metastases in Lung Adenocarcinoma Patients. Med. Phys. 48,
5142–5151. doi:10.1002/mp.15137

Roosan, M. R., Mambetsariev, I., Pharaon, R., Fricke, J., Husain, H., Reckamp, K. L.,
et al. (2021). Usefulness of Circulating Tumor DNA in Identifying Somatic
Mutations and Tracking Tumor Evolution in Patients with Non-small Cell
Lung Cancer. Chest 160, 1095–1107. doi:10.1016/j.chest.2021.04.016

Santos, M., Coudry, R. A., Ferreira, C. G., Stefani, S., Cunha, I.W., Zalis, M. G., et al.
(2019). Increasing Access to Next-Generation Sequencing in Oncology for
Brazil. Lancet Oncol. 20 (1), 20–23. doi:10.1016/s1470-2045(18)30822-2

Shigematsu, H., and Gazdar, A. F. (2006). Somatic Mutations of Epidermal Growth
Factor Receptor Signaling Pathway in Lung Cancers. Int. J. Cancer 118 (2),
257–262. doi:10.1002/ijc.21496

Siegel, R. L., Miller, K. D., Fuchs, H. E., and Jemal, A. (2022). Cancer Statistics,
2022. CA Cancer J. Clin. 72 (1), 7–33. doi:10.3322/caac.21708

Skoulidis, F., Li, B. T., Dy, G. K., Price, T. J., Falchook, G. S., Wolf, J., et al. (2021).
Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 384
(25), 2371–2381. doi:10.1056/NEJMoa2103695

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.
(2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
MortalityWorldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 71 (3),
209–249. doi:10.3322/caac.21660

Thein, K. Z., Velcheti, V., Mooers, B. H. M., Wu, J., and Subbiah, V. (2021).
Precision Therapy for RET-Altered Cancers with RET Inhibitors. Trends
Cancer 7, 1074–1088. doi:10.1016/j.trecan.2021.07.003

Weng, Q., Hui, J., Wang, H., Lan, C., Huang, J., Zhao, C., et al. (2021). Radiomic
Feature-Based Nomogram: A Novel Technique to Predict EGFR-Activating
Mutations for EGFR Tyrosin Kinase Inhibitor Therapy. Front. Oncol. 11,
590937. doi:10.3389/fonc.2021.590937

Wu, G., Jochems, A., Refaee, T., Ibrahim, A., Yan, C., Sanduleanu, S., et al. (2021).
Structural and Functional Radiomics for Lung Cancer. Eur. J. Nucl. Med. Mol.
Imaging 48, 3961–3974. doi:10.1007/s00259-021-05242-1

Yu, Z., Ji, H., Xiao, J., Wei, P., Song, L., Tang, T., et al. (2021). Predicting Adverse
Drug Events in Chinese Pediatric Inpatients with the Associated Risk Factors: A
Machine Learning Study. Front. Pharmacol. 12, 659099. doi:10.3389/fphar.
2021.659099

Zhang, J., Zhao, X., Zhao, Y., Zhang, J., Zhang, Z., Wang, J., et al. (2020). Value of
Pre-therapy 18F-FDG PET/CT Radiomics in Predicting EGFR Mutation Status
in Patients with Non-small Cell Lung Cancer. Eur. J. Nucl. Med. Mol. Imaging
47 (5), 1137–1146. doi:10.1007/s00259-019-04592-1

Zhang, M., Tong, E., Wong, S., Hamrick, F., Mohammadzadeh, M., Rao, V., et al.
(2021). Machine Learning Approach to Differentiation of Peripheral
Schwannomas and Neurofibromas: A Multi-Center Study. Neuro Oncol.
noab211. doi:10.1093/neuonc/noab211

Zhou, H., Hu, Y., Luo, R., Zhao, Y., Pan, H., Ji, L., et al. (2021). Multi-region Exome
Sequencing Reveals the Intratumoral Heterogeneity of Surgically Resected Small
Cell Lung Cancer. Nat. Commun. 12 (1), 5431. doi:10.1038/s41467-021-25787-x

Zhou, Y., Ma, X. L., Zhang, T., Wang, J., Zhang, T., and Tian, R. (2021). Use of
Radiomics Based on 18F-FDG PET/CT and Machine Learning Methods to Aid
Clinical Decision-Making in the Classification of Solitary Pulmonary Lesions:
an Innovative Approach. Eur. J. Nucl. Med. Mol. Imaging 48 (9), 2904–2913.
doi:10.1007/s00259-021-05220-7

Zwanenburg, A., Leger, S., Vallières, M., and Lock, S. (2017). Image Biomarker
Standardisation Initiative. Available at: https://arxiv.org/abs/1612.07003v11
(Accessed January 25, 2022).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Wang, Lv, Huang, Quan, Li, Wu, Wang, Xie, Yan, Li, Ma, Yang,
Cao, Kang and Wang. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 8625818

Wang et al. Radiomics for KRAS Mutation Prediction

https://doi.org/10.1186/s13000-015-0368-z
https://doi.org/10.1007/s12149-019-01414-0
https://doi.org/10.1056/NEJMoa040938
https://doi.org/10.1056/NEJMoa040938
https://doi.org/10.1200/go.21.00046
https://doi.org/10.1200/jco.2005.08.043
https://doi.org/10.1016/j.lungcan.2016.04.023
https://doi.org/10.4065/83.5.584
https://doi.org/10.1038/s41467-020-19116-x
https://doi.org/10.1016/j.jtho.2020.11.028
https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf
https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf
https://doi.org/10.1038/s41698-021-00237-5
https://doi.org/10.1038/s41698-021-00237-5
https://doi.org/10.1016/j.lungcan.2021.09.009
https://doi.org/10.1002/mp.15137
https://doi.org/10.1016/j.chest.2021.04.016
https://doi.org/10.1016/s1470-2045(18)30822-2
https://doi.org/10.1002/ijc.21496
https://doi.org/10.3322/caac.21708
https://doi.org/10.1056/NEJMoa2103695
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.trecan.2021.07.003
https://doi.org/10.3389/fonc.2021.590937
https://doi.org/10.1007/s00259-021-05242-1
https://doi.org/10.3389/fphar.2021.659099
https://doi.org/10.3389/fphar.2021.659099
https://doi.org/10.1007/s00259-019-04592-1
https://doi.org/10.1093/neuonc/noab211
https://doi.org/10.1038/s41467-021-25787-x
https://doi.org/10.1007/s00259-021-05220-7
https://arxiv.org/abs/1612.07003v11
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

	Establishment and Optimization of Radiomics Algorithms for Prediction of KRAS Gene Mutation by Integration of NSCLC Gene Mu ...
	Introduction
	Materials and Methods
	Patients
	18F-FDG PET/CT Imaging
	Tumor Segmentation, Feature Extraction, and Selection
	Model Establishment, Comparison, and Evaluation
	Statistical Analysis

	Results
	Patient Characteristics
	Feature Selection and RS Establishment
	Comparison of the Three Models and the Establishment of the Nomogram
	Decision Curve Analysis

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


