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Abstract

Masked point modeling (MPM) has gained considerable attention in self-supervised learning for 3D point clouds. While ex-
isting self-supervised methods have progressed in learning from point clouds, we aim to address their limitation of captur-
ing high-level semantics through our novel attention-guided masking framework, Point-AGM. Our approach introduces an
attention-guided masking mechanism that selectively masks low-attended regions, enabling the model to concentrate on recon-
structing more critical areas and addressing the limitations of random and block masking strategies. Furthermore, we exploit
the inherent advantages of the teacher-student network to enable cross-view contrastive learning on augmented dual-view
point clouds, enforcing consistency between complete and partially masked views of the same 3D shape in the feature space.
This unified framework leverages the complementary strengths of masked point modeling, attention-guided masking, and con-
trastive learning for robust representation learning. Extensive experiments have shown the effectiveness of our approach and
its well-transferable performance across various downstream tasks. Specifically, our model achieves an accuracy of 94.12% on
ModelNet40 and 87.16% on the PB-T50-RS setting of ScanObjectNN, outperforming other self-supervised learning methods.

Keywords: Point Cloud Processing, Self-Supervised Learning, Self-Distilling, Mask Modeling.
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1. Introduction

Deep learning has demonstrated remarkable success in various
computer vision domains, including 3D point cloud analysis. How-
ever, most existing deep learning methods rely heavily on manu-
ally annotated data, which can be time-consuming and expensive
to obtain. To address this limitation, self-supervised learning has
emerged as a promising paradigm that leverages intrinsic signals
within unlabeled data to learn representations. In natural language
processing (NLP) [BMR*20] [RWC*19] [DCLT19] and computer
vision [ZWW?*21] [HCX*22] [WFX*22], self-supervised learning
has significantly improved performance while reducing reliance
on labeled data. Consequently, the application of self-supervised
learning for 3D point cloud representation learning has gained
significant interest. Recent works have proposed self-supervised
tasks including orientation estimation [PJQ*20], occlusion comple-
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tion [WLY*21], contrast learning [XGG*20] [ZGIM21] [San20]
[HXZZ21], and reconstruction [XWZ*24] [PWT*22] [YTR*22].

Among these various pretext tasks, masked point modeling has
emerged as a method of considerable interest, leveraging the recon-
struction of masked regions within input point clouds to learn rich
representations. By integrating strategies including pre-trained tok-
enization [YTR*22], affine transformations [ZLL*23], multi-scale
encoders [ZGG*22], and multi-ratio masking [TLX*23], masked
auto-encoders have demonstrated promising performance. How-
ever, most masking strategies rely on random or block masking,
which can potentially damage the integrity of information within
critical areas to a certain extent. Inspired by Attmask [KGP*22]
for 2D images, our method introduces an attention-guided masking
mechanism to mask low-attended regions, allowing the model to
concentrate on reconstructing the more critical areas.

Moreover, most masked point modeling methods understand the
local geometric features by recovering low-level structural proper-
ties, such as coordinates [PWT*22] and normal vectors [ZLH*22].
However, there remains an opportunity to leverage the potential for
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recovering higher-level semantics. To resolve this limitation, the
present work investigates the capability of masked point modeling
to recover missing high-dimensional features based on a teacher-
student architecture. This approach allows the model to align the
representations learned from complete and partially masked views
of the same 3D shape, benefiting from the regularization effects of
self-distillation.
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Figure 1: Our updated cross-view consistency learning vs. others.

Complementary to self-distillation, contrastive learning methods
leverage the idea of maximizing the similarity between augmented
views of the same point cloud while minimizing the similarity be-
tween different point clouds. Exploiting the inherent advantages
of the teacher-student network architecture, we incorporate cross-
view consistency learning on augmented dual-view point clouds,
further enhancing the performance of the pre-trained model. As
shown in Figure 1, unlike prior works relying solely on intra-view
correspondences to learn cross-view consistency, our method em-
ploys an updated formulation that enforces both inter-view and
intra-view consistency. Through the use of masked point model-
ing, our approach learns inter-view consistency between a complete
augmented view of a point cloud object and another augmented
view where the same object has been partially masked in feature
space, using an inter-view distillation loss. In addition, we enforce
intra-view consistency by using the mask prediction loss training
the model to match the patch-level semantics of masked regions to
their complete counterparts.

In this paper, we propose Point-AGM, a novel self-supervised
learning framework that combines masked point modeling and
cross-view similarity learning with an attention-guided masking
strategy. By jointly optimizing these complementary objectives
across augmented views, our framework learns rich representations
that encode local geometry, global semantics, and view-invariant
properties of 3D shapes. Extensive experimental results on vari-
ous 3D point cloud benchmarks demonstrate that our Point-AGM
achieves comparable performances with existing self-supervised
approaches.

Our contribution can be summarized as follows:

(1) We propose a novel self-supervised learning method for point
cloud analysis with attention-guided masking. To the best of our
knowledge, this is the first work to employ an attention-guided
mechanism for masking in the context of 3D point clouds.

(2) We leverage the teacher-student architecture to enable cross-
view contrastive learning on augmented dual-view point clouds, en-
forcing consistency between complete and partially masked views
of the same 3D shape in the feature space.

(3) We jointly optimize the network through reconstruction,

intra-view mask prediction loss, and inter-view consistency loss.
Such joint optimization enables the network to extract rich point
cloud attributes from low-level coordinates and normal vectors to
high-level semantics.

(4) Extensive experiments have demonstrated the effectiveness
and transferability of our Point-AGM in diverse downstream tasks.
Specifically, an accuracy of 94.12% is achieved on ModelNet40,
exceeding Point-MAE by 0.12% at the large number of inputs.

2. Related Work
2.1. Self-supervised Learning of Point Clouds

Due to the high costs of point cloud annotation, self-supervised
learning for point clouds has gained significant attention. The
essence involves formulating a pretext task to generate a supervised
signal from input data, acquiring a more profound understanding of
semantic knowledge.

Recently, self-supervised learning [PJQ*20] [XWZ*24]
[YTR*22] [ZLL*23] [ADD*22] [GZQ*23] [GFP24] [TRWZ23]
[LCL22] has demonstrated efficiency in different pretext tasks.
The primary frameworks for self-supervised learning encompass
contrastive learning models and generative models. Contrastive
learning [XGG*20] [ZGIM21] [San20] [HXZZ21] [ADD*22]
makes the features of different augmented views of the same
sample closer together and the features of different samples further
away. PointConstast [XGG*20] achieves 3D representation learn-
ing by comparing corresponding points observed from different
camera perspectives. STRL [HXZZ21] engages in self-supervised
learning to obtain an invariant representation from two spatially
augmented temporally correlated frames within a 3D point cloud
sequence.

Meanwhile, generative models [WLY*21] [XWZ*24]
[PWT*22] [YTR*22] [LCL22] [ZWM*22] learn features by
self-reconstruction. CP-Net [XWZ*24] learns the semantic content
of point clouds by perturbing the contours of point clouds to gener-
ate damaged point clouds. Inspired by the significant achievements
in masked image modeling, several recent approaches for point
clouds have adopted masking techniques. Point-BERT [YTR*22]
employs a point cloud tokenizer to predict the discrete token of
the mask portion, while Point-MAE [PWT*22] directly predicts
the original coordinates of the masked token. However, contrastive
approaches do not explicitly leverage local contextual relation-
ships. Meanwhile, generative modeling self-supervision aims to
reconstruct input geometry but omits high-level semantics. In
contrast, our method utilizes a pretext task that leverages both
fine-grained geometric contexts and their interactions to learn
high-level semantic representations.

2.2. Masked Modeling

Self-supervised learning has garnered significant attention regard-
ing the pretext task, particularly the mask prediction method. GPT
[BMR*20] [RWC*19] and BERT [DCLT19] perform exception-
ally in NLP when applied to fine-tune tasks through masking lan-
guage modeling. Inspired by this, many studies have also emerged
in masked image modeling [ZWW?*21] [HCX*22] [WFX*22]
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[BHX*22] [BDPW21]. BEiT [BDPW21] employs a dVAE [Rol16]
to match image patches and pre-training visual transformers for
discrete visual tokens to reconstruct visual tokens corresponding
to mask patches. In contrast, iBOT [ZWW*21] uses a teacher-
student framework instead of a tokenizer in self-supervised learn-
ing. MAE [HCX*22] efficiently reconstructs the original pixel
of the mask patch. MaskFeat [WFX*22] uses the HOG feature
as the reconstruction target for self-supervised learning. Attmask
[KGP*22] performs an efficient attention-guided mask for image
patches based on the self-attention matrix. Point-BERT [YTR*22]
and Point-MAE [PWT*22] extend the applicability of BEiT and
MAE to the domain of point clouds. Subsequently, Point-M2AE
[ZGG*22] introduces hierarchical transformers to learn multi-scale
representations of point clouds. Point-MA2E [ZLL*23] performs
an affine transformation to enhance the model’s learning efficiency.
Point-LGMask [TLX*23] uses both global and local contexts as
self-supervised signals to learn richer knowledge. Prior work has
applied masked modeling to point clouds by block or random sub-
sets of input points. However, block/random masking limits predic-
tive performance. Our approach instead designs attention-guided
masking, which better preserves highly attended regions.

2.3. Knowledge Distillation

Knowledge distillation is one of the methods to improve model per-
formance, mainly by training a small network to simulate the out-
put of a larger network. The conventional approach to knowledge
distillation involves using a pre-trained and fixed teacher network,
leading to compromised effectiveness in model learning. In con-
trast, dynamic knowledge distillation, which involves simultane-
ous training and information extraction from both teacher and stu-
dent branches, is more favorable for model learning. Notably, self-
distillation has recently surfaced in computer vision [ZWW*21]
[CTM*21] [JKY*23] and 3D point clouds [CSR*23] [SKSZ24],
aiming to acquire knowledge from past iterations of the model
itself. Existing distillation methods applied to point clouds com-
monly learn consistency between different transformations of en-
tire views. Additionally, some methods [ZSHL23] optimize con-
sistency between untransformed views where one is a complete
point cloud and the other contains a masked region. In contrast,
our self-distillation approach optimizes consistency between dif-
ferent transformations of complete-masked views. This harder pre-
training helps extract more robust features compared to cross-view
consistency alone.

3. Methodology

We present a novel self-supervised learning framework for 3D
point clouds that synergistically combines cross-view consistency
learning and masked auto-encoding. To facilitate effective train-
ing, we preprocess the data by transforming the point clouds into
augmented views, extracting local point patches within each view,
and embedding them to capture local geometric contexts. Our ap-
proach then introduces an attention-guided masking mechanism,
that leverages the inherent properties of the self-attention module
to identify and mask less salient regions of the input point clouds
during training. Based on self-distillation, we incorporate a teacher-
student architecture to align the representations learned from com-
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plete and partially masked point cloud views. By jointly optimizing
the complementary objectives across multiple augmented views of
the same 3D shape, our framework learns rich representations that
encode local geometry, global semantics, and view-invariant prop-
erties, enabling effective transfer learning to various downstream
tasks. The overall framework of the proposed network is shown in
Figure 2.

3.1. Dual-View Patch Embedding

Our cross-view learning network requires dual augmented views of
the 3D point cloud as input. Thus, we reprocess the point cloud data
to generate suitable input for the dual branches, as shown in Figure
2(a).

3.1.1. Dual-View Generation

Point clouds X € R¥*¢ are obtained from ShapeNet [CFG*15],
containing W points where each X; comprises (x,y,z) position co-
ordinates and normal vector components. Dual views of a single
input are generated by a random combination of transformations,
which helps the network to learn the inherent consistency between
distinct views. Specifically, given input point clouds X, we trans-
form the point clouds into views X“ and X". The transformations
we used include random rotation, scaling and unit sphere transfor-
mation.

3.1.2. Patch Extraction

Local patches are extracted from each view. For X“, Farthest Point
Sample (FPS) firstly samples N center points C* € RY*3. Around
each central point C}', K neighboring points selected using the K-
Nearest Neighbor (KNN) algorithm form a point patch. The point
patches P* € RV *K*® are then normalized by subtracting the cen-
ter coordinates. In P*, point positions O* € RVXKX3 constitute in-
puts to the network alongside ground truth for the reconstruction
task. Meanwhile, normal vectors E € RV K>3 specifically super-
vise the prediction of surface orientations.

3.1.3. Patch Embedding

Lastly, we embed point positions to tokens 7" € RNXD1 by employ-
ing a lightweight PointNet [QSMG17], which consists of multi-
layer perceptrons (MLPs) and max-pooling layers. We apply the
same process to embed the view X”. The dual-view embedded to-
kens {T“,T"} serve as the input to our joint learning network, al-
lowing it to leverage view consistency during training.

3.2. Attention-Guided Masking

Inspired by AttMask [KGP*22], we attempt to leverage the intrin-
sic properties of the self-attention mechanism towards masking. As
shown in Figure 2(b), taking the attention matrix computed by the
teacher encoder fr as guidance, the masks are generated for MPM.

Complete dual-view tokens {T“,T"} are first processed by the
teacher branch. For each view, the multi-head self-attention layer
of the teacher encoder utilizes three linear layers to map these em-
beddings into three sequences: query points Q;, key points K;, and
key values V;, where M represents the number of multi-heads, Q;,
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Figure 2: The overall framework of our Point-AGM. (a) Firstly, given a point cloud X, two augmented views X", X" are randomly generated
through transformations. Each view uses FPS and KNN to obtain GT position patches and GT normal patches. A Mini-PointNet then
processes the GT position patches to obtain the input of the teacher branch fr. (b) Secondly, the teacher branch fr generates mask vectors
based on the attention matrix indicating the regions to be masked in each view. (c¢) The student branch fs o dg takes masked patches as input
and gains predicted position and normal patches via prediction head g. The student branch is updated by jointly optimizing four loss items
(Lpos; Lunorm,Lspm , Lais). The first three losses are used for the intra-view mask recovery, and the last loss is used to learn the cross-view
global semantic consistency.

K;, Ve RN*D s Dl = D /M. The average attention matrix can be
defined as:
0K}

_ 1M
A= — Sy i=1,....M 1
M;"(\/HW S M

where 6 denotes the soft-max function.

With the additional [CLS] token participating in network train-
ing, AttMask regards the [CLS] token as a reference. As a sim-
pler version, we conserve computing resources by eliminating the
[CLS] token while estimating the saliency distribution based on all
tokens. Specifically, for each token, we constitute the average of
the attention scores towards all other tokens for their extent of im-
portance. The average attention matrix @/ serves as the reference
for masking:

n
arEf _ Zai,j )
i=1

where @; ; is the i, j-th element of A.

With a selected mask rate r € [0,1], the 3 = rN tokens with
the lowest importance scores are chosen to be masked. To achieve
this, we construct a permutation function A mapping the sorted
element indices of @/ in ascending order to the original in-
dices. According to A, the masked indices are denoted as Hp :=
{A(1),A(2),...,A(d)}. Therefore, the eventual mask vector /5 can
be expressed as:

1, ificH,
ha (i) _{ 0, otherwise 3)

wherei=1,2,...,N. Incorporating this masking method into MPM
models, the obscuring of crucial regions of point clouds are pre-
vented by substituting non-critical regions. In this way, the model
can concentrate more on feature learning in critical regions.

Another version of our strategy builds another function V in de-
scending order, which aims to mask the most important tokens. For

i=1,2,...,N, the mask vector is denoted as:
N 1, ifi€eHy
he (i) = { 0, otherwise @
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Our experimental results demonstrate that masking unimportant
regions more effectively improves performance than masking more
critical areas. While more excellent masking reduces training data,
focusing on key regions mitigates performance degradation.

3.3. Auto-Encoder with Self-Distillation

As depicted in Figure 2(c), we propose a teacher-student frame-
work to distill knowledge from the complete semantics of 3D point
clouds. At the core of both networks is a shared standard Trans-
former encoder f that acts as the backbone feature extractor.

3.3.1. Teacher Branch

Our teacher encoder fr takes complete tokens {T% TV} from
two views as input, its intermediate outputs are used to com-
pute view-specific masking probabilities as described previously.
Through multiplication with the complete tokens, the visible to-
kens {7y, Ty;s} are produced and fed to the student network fs, to
generate predictions for multiple tasks.

The last layer of fr outputs patch-level encoded features. For
T“, the features Ef' € RV *P2 encoding all unmasked regions are
computed as:

Ef = fi(T") o)

Symmetrically, features E} = f;(T") capture the semantics of
unmasked regions from the alternative view T".

3.3.2. Student Branch

The student network incorporates the shared encoder into its own
architecture. In addition to the encoder f;s, the student contains a
decoder module ds after the encoded representations, as well as a
prediction head g to reconstruct the original inputs. For the vis-

ible tokens T, the student encoder extracts the features El;, €

R(l—r)Nng'
ws fS( vzs) (6)

To decode the latent features, a lightweight 4- block decoder dj is
used. It takes E'%; and the masked tokens T“ ., € R™*P? to recover

the masked features:

Dmmk =ds (EHS7 Tmask) @)

rN XDy
where D), € R .

To further reconstruct the mask coordinates and the correspond-
ing normal vectors, we map D}, into predictive vectors through
the prediction head g (a fully connected layer). The vectors are re-
shaped to match the dimensions of the input points P*, then cut into
predicted coordinates O% € R™ 3 and normal vectors E* € R™N*3:

O, E" = Cut(Reshape(g(Dpqst))) ®

Following the same procedure, the recovered features D), €

RNXD2 the predicted point positions O* € R™*3 and normal vec-

tors E € R™>3 for another view are generated in parallel.
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3.3.3. Parameters Update

The teacher network parameters 8’ are derived from the student
parameters 6° via an exponential moving average (EMA) strat-
egy. Specifically, 8' is updated according to 6 < a@’ + (1 — )8°,
where o € [0,1) is a momentum coefficient to control the update
frequency.

3.4. Joint Optimization Across Views

To obtain robust features that can be effectively generalized into di-
verse downstream tasks, we jointly optimize our network by min-
imizing distinct loss functions in a combined training procedure.
By leveraging mask prediction and dual-view inputs, our method
optimizes the network through three main loss functions during
training: reconstruction loss, intra-view mask prediction loss, and
inter-view distillation loss.

3.4.1. Intra-View Reconstruction Loss

To directly evaluate the performance of our mask surface predic-
tion, we formulate two loss functions measuring how well the
model can reconstruct masked point coordinates and normal vec-
tors within each view.

For view u, given the ground truth coordinate patches O" and the
corresponding normal patches E¥. We denote the predicted mask
coordinate patch 0% and its corresponding normal vector E* For
point position reconstruction, we employ the CD loss to measure
the divergence between true and predicted point coordinates:

A~ 2 1
min |0 —of min [|o} —o¥|3
u§0“ i 60“ ' |0 | 0 ;0“0 ‘€0 ,
©))

Normal vector reconstruction is evaluated using Position-
Indexed Normal Distance (PIND) [ZLH*22] to measure the pre-
dictive performance of a paired position normal vector patch:

u
Lpos =

L
|0~

Ul
norm Zd €€ argmm,e[lﬂHe 79“||2 + Zd € argmm,ely]He “H%)

l—l
(10
where 0;,0; € R are the i,j-throw of O, 6;,0; € R? are the i, j-th
row of 0, ¢;,é; € R? are the i-th row of E,E, d(e;,é;) is the absolute
cosine angle distance between two normal vectors:
é;

d =1-
(e =1~ | T

B | an

The total intra-view reconstruction loss is a weighted combina-
tion of positional and normal losses:

LVEC = LZOS + L‘[/)()X + a(Lanm + L;;orm) (12)

where hyperparameter o balances the relative importance of po-
sition and normal reconstruction terms. Our model learns to infer
occluded surface geometry at a local level by optimizing this com-
bined objective during training.

3.4.2. Intra-View Mask Prediction Loss

This loss quantifies the extent to which the high-dimensional se-
mantic features of locally masked point clouds can be recovered
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within individual views. We use smooth L1 loss for mask predic-
tion optimization:

1

Liipy = 5 Ii (13)
i

Nl

1

= { 0.5(er; _dly)27 if ler —dj'| <1 (14)

let; —di'| — 0.5, otherwise

where 8 is the set of mask patches indices and & = rN, e, is the
i-th of the target value Ef* of the teacher branch, d}' is the i-th pre-
dicted value D;, . of the student branch. Total mask prediction
loss Lyrpayr = Liypas + Lyypas €ncourage representational coherence
as predictions within each view must reconstruct locally masked
information.

3.4.3. Inter-View Distillation Loss

To achieve better self-distillation, we align the global semantic fea-
tures of complete and visible regions across different views. For the
teacher branch, we obtain the global features via average-pool from
patch-level features:

ZM,ZV =Avg — Pool(E,“)7Avg - POOZ(EZV) (15)

The student branch uses a projection head J consisting of two
linear layers and an activation function to get the global semantics
of the student branch:

Z\Ijiwzzis = AVg - POO[(DZask) >AVg - POOI(DI‘;msk) (16)

We compute inter-view losses in two directions: from the visible
regions of view u to the complete view v, as well as from the com-
plete view u to the visible portion of view v. The u — v distillation
loss is calculated via smooth L1 loss as follows:

) O.S(Zuizv‘v)Z if |ZM*Z‘:‘ | <1
Ll”, — vis) o g Vis 17
dis |z — 20| — 0.5,  otherwise a7

Total distillation loss Lg; = Liji, +Lyj;; enforces our model learn-

ing consistency between feature representations extracted from dif-
ferent parts of the same 3D object when observed from diverse
viewpoints.

The overall loss function is defined as:

Lay = Lyec +Lypy + Ly (18)

4. Experiments

In this section, we first introduce the pre-training setup of our
model on the ShapeNet [CFG* 15] dataset. Subsequently, we eval-
uate our method on downstream tasks, including object classifica-
tion, part segmentation, and few-shot learning. Then, we explore
various mask strategies and rates and visualize the corresponding
mask effects. Finally, we conduct extensive ablation studies to ver-
ify the efficiency of the model.

4.1. Pre-training settings
4.1.1. Dataset

We pre-train our Point-AGM on ShapeNet, which contains 57,448
synthetic 3D shapes of 55 categories. We sample 1024 points from
the 3D model and group them into 64 patches, where each patch
contains 32 points. During the pre-training phase, we implement
data augmentations by randomly scaling and translation.

4.1.2. Training setups

We use Transformer blocks utilizing 12 blocks with an internal di-
mension of 384 in both the teacher and student encoders. For the
decoder of the student branch, we only use 4 Transformer blocks to
make the model lightweight. We sort the attention matrix in ascend-
ing order, employing an 80% mask rate, and setting 6 heads for all
the attention modules. We employ the AdamW [LH18] optimizer
with a weight decay of 0.05 and a learning rate of 0.001 with the
cosine decay [LH16]. We pre-train our model for 800 epochs with
a batch size of 32. Following data2vec [BHX*22], we set p = 2 for
the Smooth L1 loss and average the last K=6 blocks of the teacher
branch. The model is trained on an GeForce RTX 4090 GPU and
takes around 2 days.

4.2. Downstream Tasks

We evaluate the experimental results on downstream tasks, includ-
ing object classification, few-shot learning, and part segmentation.
In the context of downstream tasks, we exclusively retain the stu-
dent network and append a task-specific head onto it.

4.2.1. Object Classification

We evaluate our method on object classification datasets of Mod-
elNet40 [WSK*15] and ScanObjectNN [UPH* 19]. The commonly
used ModelNet40 datasets consist of 12,311 clean 3D CAD mod-
els, covering 40 object categories, while the challenging real-world
ScanObjectNN datasets consist of about 15,000 objects from 15
categories. During the training and testing phases, 1024 points
with normal vectors are sampled and data augmentations includ-
ing scaling, centering, and rescaling to the unit sphere, are em-
ployed. For fair comparisons, we also use the standard voting
method [LFXP19]. The combined mean-pool and max-pool val-
ues of the Transformer encoder are input into a 3-layer MLP with
dropout of 0.5 as our classification header.

The comparison of classification results on the ModelNet40
datasets is shown in Table 1. With the same input, we achieve state-
of-the-art performance compared to other self-supervised meth-
ods and the accuracy is 94.12%. Compared with Point-BERT
[YTR*22] and Point-MAE [PWT*22], our model increases by
0.92% and 0.32%, respectively. In addition, when we increase the
number of inputs, compared with some self-supervised methods,
our model also achieves a good performance improvement, even
surpassing the performance of Point-MAE with 8192 inputs.

Table 2 shows the comparison classification results on the
ScanObjectNN datasets. We validate our pre-training models on
the real-world datasets of ScanObjectNN, including three vari-
ants OBJ-BG, OBJ-ONLY and PB-T50-RS. Unlike ModelNet40
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Table 1: Object classification on ModelNet40 (%). [S] represents
fine-tuned results after self-supervised pre-training.

Methods Input  Accuracy
PointNet [QSMG17] 1k 89.20
DGCNN [WSL*18] 1k 92.90
Transformer [VPU*17] 1k 91.40
[S] Transformer+OcCo [WLY *21] 1k 92.10
[S]Point-BERT [YTR*22] 1k 93.20
[S]MaskSurf [ZLH*22] 1k 93.40
[S]Point-MAE [PWT*22] 1k 93.80
[S]3D-OAE [ZWM™*22] 2k 93.40
Transformer [VPU*17] 4k 91.20
[S] Transformer+OcCo [WLY *21] 4k 92.20
[S]Point-BERT [YTR*22] 4k 93.40
[S]Point-BERT [YTR*22] 8k 93.80
[S]Point-MAE [PWT*22] 8k 94.04
[S]Point-AGM(Ours) 1k 94.12

datasets, we sample 2048 points and form 128 point patches. As
illustrated in Table 2, Compared with MaskSurf [ZLH*22], our
Point-AGM improved by 0.52%, 1.54%, and 1.35% for three vari-
ants, respectively; this shows that Point-AGM has a strong transfer
ability for real-world point clouds as well.

Table 2: Object classification on ScanObjectNN (%).

Methods OBJ-BG OBJ-ONLY PB-T50-RS
PointNet 73.30 79.20 68.00
[QSMG17]

PointNet++ 82.30 84.30 77.90
[QYSGI17]

DGCNN 82.80 86.20 78.10
[WSL*18]

Transformer 79.86 80.55 77.24
[WLY*21]

Transformer+OcCo 84.85 85.54 78.79
[WLY*21]

Point-BERT 87.43 88.12 83.07
[YTR*22]

3D-OAE 89.16 88.64 83.17
[ZWM*22]

MaskSurf 91.22 89.17 85.81
[ZLH*22]

Point-MAE 90.02 88.29 85.18
[PWT*22]

Point-AGM (Ours) 91.74 90.71 87.16

4.2.2. Few-shot Learning

‘We conduct few-shot learning experiments on ShapeNet to evaluate
the performance of Point-AGM under the n-way, m-shot setting.

In this setting, n represents the number of classes randomly se-
lected from the dataset and m represents the number of objects ran-
domly sampled for each class. We set n € 5,10 and m € 10,20,
providing the mean and standard deviation over 10 independent

© 2024 Eurographics - The European Association
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Table 3: Few-Shot Classification accuracy on ModelNet40 (%).

5-way 10-way

Methods 10-shot 20-shot 10-shot 20-shot
DGCNN- 91.843.7 934432 86.3+x6.2 90.945.1
rand

[WSL*18]

DGCNN- 91.943.3 93.9+43.1 86.4+54 91.3+4.6
OcCo

[WLY*21]

Transformer- 87.845.2 93.3+4.3 84.6£5.5 89.4+6.3
rand

[WSL*18]

Transformer- 94.0£3.6 959+2.3 89.4+5.1 92.4+4.6
OcCo

[WLY*21]

Point-BERT  94.6+£3.1 96.3x2.7 91.0£54 92.745.1
[YTR*22]

3D-OAE 96.3£2.5 98.2+1.5 92.0+£5.3 94.6%3.6
[ZWM*22]

MaskSurf 96.5+2.5 98.0+1.4 93.4+4.1 95.3%£3.0
[ZLH*22]

Point-MAE 96.3+2.5 97.5#1.8 92.6+4.1 95.0£3.0
[PWT*22]

Point- 96.0£3.7 98.4+1.6 93.6x4.0 95.8+3.0
AGM(Ours)

runs. The corresponding standard deviation is provided. As pre-
sented in Table 3, our Point-AGM achieves a significant improve-
ment of 8.2%, 5.1%, 9.0%, 6.4% over Transformer-rand. It is noted
that Transformer-rand and Transformer-OcCo are two variants that
combine rand and OcCo ideas, respectively. DGCNN-rand and
DGCNN-OcCo are the same. Moreover, it achieves comparable re-
sults to the state-of-the-art methods under the transferring features
protocol. We even achieve an accuracy of 98.4% on the 5-way 20-
shot setting, with a standard deviation of 1.6. This indicates that
our Point-AGM has learned rich feature representations that can
facilitate transfer learning even with limited data.

4.2.3. Part Segmentation

We evaluate the representation learning capability of Point-AGM
on ShapeNetPart [YKC*16], which contains 16,881 objects cov-
ering 16 categories. Following Point-MAE [PWT*22], we sample
2048 points and augment the number of point patches to 128 for the
segmentation tasks, utilizing a simple segmentation head. We adopt
the same setting parameters as Point-MAE. As shown in Table 4,
our Point-AGM achieves 85.81% instance mloU with the simple
segmentation head. This achievement surpasses the performance of
Point-BERT by 0.21% and achieves comparable performance with
Point-MAE [PWT*22] and MaskSurf [ZLH*22].

The segmentation results of all shapes are qualitatively illus-
trated in Figure 3. These visualization results show our method
can segment one shape to clear parts close to the ground
truths and achieve segmentation results comparable to Point-MAE
[PWT*22].
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Table 4: Fine-tuned Part segmentation mloU results on ShapeNet Part datasets (%).
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Figure 3: Qualitative results on the ShapeNet part dataset.
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4.3. Ablation Study
4.3.1. Loss Objectives

We further evaluate the contribution of each of the terms in Eq 18.
The result is shown in Table 5. For fair comparisons, without intro-
ducing the reconstruction loss, we can find that the global features
are more conducive to the learning of the model by comparing M
and M>. In contrast, the loss Lo is introduced, the understand-
ing of local features is promoted, and the accuracy is increased by
0.32% (M, vs. M3), but it is not conducive to the understanding of
global features, and the accuracy is decreased by 0.85% (M; vs.
My). Combining the three items, the result achieves an accuracy of
93.88% (Ms). The approach not only promotes the learning of local
features but also does not significantly hinder the understanding of
global features. Since the normal vector is one of the essential ele-
ments in the basic attributes of point cloud, we take the Lyorm as one
of the loss items. By the comparison of 3 result sets, we found that
the introduction of normal vectors can improve the performance of
the model, achieving an accuracy of 94.12% (M3 vs. Mg, M4 vs. M7
and M5 vs. Mg). In addition, Table 6 shows the effect of different

Model Lypym  Lgis  Lpos  Lnorm  Accuracy
M, v 93.48
M, v 94.00
M; v v 93.80
My v v 93.15
Ms v v v 93.88
Mg v v v 93.88
M, v v v 93.60
Mg v v v v 94.12

Table 6: Classification results ModelNet40 dataset with different o
values (%).

Values of & Accuracy

0.0001 93.27
0.001 93.64
0.01 94.12
0.1 93.44
1 93.03

4.3.2. Masking Strategy

In this experiment, we studied four variants of masking strategies
across different mask rates: Random, Block, Attention-high, and
Attention-low. However, these two mask strategies always mask
the key areas of the object, so the overall performance of the model
cannot be improved. In contrast, the Attention-based mask strat-
egy is more conducive to model learning. As shown in Table 7, the
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Attention-low strategy is more beneficial to improve the model’s
performance by preserving the key region information of the object.
The results demonstrate that the highest accuracy is attained when
using Attention-low at a mask rate of 80%. This strongly demon-
strates the importance of key area information for model learning,
even at high mask ratios of 80%.

Table 7: Classification results of different masking strategies on
ModelNet40 (%).

Masking Strategy ~ Masking Ratio ~ Accuracy

0.4 9291

Rand 0.6 93.15

0.8 93.40

0.4 93.56

Block 0.6 93.76

0.8 93.96

0.4 93.52

Attention-high 0.6 93.84
0.8 94.04

0.4 93.23

Attention-low 0.6 93.23
0.8 94.12

In order to better explain the impact of mask strategy on model
learning, Figure 4 presents the masked input and reconstruction re-
sults for four masking strategies. For fairness, we used a mask rate
of 80% for each mask strategy. It can be seen that the key informa-
tion (e.g., tires) of the aircraft is not well retained by the Rand and
Block in Figure 5, resulting in a poor reconstruction effect. Mean-
while, Attention-high masks most of the high-score information,
so reconstructing the plane does not describe the key information
well due to the large number of noise points surrounding it. On the
contrary, the Attention-low retains the high score information and
discards a lot of redundant information, as can be seen from the
reconstruction effect, the aircraft’s tires are well preserved.

4.4. Visualization

The t-SNE [VAMHOS] visualizations for ModelNet40 and ScanOb-
jectNN are exhibited in Figure 6. The left column and right column
present the feature visualizations before and after fine-tuning, re-
spectively.

To further demonstrate the validity of our model, we employ t-
SNE to visualize the feature distribution in Figure 6. Figure 6(a)
and Figure 6(b) represent the feature vectors of our model before
and after pre-training, respectively. We can see that the features
from different categories can be well separated by our model af-
ter pre-training, as shown in Figure 6(b). This visualization indi-
cates that the features learned by our self-supervised pre-training
approach capture the underlying structure of the 3D shape data in a
way that encodes discriminative information about category mem-
bership.

In addition, as shown in Figure 7, we present the learning curves
for the baseline trained from scratch (blue) and our Point-AGM
(red), comparing their performance in terms of training loss and
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accuracy on ModelNet40 datasets. Point-AGM consistently outper-
forms the baseline trained from scratch throughout the training pro-
cess, indicating that pre-training with Point-AGM can significantly
improve the performance of the baseline trained from scratch on
ModelNet40. During the fine-tuning process, we use epoch=100 as
the encoder unfreeze epoch, so the curves jitter here, but the overall
model learning curves still converge.

5. Conclusion

In this paper, a novel method based on attention-guided masked
point modeling for self-supervised point cloud representation learn-
ing has been proposed. By selectively masking less critical re-
gions, our approach learns representations from unlabeled data
while avoiding potential issues with random masking employed in
prior works. In our method, a joint objective combining geomet-
ric reconstruction and an updated cross-view semantic consistency
learning is used, diverging from commonly used contrastive or
generative losses. Extensive experimental evaluation demonstrated
our Point-AGM achieves competitive performances on downstream
shape classification and segmentation benchmarks.

Although our Point-AGM can generalize representations on var-
ious downstream tasks, the segmentation effect does not show sig-
nificant improvement. The reason is the potential leakage of mask
locations and existing problems with input inconsistency. In the fu-
ture, we will move the masking strategy into the Transformer to
guarantee input consistency and extend our method on a large data
scale. We hope that our Point-AGM will provide insights for future
MPM works.
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